Lei Xu, Yufan Zhang, Xingyi Chen, Yuan Hong, Xu Zhang, Hao Hu, Xiao Han, Xiao Zou, Min Xu, Wanying Zhu, Yan Liu
The developing human foetal brain is sensitive to thermal stimulation during pregnancy. However, the mechanisms by which heat exposure affects human foetal brain development remain unclear, largely due to the lack of appropriate research models for studying thermal stimulation. To address this, we have developed a periodic heating model based on brain organoids derived from human pluripotent stem cells. The model recapitulated neurodevelopmental disruptions under prenatal heat exposure at the early stages, providing a paradigm for studying the altered neurodevelopment under environmental stimulation. Our study found that periodic heat exposure led to decreased size and impaired neural tube development in the brain organoids. Bulk RNA-seq analysis revealed that the abnormal WNT signalling pathway and the reduction of G2/M progenitor cells might be involved in heat stimulation. Further investigation revealed increased neural differentiation and decreased proliferation under heat stimulation, indicating that periodic heat exposure might lead to abnormal brain development by altering key developmental processes. Hence, our model of periodically heating brain organoids provides a platform for modelling the effects of maternal fever on foetal brain development and could be extended to applications in neurodevelopmental disorders intervention.
{"title":"Human Brain Organoids Model Abnormal Prenatal Neural Development Induced by Thermal Stimulation.","authors":"Lei Xu, Yufan Zhang, Xingyi Chen, Yuan Hong, Xu Zhang, Hao Hu, Xiao Han, Xiao Zou, Min Xu, Wanying Zhu, Yan Liu","doi":"10.1111/cpr.13777","DOIUrl":"https://doi.org/10.1111/cpr.13777","url":null,"abstract":"<p><p>The developing human foetal brain is sensitive to thermal stimulation during pregnancy. However, the mechanisms by which heat exposure affects human foetal brain development remain unclear, largely due to the lack of appropriate research models for studying thermal stimulation. To address this, we have developed a periodic heating model based on brain organoids derived from human pluripotent stem cells. The model recapitulated neurodevelopmental disruptions under prenatal heat exposure at the early stages, providing a paradigm for studying the altered neurodevelopment under environmental stimulation. Our study found that periodic heat exposure led to decreased size and impaired neural tube development in the brain organoids. Bulk RNA-seq analysis revealed that the abnormal WNT signalling pathway and the reduction of G2/M progenitor cells might be involved in heat stimulation. Further investigation revealed increased neural differentiation and decreased proliferation under heat stimulation, indicating that periodic heat exposure might lead to abnormal brain development by altering key developmental processes. Hence, our model of periodically heating brain organoids provides a platform for modelling the effects of maternal fever on foetal brain development and could be extended to applications in neurodevelopmental disorders intervention.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13777"},"PeriodicalIF":5.9,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Zhang, Yanqiu Wang, Qi An, Hengjing Ji, Defu Wu, Xuri Li, Lingge Suo, Chun Zhang, Xuran Dong
Human induced pluripotent stem cells (hiPSCs) represent a promising cell source for generating functional cells suitable for clinical therapeutic applications, particularly in the context of autologous cell therapies. However, the production of hiPSCs through genetic manipulation, especially involving oncogenes, may raise safety concerns. Furthermore, the complexity and high costs associated with hiPSCs generation have hindered their broad clinical use. In this study, we utilised a recently developed chemical reprogramming method in conjunction with a guided differentiation protocol, introducing a chemically defined strategy for generating functional human retinal pigment epithelium (RPE) cells from adipose tissue, bypassing conventional hiPSCs generation challenges. By utilising small molecule-based chemical cocktails, we reprogrammed somatic adipose cells into human chemically induced pluripotent stem cells (hCiPSCs) in a safer and more streamlined manner, entirely free from gene manipulation. Subsequent differentiation of hCiPSCs into functional RPE cells demonstrated their capability for secretion and phagocytosis, emphasising their vital role in maintaining retinal homeostasis and underscoring their therapeutic potential. Our findings highlight the transformative potential of hCiPSCs as a safer, more efficient option for personalised cell therapies, with applications extending beyond ocular disease to a wide range of medical conditions.
{"title":"A Chemical Reprogramming Approach Efficiently Producing Human Retinal Pigment Epithelium Cells for Retinal Disease Therapies.","authors":"Ke Zhang, Yanqiu Wang, Qi An, Hengjing Ji, Defu Wu, Xuri Li, Lingge Suo, Chun Zhang, Xuran Dong","doi":"10.1111/cpr.13785","DOIUrl":"https://doi.org/10.1111/cpr.13785","url":null,"abstract":"<p><p>Human induced pluripotent stem cells (hiPSCs) represent a promising cell source for generating functional cells suitable for clinical therapeutic applications, particularly in the context of autologous cell therapies. However, the production of hiPSCs through genetic manipulation, especially involving oncogenes, may raise safety concerns. Furthermore, the complexity and high costs associated with hiPSCs generation have hindered their broad clinical use. In this study, we utilised a recently developed chemical reprogramming method in conjunction with a guided differentiation protocol, introducing a chemically defined strategy for generating functional human retinal pigment epithelium (RPE) cells from adipose tissue, bypassing conventional hiPSCs generation challenges. By utilising small molecule-based chemical cocktails, we reprogrammed somatic adipose cells into human chemically induced pluripotent stem cells (hCiPSCs) in a safer and more streamlined manner, entirely free from gene manipulation. Subsequent differentiation of hCiPSCs into functional RPE cells demonstrated their capability for secretion and phagocytosis, emphasising their vital role in maintaining retinal homeostasis and underscoring their therapeutic potential. Our findings highlight the transformative potential of hCiPSCs as a safer, more efficient option for personalised cell therapies, with applications extending beyond ocular disease to a wide range of medical conditions.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13785"},"PeriodicalIF":5.9,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tiantian Wang, Jiehao Chen, Bo Qu, Dong Zhou, Zhen Hong
Currently, there is no specific treatment for diabetes-induced osteoporosis (DOP). Our study identified diabetes-induced cellular senescence, marked by elevated activity of senescence-associated β-galactosidase. Targeting senescent cells holds promise for osteoporosis treatment. We demonstrated that scutellarin (SCU) effectively mitigated bone loss in DOP mice, and co-treatment with SCU significantly reduced diabetes-induced senescence in LepR+MSCs. Furthermore, our research highlighted the role of Nrf2 in SCU's anti-senescence effects on bone. The deletion of Nrf2 impaired SCU's ability to alleviate DOP. Mechanistically, SCU enhances Ezh2 expression and increases H3K27me3 activity at the Keap1 promoter region, leading to Keap1 repression and enhanced Nrf2-ARE signalling. Additionally, SCU notably inhibited cellular senescence and diabetes-related osteoporosis, these effects were significantly reduced in Ezh2LepRcre conditional knockout models. These findings suggest that the Ezh2-Nrf2 signalling axis is crucial for mediating SCU's beneficial effects in this context. Overall, our discoveries provide insights into the mechanisms underlying DOP and propose a potential preventive strategy for this condition.
{"title":"Scutellarin Alleviates Bone Marrow Mesenchymal Stromal Cellular Senescence via the Ezh2-Nrf2 Signalling Axis in Diabetes-Induced Bone Loss.","authors":"Tiantian Wang, Jiehao Chen, Bo Qu, Dong Zhou, Zhen Hong","doi":"10.1111/cpr.13790","DOIUrl":"https://doi.org/10.1111/cpr.13790","url":null,"abstract":"<p><p>Currently, there is no specific treatment for diabetes-induced osteoporosis (DOP). Our study identified diabetes-induced cellular senescence, marked by elevated activity of senescence-associated β-galactosidase. Targeting senescent cells holds promise for osteoporosis treatment. We demonstrated that scutellarin (SCU) effectively mitigated bone loss in DOP mice, and co-treatment with SCU significantly reduced diabetes-induced senescence in LepR+MSCs. Furthermore, our research highlighted the role of Nrf2 in SCU's anti-senescence effects on bone. The deletion of Nrf2 impaired SCU's ability to alleviate DOP. Mechanistically, SCU enhances Ezh2 expression and increases H3K27me3 activity at the Keap1 promoter region, leading to Keap1 repression and enhanced Nrf2-ARE signalling. Additionally, SCU notably inhibited cellular senescence and diabetes-related osteoporosis, these effects were significantly reduced in Ezh2<sup>LepRcre</sup> conditional knockout models. These findings suggest that the Ezh2-Nrf2 signalling axis is crucial for mediating SCU's beneficial effects in this context. Overall, our discoveries provide insights into the mechanisms underlying DOP and propose a potential preventive strategy for this condition.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13790"},"PeriodicalIF":5.9,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yao Yao, Xin Bin, Yanxuan Xu, Shaowan Chen, Si Chen, Xiang-Ling Yuan, Yingjie Cao, Tsz Kin Ng
The cover image is based on the article Cellular senescence mediates retinal ganglion cell survival regulation post-optic nerve crush injury by Yao Yao et al., https://doi.org/10.1111/cpr.13719.