Gülseren Özduman, Aadil Javed, Azime Akçaöz Alasar, Bünyamin Akgül, Kemal Sami Korkmaz
Haematological and Neurological Expressed 1 (HN1) is an oncogene for various cancers and previously has been linked with centrosome clustering and cell cycle pathways. Moreover, HN1 has recently been reported to activate mTOR signalling, which is the regulator of ribosome biogenesis and maintenance. We explored the role of HN1 in mTOR signalling through various gain- and loss-of-function experiments using biochemical approaches in different cell lines. We demonstrated for the first time that HN1 is required for nucleolar organiser region (NOR) integrity and function. Immunoprecipitation-based association and colocalization studies demonstrated that HN1 is an important component of the mTOR-RPS6 axis, and its depletion results with reduced mRNA translation in mammalian cancer cell lines. This study also demonstrated that the depletion of HN1 leads to the irregular distribution of nucleolar structures, potentially leading to cell cycle deregulation as reported previously. Accordingly, components of the translation machinery aggregate with a distinct speckled pattern, lose their essential interactions and ultimately impair mRNA translation efficiency when the HN1 is depleted. These results suggest that HN1 is an essential component of the nucleolus, required for ribosome biogenesis as well as global mRNA translation.
{"title":"HN1 Functions in Protein Synthesis Regulation via mTOR-RPS6 Axis and Maintains Nucleolar Integrity.","authors":"Gülseren Özduman, Aadil Javed, Azime Akçaöz Alasar, Bünyamin Akgül, Kemal Sami Korkmaz","doi":"10.1111/cpr.13805","DOIUrl":"https://doi.org/10.1111/cpr.13805","url":null,"abstract":"<p><p>Haematological and Neurological Expressed 1 (HN1) is an oncogene for various cancers and previously has been linked with centrosome clustering and cell cycle pathways. Moreover, HN1 has recently been reported to activate mTOR signalling, which is the regulator of ribosome biogenesis and maintenance. We explored the role of HN1 in mTOR signalling through various gain- and loss-of-function experiments using biochemical approaches in different cell lines. We demonstrated for the first time that HN1 is required for nucleolar organiser region (NOR) integrity and function. Immunoprecipitation-based association and colocalization studies demonstrated that HN1 is an important component of the mTOR-RPS6 axis, and its depletion results with reduced mRNA translation in mammalian cancer cell lines. This study also demonstrated that the depletion of HN1 leads to the irregular distribution of nucleolar structures, potentially leading to cell cycle deregulation as reported previously. Accordingly, components of the translation machinery aggregate with a distinct speckled pattern, lose their essential interactions and ultimately impair mRNA translation efficiency when the HN1 is depleted. These results suggest that HN1 is an essential component of the nucleolus, required for ribosome biogenesis as well as global mRNA translation.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13805"},"PeriodicalIF":5.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Chen, Peng Wang, Shilin Ma, Chenran Yue, Xupeng Liu, Yeqian Cheng, Kun Liu, Tongbiao Zhao, Ng Shyh-Chang
Cells face two challenges after transplantation: recognition and killing by lymphocytes, and cell apoptosis induced by the transplantation environment. Our hypoimmune cells aim to address these two challenges through editing of immunomodulatory proteins and overexpression of anti-apoptotic proteins.
{"title":"Genetically Engineered Hypoimmune Human Muscle Progenitor Cells Can Reduce Immune Rejection.","authors":"Yu Chen, Peng Wang, Shilin Ma, Chenran Yue, Xupeng Liu, Yeqian Cheng, Kun Liu, Tongbiao Zhao, Ng Shyh-Chang","doi":"10.1111/cpr.13802","DOIUrl":"https://doi.org/10.1111/cpr.13802","url":null,"abstract":"<p><p>Cells face two challenges after transplantation: recognition and killing by lymphocytes, and cell apoptosis induced by the transplantation environment. Our hypoimmune cells aim to address these two challenges through editing of immunomodulatory proteins and overexpression of anti-apoptotic proteins.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13802"},"PeriodicalIF":5.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Given the growing interest in the metabolic heterogeneity of hepatocellular carcinoma (HCC) and portal vein tumour thrombus (PVTT). This study comprehensively analysed the metabolic heterogeneity of HCC, PVTT, and normal liver samples using multi-omics combinations. A single-cell RNA sequencing dataset encompassing six major cell types was obtained for integrated analysis. The optimal subtypes were identified using cluster stratification and validated using spatial transcriptomics and fluorescent multiplex immunohistochemistry. Then, a combined index based meta-cluster was calculated to verify its prognostic significance using multi-omics data from public cohorts. Our study first depicted the metabolic heterogeneity landscape of non-malignant cells in HCC and PVTT at multiomics levels. The optimal subtypes interpret the metabolic characteristics of PVTT formation and development. The combined index provided effective predictions of prognosis and immunotherapy responses. Patients with a higher combined index had a relatively poor prognosis (p <0.001). We also found metabolism of polyamines was a key metabolic pathway involved in conversion of metabolic heterogeneity in HCC and PVTT, and identified ODC1 was significantly higher expressed in PVTT compared to normal tissue (p =0.03). Our findings revealed both consistency and heterogeneity in the metabolism of non-malignant cells in HCC and PVTT. The risk stratification based on cancer-associated fibroblasts and myeloid cells conduce to predict prognosis and guide treatment. This offers new directions for understanding disease development and immunotherapy responses.
{"title":"The heterogeneity of cellular metabolism in the tumour microenvironment of hepatocellular carcinoma with portal vein tumour thrombus.","authors":"Xiu-Ping Zhang, Wen-Bo Zou, Zhen-Qi Li, Ze-Tao Yu, Shao-Bo Yu, Zhao-Yi Lin, Fei-Fan Wu, Peng-Jiong Liu, Ming-Gen Hu, Rong Liu, Yu-Zhen Gao","doi":"10.1111/cpr.13738","DOIUrl":"10.1111/cpr.13738","url":null,"abstract":"<p><p>Given the growing interest in the metabolic heterogeneity of hepatocellular carcinoma (HCC) and portal vein tumour thrombus (PVTT). This study comprehensively analysed the metabolic heterogeneity of HCC, PVTT, and normal liver samples using multi-omics combinations. A single-cell RNA sequencing dataset encompassing six major cell types was obtained for integrated analysis. The optimal subtypes were identified using cluster stratification and validated using spatial transcriptomics and fluorescent multiplex immunohistochemistry. Then, a combined index based meta-cluster was calculated to verify its prognostic significance using multi-omics data from public cohorts. Our study first depicted the metabolic heterogeneity landscape of non-malignant cells in HCC and PVTT at multiomics levels. The optimal subtypes interpret the metabolic characteristics of PVTT formation and development. The combined index provided effective predictions of prognosis and immunotherapy responses. Patients with a higher combined index had a relatively poor prognosis (p <0.001). We also found metabolism of polyamines was a key metabolic pathway involved in conversion of metabolic heterogeneity in HCC and PVTT, and identified ODC1 was significantly higher expressed in PVTT compared to normal tissue (p =0.03). Our findings revealed both consistency and heterogeneity in the metabolism of non-malignant cells in HCC and PVTT. The risk stratification based on cancer-associated fibroblasts and myeloid cells conduce to predict prognosis and guide treatment. This offers new directions for understanding disease development and immunotherapy responses.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13738"},"PeriodicalIF":5.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aberrant activation of dermal fibroblasts during wound healing often leads to debilitating fibrotic changes in the skin, such as scleroderma and keloids. However, the underlying cellular and molecular mechanisms remain elusive. Here, we established a wound-induced skin fibrosis (WISF) mouse model in mature adult mice, characterised by excessive deposition of collagen bundles, loss of dermal adipocytes, and enrichment of DPP4+Ly6A+THY1+ hypodermal interstitial adipocyte progenitors (HI-APs) and pericytes, resembling human fibrotic skin diseases. This WISF model exhibited an age-dependent gain of fibrotic characteristics, contrasting with the wound-induced hair neogenesis observed in younger mice. Through comprehensive analyses of the WISF, we delineated a trajectory of fibroblast differentiation that originates from HI-APs. These progenitors highly expressed several extracellular matrix (ECM) genes and exhibited a TGFβ pathway signature. TGFβ was identified as the key signal to inhibit the adipogenic potential and maintain the fibrogenic potential of dermal APs. Additionally, administering a TGFβ receptor inhibitor to wound scar reduced the abundance of ECM-producing APs. Finally, analysis of human scleroderma skin tissues revealed a negative correlation between the expression of AP-, ECM-, and TGFβ pathway-related genes and PPARG. Overall, this study establishes a wound-induced skin fibrosis mouse model and demonstrates that TGFβ-mediated blockage of HI-AP differentiation is crucial for driving fibrotic pathology. Targeting HI-APs and adipogenesis may provide novel avenues for developing disease-modifying therapies for fibrotic skin diseases.
{"title":"TGFβ-mediated inhibition of hypodermal adipocyte progenitor differentiation promotes wound-induced skin fibrosis.","authors":"Meimei Yin, Lixiang Sun, Shuai Wu, Jinhang Ma, Wenlu Zhang, Xiaoxuan Ji, Zhichong Tang, Xiaowei Zhang, Yichun Yang, Xinyuan Zhang, Jin-Wen Huang, Shaoluan Zheng, Wen-Jie Liu, Chao Ji, Ling-Juan Zhang","doi":"10.1111/cpr.13722","DOIUrl":"10.1111/cpr.13722","url":null,"abstract":"<p><p>Aberrant activation of dermal fibroblasts during wound healing often leads to debilitating fibrotic changes in the skin, such as scleroderma and keloids. However, the underlying cellular and molecular mechanisms remain elusive. Here, we established a wound-induced skin fibrosis (WISF) mouse model in mature adult mice, characterised by excessive deposition of collagen bundles, loss of dermal adipocytes, and enrichment of DPP4<sup>+</sup>Ly6A<sup>+</sup>THY1<sup>+</sup> hypodermal interstitial adipocyte progenitors (HI-APs) and pericytes, resembling human fibrotic skin diseases. This WISF model exhibited an age-dependent gain of fibrotic characteristics, contrasting with the wound-induced hair neogenesis observed in younger mice. Through comprehensive analyses of the WISF, we delineated a trajectory of fibroblast differentiation that originates from HI-APs. These progenitors highly expressed several extracellular matrix (ECM) genes and exhibited a TGFβ pathway signature. TGFβ was identified as the key signal to inhibit the adipogenic potential and maintain the fibrogenic potential of dermal APs. Additionally, administering a TGFβ receptor inhibitor to wound scar reduced the abundance of ECM-producing APs. Finally, analysis of human scleroderma skin tissues revealed a negative correlation between the expression of AP-, ECM-, and TGFβ pathway-related genes and PPARG. Overall, this study establishes a wound-induced skin fibrosis mouse model and demonstrates that TGFβ-mediated blockage of HI-AP differentiation is crucial for driving fibrotic pathology. Targeting HI-APs and adipogenesis may provide novel avenues for developing disease-modifying therapies for fibrotic skin diseases.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13722"},"PeriodicalIF":5.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone metastasis (BM) is a mortality-related event of late-stage cancer, with non-small cell lung cancer (NSCLC) being a common origin for BM. However, the detailed molecular profiling of the metastatic bone ecosystem is not fully understood, hindering the development of effective therapies for advanced patients. In this study, we examined the cellular heterogeneity between primary tumours and BM from tissues and peripheral blood by single-cell transcriptomic analysis, which was verified using multiplex immunofluorescence staining and public datasets. Our results demonstrate a senescent microenvironment in BM tissues of NSCLC. BM has a significantly higher infiltration of malignant cells with senescent characteristics relative to primary tumours, accompanied by aggravated metastatic properties. The endothelial-mesenchymal transition involved with SOX18 activation is related to the cellular senescence of vascular endothelial cells from BM. CD4Tstr cells, with pronounced stress and senescence states, are preferentially infiltrated in BM, indicating stress-related dysfunction contributing to the immunocompromised environment during tumour metastasis to bone. Moreover, we identify the SPP1 pathway-induced cellular crosstalk among T cells, vascular ECs and malignant cells in BM, which activates SOX18 and deteriorates patient survival. Our findings highlight the roles of cellular senescence in modulating the microenvironment of BM and implicate anti-senescence therapy for advanced NSCLC patients.
{"title":"Single-cell transcriptomic analysis of the senescent microenvironment in bone metastasis.","authors":"Shenglin Wang, Lu Ao, Huangfeng Lin, Hongxiang Wei, Zhaoyang Wu, Shuting Lu, Fude Liang, Rongkai Shen, Huarong Zhang, Tongjie Miao, Xiaopei Shen, Jianhua Lin, Guangxian Zhong","doi":"10.1111/cpr.13743","DOIUrl":"10.1111/cpr.13743","url":null,"abstract":"<p><p>Bone metastasis (BM) is a mortality-related event of late-stage cancer, with non-small cell lung cancer (NSCLC) being a common origin for BM. However, the detailed molecular profiling of the metastatic bone ecosystem is not fully understood, hindering the development of effective therapies for advanced patients. In this study, we examined the cellular heterogeneity between primary tumours and BM from tissues and peripheral blood by single-cell transcriptomic analysis, which was verified using multiplex immunofluorescence staining and public datasets. Our results demonstrate a senescent microenvironment in BM tissues of NSCLC. BM has a significantly higher infiltration of malignant cells with senescent characteristics relative to primary tumours, accompanied by aggravated metastatic properties. The endothelial-mesenchymal transition involved with SOX18 activation is related to the cellular senescence of vascular endothelial cells from BM. CD4Tstr cells, with pronounced stress and senescence states, are preferentially infiltrated in BM, indicating stress-related dysfunction contributing to the immunocompromised environment during tumour metastasis to bone. Moreover, we identify the SPP1 pathway-induced cellular crosstalk among T cells, vascular ECs and malignant cells in BM, which activates SOX18 and deteriorates patient survival. Our findings highlight the roles of cellular senescence in modulating the microenvironment of BM and implicate anti-senescence therapy for advanced NSCLC patients.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13743"},"PeriodicalIF":5.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inflammation serves as the foundation for numerous physiological and pathological processes, driving the onset and progression of various diseases. Histone deacetylase 3 (HDAC3), an essential chromatin-modifying protein within the histone deacetylase superfamily, exerts its transcriptional inhibitory role through enzymatic histone modification to uphold normal physiological function, growth, and development of the body. With both enzymatic and non-enzymatic activities, HDAC3 plays a pivotal role in regulating diverse transcription factors associated with inflammatory responses and related diseases. This review examines the involvement of HDAC3 in inflammatory responses while exploring its therapeutic potential as a target for treating inflammatory diseases, thereby offering valuable insights for clinical applications.
{"title":"HDAC3 in action: Expanding roles in inflammation and inflammatory diseases.","authors":"Ruyuan He, Zhuokun He, Tianyu Zhang, Bohao Liu, Minglang Gao, Ning Li, Qing Geng","doi":"10.1111/cpr.13731","DOIUrl":"10.1111/cpr.13731","url":null,"abstract":"<p><p>Inflammation serves as the foundation for numerous physiological and pathological processes, driving the onset and progression of various diseases. Histone deacetylase 3 (HDAC3), an essential chromatin-modifying protein within the histone deacetylase superfamily, exerts its transcriptional inhibitory role through enzymatic histone modification to uphold normal physiological function, growth, and development of the body. With both enzymatic and non-enzymatic activities, HDAC3 plays a pivotal role in regulating diverse transcription factors associated with inflammatory responses and related diseases. This review examines the involvement of HDAC3 in inflammatory responses while exploring its therapeutic potential as a target for treating inflammatory diseases, thereby offering valuable insights for clinical applications.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13731"},"PeriodicalIF":5.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction-oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.
{"title":"Mechanisms and therapeutic potential of disulphidptosis in cancer.","authors":"Yanhu Li, Haijun Zhang, Fengguang Yang, Daxue Zhu, Shijie Chen, Zhaoheng Wang, Ziyan Wei, Zhili Yang, Jingwen Jia, Yizhi Zhang, Dongxin Wang, Mingdong Ma, Xuewen Kang","doi":"10.1111/cpr.13752","DOIUrl":"10.1111/cpr.13752","url":null,"abstract":"<p><p>SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction-oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13752"},"PeriodicalIF":5.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-19DOI: 10.1111/cpr.13734
Lin Shen, Shuai Li, Yalin Wang, Yi Yin, Yiting Liu, Yunlei Zhang, Xuesheng Zheng
The search for effective strategies to target tumour angiogenesis remains a critical goal of cancer research. We present a pioneering approach using alternating electric fields to inhibit tumour angiogenesis and enhance the therapeutic efficacy of bevacizumab. Chicken chorioallantoic membrane, cell viability and in vitro endothelial tube formation assays revealed that electric fields with a frequency of 1000 kHz and an electric intensity of 0.6 V/cm inhibited the growth of vascular endothelial cells and suppressed tumour-induced angiogenesis. In an animal U87MG glioma model, 1000 kHz electric fields inhibited tumour angiogenesis and suppressed tumour growth. As demonstrated by 3D vessel analysis, tumour vasculature in the control group was a stout, interwoven network. However, electric fields transformed it into slim, parallel capillaries that were strictly perpendicular to the electric field direction. This architectural transformation was accompanied by apoptosis of vascular endothelial cells and a notable reduction in tumour vessel number. Additionally, we found that the anti-angiogenesis and tumour-suppression effects of electric fields synergised with bevacizumab. The anti-angiogenic mechanisms of electric fields include disrupting spindle formation during endothelial cell division and downregulating environmental angiogenesis-related cytokines, such as interleukin-6, CXCL-1, 2, 3, 5 and 8, and matrix metalloproteinases. In summary, our findings demonstrate the potential of alternating electric fields (AEFs) as a therapeutic modality to impede angiogenesis and restrain cancer growth.
{"title":"Alternating electric fields transform the intricate network of tumour vasculature into orderly parallel capillaries and enhance the anti-angiogenesis effect of bevacizumab.","authors":"Lin Shen, Shuai Li, Yalin Wang, Yi Yin, Yiting Liu, Yunlei Zhang, Xuesheng Zheng","doi":"10.1111/cpr.13734","DOIUrl":"10.1111/cpr.13734","url":null,"abstract":"<p><p>The search for effective strategies to target tumour angiogenesis remains a critical goal of cancer research. We present a pioneering approach using alternating electric fields to inhibit tumour angiogenesis and enhance the therapeutic efficacy of bevacizumab. Chicken chorioallantoic membrane, cell viability and in vitro endothelial tube formation assays revealed that electric fields with a frequency of 1000 kHz and an electric intensity of 0.6 V/cm inhibited the growth of vascular endothelial cells and suppressed tumour-induced angiogenesis. In an animal U87MG glioma model, 1000 kHz electric fields inhibited tumour angiogenesis and suppressed tumour growth. As demonstrated by 3D vessel analysis, tumour vasculature in the control group was a stout, interwoven network. However, electric fields transformed it into slim, parallel capillaries that were strictly perpendicular to the electric field direction. This architectural transformation was accompanied by apoptosis of vascular endothelial cells and a notable reduction in tumour vessel number. Additionally, we found that the anti-angiogenesis and tumour-suppression effects of electric fields synergised with bevacizumab. The anti-angiogenic mechanisms of electric fields include disrupting spindle formation during endothelial cell division and downregulating environmental angiogenesis-related cytokines, such as interleukin-6, CXCL-1, 2, 3, 5 and 8, and matrix metalloproteinases. In summary, our findings demonstrate the potential of alternating electric fields (AEFs) as a therapeutic modality to impede angiogenesis and restrain cancer growth.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13734"},"PeriodicalIF":5.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-28DOI: 10.1111/cpr.13739
Zhiyuan Wu, Wei Li, Melissa Tan, Faith Yuan Xin How, Haripriya Sadhasivan, Ratha Mahendran, Qinghui Wu, Edmund Chiong, Minh T N Le
Interleukin-12 (IL-12) holds significant potential in cancer therapy; however, its clinical applicability is hindered by dose-limiting toxicity. Delivery of the IL-12 gene directly to tumours for constitutive IL-12 expression is a possible strategy to enhance its effectiveness while minimizing systemic toxicity. In this study, we investigate the potential of red blood cell-derived extracellular vesicles (RBCEVs) as a carrier for Il-12 plasmid delivery. We demonstrate that RBCEVs can be loaded with minicircle plasmid encoding IL-12 and delivered to MB49 bladder cancer cells for IL-12 expression. The expression of transgenes from minicircles was significantly higher than from the parental plasmids. RBCEV-mediated IL-12 expression stimulated immune responses in mouse splenocytes. Intratumoral delivery of Il-12 plasmid-loaded RBCEVs suppressed bladder cancer tumour growth, stimulated immune responses and promoted immune cell infiltration. In conclusion, our study demonstrates the promising potential of RBCEVs as an effective, safe and redosable nucleic acid drug delivery platform for IL-12.
{"title":"IL-12 minicircle delivery via extracellular vesicles as immunotherapy for bladder cancer.","authors":"Zhiyuan Wu, Wei Li, Melissa Tan, Faith Yuan Xin How, Haripriya Sadhasivan, Ratha Mahendran, Qinghui Wu, Edmund Chiong, Minh T N Le","doi":"10.1111/cpr.13739","DOIUrl":"10.1111/cpr.13739","url":null,"abstract":"<p><p>Interleukin-12 (IL-12) holds significant potential in cancer therapy; however, its clinical applicability is hindered by dose-limiting toxicity. Delivery of the IL-12 gene directly to tumours for constitutive IL-12 expression is a possible strategy to enhance its effectiveness while minimizing systemic toxicity. In this study, we investigate the potential of red blood cell-derived extracellular vesicles (RBCEVs) as a carrier for Il-12 plasmid delivery. We demonstrate that RBCEVs can be loaded with minicircle plasmid encoding IL-12 and delivered to MB49 bladder cancer cells for IL-12 expression. The expression of transgenes from minicircles was significantly higher than from the parental plasmids. RBCEV-mediated IL-12 expression stimulated immune responses in mouse splenocytes. Intratumoral delivery of Il-12 plasmid-loaded RBCEVs suppressed bladder cancer tumour growth, stimulated immune responses and promoted immune cell infiltration. In conclusion, our study demonstrates the promising potential of RBCEVs as an effective, safe and redosable nucleic acid drug delivery platform for IL-12.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13739"},"PeriodicalIF":5.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693561/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-09-01DOI: 10.1111/cpr.13742
Shuai Mei, Xiaozhu Ma, Li Zhou, Qidamugai Wuyun, Ziyang Cai, Jiangtao Yan, Hu Ding
Circular RNAs (circRNAs) are novel regulatory RNAs with high evolutionary conservation and stability, which makes them effective therapeutic agents for various vascular diseases. The SMAD family is a downstream mediator of the canonical transforming growth factor beta (TGF-β) signalling pathway and has been considered as a critical regulator in vascular injury. However, the role of circRNAs derived from the SMAD family members in vascular physiology remains unclear. In this study, we initially identified potential functional circRNAs originating from the SMAD family using integrated transcriptome screening. circSMAD3, derived from the SMAD3 gene, was identified to be significantly downregulated in vascular injury and atherosclerosis. Transcriptome analysis was conducted to comprehensively illustrate the pathways modulated by circRNAs. Functionally, circSMAD3 repressed vascular smooth muscle cell (VSMC) proliferation and phenotype switching in vitro evidenced by morphological assays, and ameliorated arterial injury-induced neointima formation in vivo. Mechanistically, circSMAD3 interacted with heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) within the nucleus, enhanced its interaction with E3 ligase WD repeat domain 76 to promote hnRNPA1 ubiquitination degradation, facilitated p53 pre-RNA splicing, activated the p53γ signalling pathway, and finally suppressed VSMC proliferation and phenotype switching. Our study identifies circSMAD3 as a novel epigenetic regulator that suppresses VSMC proliferation and phenotype switching, thereby attenuating vascular remodelling and providing a new circRNA-based therapeutic strategy for cardiovascular diseases.
{"title":"CircSMAD3 represses VSMC phenotype switching and neointima formation via promoting hnRNPA1 ubiquitination degradation.","authors":"Shuai Mei, Xiaozhu Ma, Li Zhou, Qidamugai Wuyun, Ziyang Cai, Jiangtao Yan, Hu Ding","doi":"10.1111/cpr.13742","DOIUrl":"10.1111/cpr.13742","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are novel regulatory RNAs with high evolutionary conservation and stability, which makes them effective therapeutic agents for various vascular diseases. The SMAD family is a downstream mediator of the canonical transforming growth factor beta (TGF-β) signalling pathway and has been considered as a critical regulator in vascular injury. However, the role of circRNAs derived from the SMAD family members in vascular physiology remains unclear. In this study, we initially identified potential functional circRNAs originating from the SMAD family using integrated transcriptome screening. circSMAD3, derived from the SMAD3 gene, was identified to be significantly downregulated in vascular injury and atherosclerosis. Transcriptome analysis was conducted to comprehensively illustrate the pathways modulated by circRNAs. Functionally, circSMAD3 repressed vascular smooth muscle cell (VSMC) proliferation and phenotype switching in vitro evidenced by morphological assays, and ameliorated arterial injury-induced neointima formation in vivo. Mechanistically, circSMAD3 interacted with heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) within the nucleus, enhanced its interaction with E3 ligase WD repeat domain 76 to promote hnRNPA1 ubiquitination degradation, facilitated p53 pre-RNA splicing, activated the p53γ signalling pathway, and finally suppressed VSMC proliferation and phenotype switching. Our study identifies circSMAD3 as a novel epigenetic regulator that suppresses VSMC proliferation and phenotype switching, thereby attenuating vascular remodelling and providing a new circRNA-based therapeutic strategy for cardiovascular diseases.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13742"},"PeriodicalIF":5.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}