RETRACTION: W. Xi, X. Zhao, M. Wu, W. Jia, and H. Li, “Lack of MicroRNA-155 Ameliorates Renal Fibrosis by Targeting PDE3A/TGF-β1/Smad Signaling in Mice with Obstructive Nephropathy”, Cell Biology International 42, no. 11 (2018): 1523-1532. https://doi.org/10.1002/cbin.11038
The above article, published online on 6 August 2018 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Sergio Schenkman; the International Federation for Cell Biology; and John Wiley & Sons Ltd.
The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Several flaws and inconsistencies between results presented and experimental methods described were found. Furthermore, several image elements in Figure 2 A were found to have been published previously in a different scientific context. Thus, the editors consider the conclusions of this article to be invalid. The authors have been informed of the decision of retraction but were not available for a final confirmation.
撤回:W. Xi, X. Zhao, M. Wu, W. Jia, and H. Li, "Lack of MicroRNA-155 Ameliorates Renal Fibrosis by Targeting PDE3A/TGF-β1/Smad Signaling in Mice with Obstructive Nephropathy", Cell Biology International 42, no:1523-1532。https://doi.org/10.1002/cbin.11038 上述文章于 2018 年 8 月 6 日在线发表于 Wiley Online Library (wileyonlinelibrary.com),经期刊主编 Sergio Schenkman、国际细胞生物学联合会和 John Wiley & Sons Ltd.同意,已被撤回。之所以同意撤稿,是因为第三方对文章中提供的数据表示担忧。我们发现,文章中介绍的结果与实验方法之间存在若干缺陷和不一致之处。此外,还发现图 2 A 中的几个图像元素以前曾在不同的科学背景下发表过。因此,编辑认为这篇文章的结论无效。作者已被告知撤稿决定,但无法得到最终确认。
{"title":"RETRACTION: Lack of MicroRNA-155 Ameliorates Renal Fibrosis by Targeting PDE3A/TGF-β1/Smad Signaling in Mice with Obstructive Nephropathy","authors":"","doi":"10.1002/cbin.12194","DOIUrl":"10.1002/cbin.12194","url":null,"abstract":"<p><b>RETRACTION:</b> W. Xi, X. Zhao, M. Wu, W. Jia, and H. Li, “Lack of MicroRNA-155 Ameliorates Renal Fibrosis by Targeting PDE3A/TGF-β1/Smad Signaling in Mice with Obstructive Nephropathy”, <i>Cell Biology International</i> 42, no. 11 (2018): 1523-1532. https://doi.org/10.1002/cbin.11038</p><p>The above article, published online on 6 August 2018 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Sergio Schenkman; the International Federation for Cell Biology; and John Wiley & Sons Ltd.</p><p>The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Several flaws and inconsistencies between results presented and experimental methods described were found. Furthermore, several image elements in Figure 2 A were found to have been published previously in a different scientific context. Thus, the editors consider the conclusions of this article to be invalid. The authors have been informed of the decision of retraction but were not available for a final confirmation.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1226"},"PeriodicalIF":3.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12194","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pooja Yadav, Samir K. Beura, Abhishek R. Panigrahi, Paresh P. Kulkarni, Mithlesh K. Yadav, Anjana Munshi, Sunil K. Singh
Platelets are essential component of circulation that plays a major role in hemostasis and thrombosis. During activation and its demise, platelets release platelet-derived microvesicles, with lysophosphatidylcholine (LPC) being a prominent component in their lipid composition. LPC, an oxidized low-density lipoprotein, is involved in cellular metabolism, but its higher level is implicated in pathologies like atherosclerosis, diabetes, and inflammatory disorders. Despite this, its impact on platelet function remains relatively unexplored. To address this, we studied LPC's effects on washed human platelets. A multimode plate reader was employed to measure reactive oxygen species and intracellular calcium using H2DCF-DA and Fluo-4-AM, respectively. Flow cytometry was utilized to measure phosphatidylserine expression, mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) formation using FITC-Annexin V, JC-1, and CoCl2/calcein-AM, respectively. Additionally, platelet morphology and its ultrastructure were observed via phase contrast and electron microscopy. Sonoclot and light transmission aggregometry were employed to examine fibrin formation and platelet aggregation, respectively. The findings demonstrate that LPC induced oxidative stress and increased intracellular calcium in platelets, resulting in increased phosphatidylserine expression and reduced ΔΨm. LPC triggered caspase-independent platelet death and mPTP opening via cytosolic and mitochondrial calcium, along with microvesiculation and reduced platelet counts. LPC increased the platelet's size, adopting a balloon-shaped morphology, causing membrane fragmentation and releasing its cellular contents, while inducing a pro-coagulant phenotype with increased fibrin formation and reduced integrin αIIbβ3 activation. Conclusively, this study reveals LPC-induced oxidative stress and calcium-mediated platelet death, necrotic in nature with pro-coagulant properties, potentially impacting inflammation and repair mechanisms during vascular injury.
{"title":"Lysophosphatidylcholine induces oxidative stress and calcium-mediated cell death in human blood platelets","authors":"Pooja Yadav, Samir K. Beura, Abhishek R. Panigrahi, Paresh P. Kulkarni, Mithlesh K. Yadav, Anjana Munshi, Sunil K. Singh","doi":"10.1002/cbin.12192","DOIUrl":"10.1002/cbin.12192","url":null,"abstract":"<p>Platelets are essential component of circulation that plays a major role in hemostasis and thrombosis. During activation and its demise, platelets release platelet-derived microvesicles, with lysophosphatidylcholine (LPC) being a prominent component in their lipid composition. LPC, an oxidized low-density lipoprotein, is involved in cellular metabolism, but its higher level is implicated in pathologies like atherosclerosis, diabetes, and inflammatory disorders. Despite this, its impact on platelet function remains relatively unexplored. To address this, we studied LPC's effects on washed human platelets. A multimode plate reader was employed to measure reactive oxygen species and intracellular calcium using H<sub>2</sub>DCF-DA and Fluo-4-AM, respectively. Flow cytometry was utilized to measure phosphatidylserine expression, mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) formation using FITC-Annexin V, JC-1, and CoCl<sub>2</sub>/calcein-AM, respectively. Additionally, platelet morphology and its ultrastructure were observed via phase contrast and electron microscopy. Sonoclot and light transmission aggregometry were employed to examine fibrin formation and platelet aggregation, respectively. The findings demonstrate that LPC induced oxidative stress and increased intracellular calcium in platelets, resulting in increased phosphatidylserine expression and reduced ΔΨm. LPC triggered caspase-independent platelet death and mPTP opening via cytosolic and mitochondrial calcium, along with microvesiculation and reduced platelet counts. LPC increased the platelet's size, adopting a balloon-shaped morphology, causing membrane fragmentation and releasing its cellular contents, while inducing a pro-coagulant phenotype with increased fibrin formation and reduced integrin αIIbβ3 activation. Conclusively, this study reveals LPC-induced oxidative stress and calcium-mediated platelet death, necrotic in nature with pro-coagulant properties, potentially impacting inflammation and repair mechanisms during vascular injury.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 9","pages":"1266-1284"},"PeriodicalIF":3.3,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferroptosis is a novel form of programmed cell death and is considered to be a druggable target for colorectal cancer (CRC) therapy. However, the role of ferroptosis in CRC and its underlying mechanism are not fully understood. In the present study we found that a protein enriched in the Golgi apparatus, Golgi phosphoprotein 3 (GOLPH3), was overexpressed in human CRC tissue and in several CRC cell lines. The expression of GOLPH3 was significantly correlated with the expression of ferroptosis-related genes in CRC. The overexpression of GOLPH3 in Erastin-induced Caco-2 CRC cells reduced ferroptotic phenotypes, whereas the knockdown of GOLPH3 potentiated ferroptosis in HT-29 CRC cells. GOLPH3 induced the expression of prohibitin-1 (PHB1) and prohibitin-2 (PHB2), which also inhibited ferroptosis in Erastin-treated CRC cells. Moreover, GOLPH3 interacted with PHB2 and nuclear factor erythroid 2-related factor 2 (NRF2) in Caco-2 cells. These observations indicate that GOLPH3 is a negative regulator of ferroptosis in CRC cells. GOLPH3 protects these cells from ferroptosis by inducing the expression of PHB1 and PHB2, and by interacting with PHB2 and NRF2.
{"title":"GOLPH3 inhibits erastin-induced ferroptosis in colorectal cancer cells","authors":"Lihua Chen, Chunxiao Wang, Xiaojing Chen, Yuze Wu, Mingliang Chen, Xian Deng, Chengzhi Qiu","doi":"10.1002/cbin.12190","DOIUrl":"10.1002/cbin.12190","url":null,"abstract":"<p>Ferroptosis is a novel form of programmed cell death and is considered to be a druggable target for colorectal cancer (CRC) therapy. However, the role of ferroptosis in CRC and its underlying mechanism are not fully understood. In the present study we found that a protein enriched in the Golgi apparatus, Golgi phosphoprotein 3 (GOLPH3), was overexpressed in human CRC tissue and in several CRC cell lines. The expression of GOLPH3 was significantly correlated with the expression of ferroptosis-related genes in CRC. The overexpression of GOLPH3 in Erastin-induced Caco-2 CRC cells reduced ferroptotic phenotypes, whereas the knockdown of GOLPH3 potentiated ferroptosis in HT-29 CRC cells. GOLPH3 induced the expression of prohibitin-1 (PHB1) and prohibitin-2 (PHB2), which also inhibited ferroptosis in Erastin-treated CRC cells. Moreover, GOLPH3 interacted with PHB2 and nuclear factor erythroid 2-related factor 2 (NRF2) in Caco-2 cells. These observations indicate that GOLPH3 is a negative regulator of ferroptosis in CRC cells. GOLPH3 protects these cells from ferroptosis by inducing the expression of PHB1 and PHB2, and by interacting with PHB2 and NRF2.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1198-1211"},"PeriodicalIF":3.3,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It was imperative to identify latent biomarkers pertinent to malignancies, given the pivotal role targeted molecular therapies play in tumor treatment investigations. This study aimed to assess the validity of HAUS1 as an indicator for survival prognosis and immune responses in prostate adenocarcinoma (PRAD) via single-cell and bulk RNA-sequencing. Related data on HAUS1 expression in PRAD were obtained from online databases, followed by comprehensive analyses to delineate its associations with survival prognosis, implicated pathways, and immune responses. Besides, the expression pattern of HAUS1 in PRAD was also verified in vitro, by using qRT-PCR, Western blot analysis, and immunohistochemistry. We found HAUS1 was downregulated in PRAD compared with normal tissues, as verified in vitro by qRT-PCR, Western blot, and immunohistochemistry (p < 0.05). Single-cell RNA-sequencing analysis indicated that HAUS1 had relatively higher expressions in B cells, Mono/Macro cells, and Endothelial cells compared with other cell types. Cox regression analysis revealed HAUS1 could serve as an independent indicator for the overall survival prognosis of PRAD (p < 0.05). Spearman correlation analyses revealed HAUS1 was closely related to the tumor microenvironment, immune cell infiltration levels, immune checkpoints, and immune cell pathways (p < 0.05). Furthermore, HAUS1 expression was found to be closely related to the immunotherapeutic response of patients receiving clinical intervention (p < 0.05). Collectively, our findings underscored the significant role of HAUS1 in PRAD prognosis and immune response, thereby presenting a novel and promising avenue for investigating the clinical utility of immunotherapy in PRAD.
{"title":"Single-cell and bulk RNA-sequencing reveals mitosis-involved gene HAUS1 is a promising indicator for predicting prognosis and immune responses in prostate adenocarcinoma (PRAD)","authors":"Shiwei Liu, Yang Yu, Jie Xu, Yi Wang, Deng Li","doi":"10.1002/cbin.12191","DOIUrl":"10.1002/cbin.12191","url":null,"abstract":"<p>It was imperative to identify latent biomarkers pertinent to malignancies, given the pivotal role targeted molecular therapies play in tumor treatment investigations. This study aimed to assess the validity of HAUS1 as an indicator for survival prognosis and immune responses in prostate adenocarcinoma (PRAD) via single-cell and bulk RNA-sequencing. Related data on HAUS1 expression in PRAD were obtained from online databases, followed by comprehensive analyses to delineate its associations with survival prognosis, implicated pathways, and immune responses. Besides, the expression pattern of HAUS1 in PRAD was also verified in vitro, by using qRT-PCR, Western blot analysis, and immunohistochemistry. We found HAUS1 was downregulated in PRAD compared with normal tissues, as verified in vitro by qRT-PCR, Western blot, and immunohistochemistry (<i>p</i> < 0.05). Single-cell RNA-sequencing analysis indicated that HAUS1 had relatively higher expressions in B cells, Mono/Macro cells, and Endothelial cells compared with other cell types. Cox regression analysis revealed HAUS1 could serve as an independent indicator for the overall survival prognosis of PRAD (<i>p</i> < 0.05). Spearman correlation analyses revealed HAUS1 was closely related to the tumor microenvironment, immune cell infiltration levels, immune checkpoints, and immune cell pathways (<i>p</i> < 0.05). Furthermore, HAUS1 expression was found to be closely related to the immunotherapeutic response of patients receiving clinical intervention (<i>p</i> < 0.05). Collectively, our findings underscored the significant role of HAUS1 in PRAD prognosis and immune response, thereby presenting a novel and promising avenue for investigating the clinical utility of immunotherapy in PRAD.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1169-1184"},"PeriodicalIF":3.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.
{"title":"The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets","authors":"Rana Taheri, Yazdan Mokhtari, Amir-Mohammad Yousefi, Davood Bashash","doi":"10.1002/cbin.12189","DOIUrl":"10.1002/cbin.12189","url":null,"abstract":"<p>Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1049-1068"},"PeriodicalIF":3.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aldehyde dehydrogenase 1 (ALDH1), a crucial aldehyde metabolizing enzyme, has six family members. The ALDH1 family is expressed in various tissues, with a significant presence in the liver. It plays a momentous role in several pathophysiological processes, including aldehyde detoxification, oxidative stress, and lipid peroxidation. Acetaldehyde detoxification is the fundamental function of the ALDH1 family in participating in vital pathological mechanisms. The ALDH1 family can catalyze retinal to retinoic acid (RA) that is a hormone-signaling molecule and plays a vital role in the development and adult tissues. Furthermore, there is a need for further and broader research on the role of the ALDH1 family as a signaling molecule. The ALDH1 family is widely recognized as a cancer stem cell (CSC) marker and plays a significant role in the proliferation, invasion, metastasis, prognosis, and drug resistance of cancer. The ALDH1 family also participates in other human diseases, such as neurodegenerative diseases, osteoarthritis, diabetes, and atherosclerosis. It can inhibit disease progression by inhibiting/promoting the expression/activity of the ALDH1 family. In this review, we comprehensively analyze the tissue distribution, and functions of the ALDH1 family. Additionally, we review the involvement of the ALDH1 family in diseases, focusing on the underlying pathological mechanisms and briefly talk about the current status and development of ALDH1 family inhibitors. The ALDH1 family presents new possibilities for treating diseases, with both its upstream and downstream pathways serving as promising targets for therapeutic intervention. This offers fresh perspectives for drug development in the field of disease research.
{"title":"Aldehyde dehydrogenase 1 family: A potential molecule target for diseases","authors":"Xiangning Duan, Haoliang Hu, Lingzhi Wang, Linxi Chen","doi":"10.1002/cbin.12188","DOIUrl":"10.1002/cbin.12188","url":null,"abstract":"<p>Aldehyde dehydrogenase 1 (ALDH1), a crucial aldehyde metabolizing enzyme, has six family members. The ALDH1 family is expressed in various tissues, with a significant presence in the liver. It plays a momentous role in several pathophysiological processes, including aldehyde detoxification, oxidative stress, and lipid peroxidation. Acetaldehyde detoxification is the fundamental function of the ALDH1 family in participating in vital pathological mechanisms. The ALDH1 family can catalyze retinal to retinoic acid (RA) that is a hormone-signaling molecule and plays a vital role in the development and adult tissues. Furthermore, there is a need for further and broader research on the role of the ALDH1 family as a signaling molecule. The ALDH1 family is widely recognized as a cancer stem cell (CSC) marker and plays a significant role in the proliferation, invasion, metastasis, prognosis, and drug resistance of cancer. The ALDH1 family also participates in other human diseases, such as neurodegenerative diseases, osteoarthritis, diabetes, and atherosclerosis. It can inhibit disease progression by inhibiting/promoting the expression/activity of the ALDH1 family. In this review, we comprehensively analyze the tissue distribution, and functions of the ALDH1 family. Additionally, we review the involvement of the ALDH1 family in diseases, focusing on the underlying pathological mechanisms and briefly talk about the current status and development of ALDH1 family inhibitors. The ALDH1 family presents new possibilities for treating diseases, with both its upstream and downstream pathways serving as promising targets for therapeutic intervention. This offers fresh perspectives for drug development in the field of disease research.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 7","pages":"909-922"},"PeriodicalIF":3.3,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trichloroethylene (TCE) is a commonly used organic solvent in industry. Our previous studies have found that TCE can cause liver injury accompanied by macrophage polarization, but the specific mechanism is unclear. The epigenetic regulation of macrophage polarization is mainly focused on histone modification. Histone lysine demethylase 4A (KDM4A) is involved in the activation of macrophages. In this study, we used a mouse model we investigated the role of KDM4A in the livers of TCE-drinking mice and found that the expression of KDM4A, M1-type polarization indicators, and related inflammatory factors in the livers of TCE-drinking mice. In the study, BALB/c mice were randomly divided into four groups: 2.5 mg/mL TCE dose group and 5.0 mg/mL TCE dose group, the vehicle control group, and the blank control group. We found that TCE triggered M1 polarization of mouse macrophages, characterized by the expression of CD11c and robust production of inflammatory cytokines. Notably, exposure to TCE resulted in markedly increased expression of KDM4A in macrophages. Functionally, the increased expression of KDM4A significantly impaired the expression of H3K9me3 and H3K9me2 and increased the expression of H3K9me1. In addition, KDM4A potentially represents a novel epigenetic modulator, with its upregulation connected to β-catenin activation, a signal critical for the pro-inflammatory activation of macrophages. Furthermore, KDM4A inhibitor JIB-04 treatment resulted in a decrease in β-catenin expression and prevented TCE-induced M1 polarization and the expression of the pro-inflammatory cytokines TNF-α and IL-1β. These results suggest that the association of KDM4A and Wnt/β-catenin cooperatively establishes the activation and polarization of macrophages and global changes in H3K9me3/me2/me1. Our findings identify KDM4A as an essential regulator of the polarization of macrophages and the expression of inflammatory cytokines, which might serve as a potential target for preventing and treating liver injury caused by TCE.
{"title":"Histone demethylase KDM4A mediating macrophage polarization: A potential mechanism of trichloroethylene induced liver injury","authors":"Jiaxiang Zhang, Hua Huang, Baiwang Ding, Zhibing Liu, Daojun Chen, Shulong Li, Tong Shen, Qixing Zhu","doi":"10.1002/cbin.12187","DOIUrl":"10.1002/cbin.12187","url":null,"abstract":"<p>Trichloroethylene (TCE) is a commonly used organic solvent in industry. Our previous studies have found that TCE can cause liver injury accompanied by macrophage polarization, but the specific mechanism is unclear. The epigenetic regulation of macrophage polarization is mainly focused on histone modification. Histone lysine demethylase 4A (KDM4A) is involved in the activation of macrophages. In this study, we used a mouse model we investigated the role of KDM4A in the livers of TCE-drinking mice and found that the expression of KDM4A, M1-type polarization indicators, and related inflammatory factors in the livers of TCE-drinking mice. In the study, BALB/c mice were randomly divided into four groups: 2.5 mg/mL TCE dose group and 5.0 mg/mL TCE dose group, the vehicle control group, and the blank control group. We found that TCE triggered M1 polarization of mouse macrophages, characterized by the expression of CD11c and robust production of inflammatory cytokines. Notably, exposure to TCE resulted in markedly increased expression of KDM4A in macrophages. Functionally, the increased expression of KDM4A significantly impaired the expression of H3K9me3 and H3K9me2 and increased the expression of H3K9me1. In addition, KDM4A potentially represents a novel epigenetic modulator, with its upregulation connected to β-catenin activation, a signal critical for the pro-inflammatory activation of macrophages. Furthermore, KDM4A inhibitor JIB-04 treatment resulted in a decrease in β-catenin expression and prevented TCE-induced M1 polarization and the expression of the pro-inflammatory cytokines TNF-α and IL-1β. These results suggest that the association of KDM4A and Wnt/β-catenin cooperatively establishes the activation and polarization of macrophages and global changes in H3K9me3/me2/me1. Our findings identify KDM4A as an essential regulator of the polarization of macrophages and the expression of inflammatory cytokines, which might serve as a potential target for preventing and treating liver injury caused by TCE.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1148-1159"},"PeriodicalIF":3.3,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheikh Mohammad Umar, Arundhathi J. R. Dev, Akanksha Kashyap, Meetu Rathee, Shyam S. Chauhan, Atul Sharma, Chandra Prakash Prasad
Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta-analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA-MB-231) with sodium L-lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L-lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.
{"title":"7-amino carboxycoumarin 2 inhibits lactate induced epithelial-to-mesenchymal transition via MPC1 in oral and breast cancer cells","authors":"Sheikh Mohammad Umar, Arundhathi J. R. Dev, Akanksha Kashyap, Meetu Rathee, Shyam S. Chauhan, Atul Sharma, Chandra Prakash Prasad","doi":"10.1002/cbin.12172","DOIUrl":"10.1002/cbin.12172","url":null,"abstract":"<p>Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta-analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA-MB-231) with sodium L-lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L-lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1185-1197"},"PeriodicalIF":3.3,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asthma is an inflammatory disease. Airway epithelial cell pyroptosis and cytokine secretion promote asthma progression. Tripartite motif 47 (TRIM47) belongs to the E3 ubiquitin ligase family and is associated with apoptosis and inflammation in a range of diseases. However, the role of TRIM47 in asthma has not been explored. In this study, the human bronchial epithelial cell line BEAS-2B was treated with house dust mite (HDM) and TRIM47 expression was detected by RT-qPCR and Western blot. After transfection with TRIM47 interfering and overexpressing plasmids, the synthesis and secretion of cytokines, as well as pyroptosis-related indicators, were examined. Nuclear factor kappa-B (NF-κB) pathway proteins and nod-like receptor protein 3 (NLRP3) inflammasome were measured to explore the mechanism of TRIM47 action. In addition, the effect of TRIM47 on the level of NF-κB essential modulator (NEMO) ubiquitination was detected by an immunoprecipitation assay. The results showed that TRIM47 was upregulated in HDM-induced BEAS-2B cells and that TRIM47 mediated HDM-induced BEAS-2B cell pyroptosis and cytokine secretion. Mechanistically, TRIM47 promoted the K63-linked ubiquitination of NEMO and facilitated NF-κB/NLRP3 pathway activation. In conclusion, TRIM47 may promote cytokine secretion mediating inflammation and pyroptosis in bronchial epithelial cells by activating the NF-κB/NLRP3 pathway. Therefore, TRIM47 may be a potential therapeutic target for HDM-induced asthma.
{"title":"TRIM47 promotes HDM-induced bronchial epithelial pyroptosis by regulating NEMO ubiquitination to activate NF-κB/NLRP3 signaling","authors":"Wenjuan Zhan, Huifang Zhang, Yufei Su, Li Yin","doi":"10.1002/cbin.12186","DOIUrl":"10.1002/cbin.12186","url":null,"abstract":"<p>Asthma is an inflammatory disease. Airway epithelial cell pyroptosis and cytokine secretion promote asthma progression. Tripartite motif 47 (TRIM47) belongs to the E3 ubiquitin ligase family and is associated with apoptosis and inflammation in a range of diseases. However, the role of TRIM47 in asthma has not been explored. In this study, the human bronchial epithelial cell line BEAS-2B was treated with house dust mite (HDM) and TRIM47 expression was detected by RT-qPCR and Western blot. After transfection with TRIM47 interfering and overexpressing plasmids, the synthesis and secretion of cytokines, as well as pyroptosis-related indicators, were examined. Nuclear factor kappa-B (NF-κB) pathway proteins and nod-like receptor protein 3 (NLRP3) inflammasome were measured to explore the mechanism of TRIM47 action. In addition, the effect of TRIM47 on the level of NF-κB essential modulator (NEMO) ubiquitination was detected by an immunoprecipitation assay. The results showed that TRIM47 was upregulated in HDM-induced BEAS-2B cells and that TRIM47 mediated HDM-induced BEAS-2B cell pyroptosis and cytokine secretion. Mechanistically, TRIM47 promoted the K63-linked ubiquitination of NEMO and facilitated NF-κB/NLRP3 pathway activation. In conclusion, TRIM47 may promote cytokine secretion mediating inflammation and pyroptosis in bronchial epithelial cells by activating the NF-κB/NLRP3 pathway. Therefore, TRIM47 may be a potential therapeutic target for HDM-induced asthma.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1138-1147"},"PeriodicalIF":3.3,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noninvasive and effective methods for early screening of non-small cell lung cancer (NSCLC) still need to be developed. At present, a reasonable conclusion is that a combination of tumor markers is a superior predictor of screening. Cytokines, as important regulators of cancer development, have great potential for the screening and prognosis of NSCLC. This study screened novel biomarkers related to the early screening and prognosis of NSCLC. In the present study, the biological significance and immunoregulation of interleukin-24 (IL-24) were analyzed based on The Cancer Genome Atlas data. Next, 150 serum samples from initially treated patients with NSCLC and 70 controls were collected, and we obtained pathological sections from 60 patients with NSCLC. The ELISA and immunohistochemistry results showed the differential expression of IL-24 and carbohydrate antigen 125 (CA125). The results show that IL-24 is an important tumor suppressor in NSCLC that helps to improve the poor prognosis of these patients. A significantly negative correlation between IL-24 and CA125 levels was also found. Notably, serum IL-24 levels were significantly negatively correlated with the TNM stage of patients with NSCLC, consistent with an important role for tumor suppressors in NSCLC. The receiver operating characteristic curve analysis showed that a combination of IL-24 and CA125 was an effective panel for discriminating patients with NSCLC from HD, and individuals with other lung diseases. Serum IL-24 and CA125 levels were identified as independent prognostic markers for NSCLC. The IL-24 and CA125 panel exhibited good performance in the screening of NSCLC.
{"title":"Serum IL-24 combined with CA125 as screening and prognostic biomarkers for NSCLC","authors":"Kai Zhang, Jiao Qu, Shu Deng, Enwu Yuan","doi":"10.1002/cbin.12173","DOIUrl":"10.1002/cbin.12173","url":null,"abstract":"<p>Noninvasive and effective methods for early screening of non-small cell lung cancer (NSCLC) still need to be developed. At present, a reasonable conclusion is that a combination of tumor markers is a superior predictor of screening. Cytokines, as important regulators of cancer development, have great potential for the screening and prognosis of NSCLC. This study screened novel biomarkers related to the early screening and prognosis of NSCLC. In the present study, the biological significance and immunoregulation of interleukin-24 (IL-24) were analyzed based on The Cancer Genome Atlas data. Next, 150 serum samples from initially treated patients with NSCLC and 70 controls were collected, and we obtained pathological sections from 60 patients with NSCLC. The ELISA and immunohistochemistry results showed the differential expression of IL-24 and carbohydrate antigen 125 (CA125). The results show that IL-24 is an important tumor suppressor in NSCLC that helps to improve the poor prognosis of these patients. A significantly negative correlation between IL-24 and CA125 levels was also found. Notably, serum IL-24 levels were significantly negatively correlated with the TNM stage of patients with NSCLC, consistent with an important role for tumor suppressors in NSCLC. The receiver operating characteristic curve analysis showed that a combination of IL-24 and CA125 was an effective panel for discriminating patients with NSCLC from HD, and individuals with other lung diseases. Serum IL-24 and CA125 levels were identified as independent prognostic markers for NSCLC. The IL-24 and CA125 panel exhibited good performance in the screening of NSCLC.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1160-1168"},"PeriodicalIF":3.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}