Independent risk factors for sepsis-associated acute kidney injury (S-AKI) patients include elevated lactate levels, but the specific mechanism remains unclear. Recently, An et al. discovered that excessive acetylation and inactivation of PDHA1 lead to overproduction of lactate, resulting in mitochondrial fragmentation, ATP depletion, excessive mtROS production, and mitochondrial apoptosis, thereby exacerbating AKI in sepsis. Therefore, understanding the pathophysiological processes of mitochondrial function and lactate generation in SAKI is essential and can aid in the development of novel therapeutic strategies. This review elucidates the pathological mechanisms of mitochondrial autophagy and dynamics in AKI. We also discuss the sources of lactate in SAKI and some consequences of lactonization, which may provide new strategies for improving renal injury and delaying the progression of these diseases.
{"title":"Lactate-mitochondrial crosstalk: A new direction in the treatment of sepsis-induced acute kidney injury","authors":"Zhixiong Wu, Wei Qing Liu, Liang Tang, Qiong Yuan, Yaling Li, Hongyu Hu, Xin Luo, Fan Ouyang","doi":"10.1002/cbin.12240","DOIUrl":"10.1002/cbin.12240","url":null,"abstract":"<p>Independent risk factors for sepsis-associated acute kidney injury (S-AKI) patients include elevated lactate levels, but the specific mechanism remains unclear. Recently, An et al. discovered that excessive acetylation and inactivation of PDHA1 lead to overproduction of lactate, resulting in mitochondrial fragmentation, ATP depletion, excessive mtROS production, and mitochondrial apoptosis, thereby exacerbating AKI in sepsis. Therefore, understanding the pathophysiological processes of mitochondrial function and lactate generation in SAKI is essential and can aid in the development of novel therapeutic strategies. This review elucidates the pathological mechanisms of mitochondrial autophagy and dynamics in AKI. We also discuss the sources of lactate in SAKI and some consequences of lactonization, which may provide new strategies for improving renal injury and delaying the progression of these diseases.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1621-1624"},"PeriodicalIF":3.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kayo Moreira Bagri, Miria Gomes Pereira, Kamila Souto Leichtweis, Jose G. Abreu, Manoel Luis Costa, Claudia Mermelstein
Lysosomes are involved in a myriad of cellular functions, such as degradation of macromolecules, endocytosis and exocytosis, modulation of several signaling pathways, and regulation of cell metabolism. To fulfill these diverse functions, lysosomes can undergo several dynamic changes in their content, size, pH, and location within cells. Here, we studied some of these parameters during embryonic chick skeletal muscle cells. We used an anti-lysosome-associated membrane protein 2 (LAMP2) antibody to specifically determine the intracellular localization of lysosomes in these cells. Our data shows that lysosomes are highly enriched in the perinuclear region of chick embryonic muscle cells. We also showed that the wingless signaling pathway (Wnt)/β-catenin signaling pathway can modulate the location of LAMP2 in chick myogenic cells. Our results highlight the role of lysosomes during muscle differentiation and particularly the presence of a subcellular population of lysosomes that are concentrated in the perinuclear region of muscle cells.
{"title":"Lysosomes accumulate at the perinuclear region of muscle cells during chick myogenesis","authors":"Kayo Moreira Bagri, Miria Gomes Pereira, Kamila Souto Leichtweis, Jose G. Abreu, Manoel Luis Costa, Claudia Mermelstein","doi":"10.1002/cbin.12238","DOIUrl":"10.1002/cbin.12238","url":null,"abstract":"<p>Lysosomes are involved in a myriad of cellular functions, such as degradation of macromolecules, endocytosis and exocytosis, modulation of several signaling pathways, and regulation of cell metabolism. To fulfill these diverse functions, lysosomes can undergo several dynamic changes in their content, size, pH, and location within cells. Here, we studied some of these parameters during embryonic chick skeletal muscle cells. We used an anti-lysosome-associated membrane protein 2 (LAMP2) antibody to specifically determine the intracellular localization of lysosomes in these cells. Our data shows that lysosomes are highly enriched in the perinuclear region of chick embryonic muscle cells. We also showed that the wingless signaling pathway (Wnt)/β-catenin signaling pathway can modulate the location of LAMP2 in chick myogenic cells. Our results highlight the role of lysosomes during muscle differentiation and particularly the presence of a subcellular population of lysosomes that are concentrated in the perinuclear region of muscle cells.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1625-1636"},"PeriodicalIF":3.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellular heterogeneity in nasopharyngeal cancer (NPC) and oral cancer remains unclear. In the current study, using single-cell RNA sequencing techniques, we investigated the cellular landscape in NPC and oral cancers. We identified a diverse range of cell types within the tumor microenvironment (TME) and variations in cell infiltration between NPC and oral cancer. In oral cancer, we observed a predominant infiltration of epithelial cells, fibroblasts, and endothelial cells (ECs), while T cells were the main infiltrating cell population in NPCs. We further classified these infiltrating cells into subclusters. Additionally, we observed complex interactions among cells that led to distinct trajectories. In particular, a unique epithelial subcluster with high expression of major histocompatibility complex class II (MHC-II) molecules was correlated with a favorable outcome and infiltration of CD4+ T cells. In addition, MHC-II+ epithelial cells inhibited mouse tumor growth and promoted T-cell infiltration. Consequently, our findings provide a deep understanding of the TME showing a significant prognostic value and therapeutic potential.
鼻咽癌和口腔癌的细胞异质性仍不清楚。在本研究中,我们利用单细胞 RNA 测序技术研究了鼻咽癌和口腔癌的细胞结构。我们发现了肿瘤微环境(TME)中的多种细胞类型,以及鼻咽癌和口腔癌细胞浸润的变化。在口腔癌中,我们观察到上皮细胞、成纤维细胞和内皮细胞(EC)的主要浸润,而在鼻咽癌中,T 细胞是主要的浸润细胞群。我们进一步将这些浸润细胞划分为亚群。此外,我们还观察到细胞间复杂的相互作用导致了不同的轨迹。特别是,主要组织相容性复合体 II 类(MHC-II)分子高表达的独特上皮亚群与良好的预后和 CD4+ T 细胞的浸润相关。此外,MHC-II+上皮细胞还能抑制小鼠肿瘤生长并促进T细胞浸润。因此,我们的研究结果提供了对TME的深入了解,显示了其重要的预后价值和治疗潜力。
{"title":"Deciphering the cellular landscape and potential targets of nasopharyngeal and oral cancers using single-cell RNA sequencing","authors":"Yanfei Zhang, Xiaoyu Qin, Weihua Lou, Liang Wang, Wuhao Lu, Changhui Gao, Shousen Hu","doi":"10.1002/cbin.12236","DOIUrl":"10.1002/cbin.12236","url":null,"abstract":"<p>Cellular heterogeneity in nasopharyngeal cancer (NPC) and oral cancer remains unclear. In the current study, using single-cell RNA sequencing techniques, we investigated the cellular landscape in NPC and oral cancers. We identified a diverse range of cell types within the tumor microenvironment (TME) and variations in cell infiltration between NPC and oral cancer. In oral cancer, we observed a predominant infiltration of epithelial cells, fibroblasts, and endothelial cells (ECs), while T cells were the main infiltrating cell population in NPCs. We further classified these infiltrating cells into subclusters. Additionally, we observed complex interactions among cells that led to distinct trajectories. In particular, a unique epithelial subcluster with high expression of major histocompatibility complex class II (MHC-II) molecules was correlated with a favorable outcome and infiltration of CD4<sup>+</sup> T cells. In addition, MHC-II<sup>+</sup> epithelial cells inhibited mouse tumor growth and promoted T-cell infiltration. Consequently, our findings provide a deep understanding of the TME showing a significant prognostic value and therapeutic potential.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1849-1861"},"PeriodicalIF":3.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
QingKun Chen, ChenGuang Zhang, Tao Meng, Ke Yang, QiLi Hu, Zhong Tong, XiaoGang Wang
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor, highlighting a significant need for reliable predictive models to assess clinical prognosis, disease progression, and drug sensitivity. Recent studies have highlighted the critical role of various programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, NETotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, oxeiptosis, and disulfidptosis, in tumor development. Therefore, by investigating these pathways, we aimed to develop a predictive model for HCC prognosis and drug sensitivity. We analyzed transcriptome, single-cell transcriptome, genomic, and clinical information using data from the TCGA-LIHC, GSE14520, GSE45436, and GSE166635 datasets. Machine learning algorithms were used to establish a cell death index (CDI) with seven gene signatures, which was validated across three independent datasets, showing that high CDI correlates with poorer prognosis. Unsupervised clustering revealed three molecular subtypes of HCC with distinct biological processes. Furthermore, a nomogram integrating CDI and clinical information demonstrated good predictive performance. CDI was associated with immune checkpoint genes and tumor microenvironment components using single-cell transcriptome analysis. Drug sensitivity analysis indicated that patients with high CDI may be resistant to oxaliplatin and cisplatin but sensitive to axitinib and sorafenib. In summary, our model offers a precise prediction of clinical outcomes and drug sensitivity for patients with HCC, providing valuable insights for personalized treatment strategies.
{"title":"Prediction of clinical prognosis and drug sensitivity in hepatocellular carcinoma through the combination of multiple cell death pathways","authors":"QingKun Chen, ChenGuang Zhang, Tao Meng, Ke Yang, QiLi Hu, Zhong Tong, XiaoGang Wang","doi":"10.1002/cbin.12235","DOIUrl":"10.1002/cbin.12235","url":null,"abstract":"<p>Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor, highlighting a significant need for reliable predictive models to assess clinical prognosis, disease progression, and drug sensitivity. Recent studies have highlighted the critical role of various programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, NETotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, oxeiptosis, and disulfidptosis, in tumor development. Therefore, by investigating these pathways, we aimed to develop a predictive model for HCC prognosis and drug sensitivity. We analyzed transcriptome, single-cell transcriptome, genomic, and clinical information using data from the TCGA-LIHC, GSE14520, GSE45436, and GSE166635 datasets. Machine learning algorithms were used to establish a cell death index (CDI) with seven gene signatures, which was validated across three independent datasets, showing that high CDI correlates with poorer prognosis. Unsupervised clustering revealed three molecular subtypes of HCC with distinct biological processes. Furthermore, a nomogram integrating CDI and clinical information demonstrated good predictive performance. CDI was associated with immune checkpoint genes and tumor microenvironment components using single-cell transcriptome analysis. Drug sensitivity analysis indicated that patients with high CDI may be resistant to oxaliplatin and cisplatin but sensitive to axitinib and sorafenib. In summary, our model offers a precise prediction of clinical outcomes and drug sensitivity for patients with HCC, providing valuable insights for personalized treatment strategies.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1816-1835"},"PeriodicalIF":3.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12235","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cholangiocarcinoma (CCA) is a hepatobiliary carcinoma with uncontrolled cell proliferation, poor prognosis, and high mortality. The ovarian tumor structural domain (OTU) containing protein 6B (OTUD6B) belongs to the OTU deubiquitin family and is vital in tumor development. However, its expression and biological function in CCA remain unknown. The expression of OTUD6B in CCA was analyzed using TIMER2.0, UALCAN, and GEO databases. MTT, clonal formation assay, immunofluorescence staining, immunohistochemistry staining, and flow cytometry examined the regulation of OTUD6B on cell proliferation, cycle, and apoptosis. The effects of OTUD6B on tumor volume and weight were assessed using the xenograft tumor model. The activities of PTK2 and STAT3 were detected by western blot and CO-IP. The biological database identified that OTUD6B was upregulated in CCA. In CCA cells, OTUD6B knockdown reduced CCA cell proliferation and promoted apoptosis. Cell cycle analysis indicated that the cycle stopped at the G0/G1 phase after OTU6B downregulation. Furthermore, OTUD6B knockdown resulted in a decrease in tumor volume and weight in xenograft tumor models. Mechanistically, OTUD6B is involved in the deubiquitination of PTK2. PTK2 further affected the phosphorylation of STAT3 thereby regulating the CCA process. Our study demonstrates that OTUD6B knockdown participates in the ubiquitination of PTK2 and phosphorylation of STAT3 to alleviate the process of CCA. These results suggest that OTUD6B may be a potential new strategy for CCA treatment.
胆管癌(Colangiocarcinoma,CCA)是一种细胞增殖失控、预后差、死亡率高的肝胆癌。卵巢肿瘤结构域(OTU)含蛋白6B(OTUD6B)属于OTU去泛素家族,在肿瘤发生发展中至关重要。然而,它在 CCA 中的表达和生物学功能仍然未知。我们利用 TIMER2.0、UALCAN 和 GEO 数据库分析了 OTUD6B 在 CCA 中的表达。MTT、克隆形成试验、免疫荧光染色、免疫组化染色和流式细胞术检测了 OTUD6B 对细胞增殖、周期和凋亡的调控。使用异种移植肿瘤模型评估了 OTUD6B 对肿瘤体积和重量的影响。通过Western印迹和CO-IP检测了PTK2和STAT3的活性。生物数据库发现 OTUD6B 在 CCA 中上调。在CCA细胞中,敲除OTUD6B可减少CCA细胞增殖并促进细胞凋亡。细胞周期分析表明,OTUD6B 下调后,细胞周期停止在 G0/G1 期。此外,在异种移植肿瘤模型中,敲除 OTUD6B 会导致肿瘤体积和重量的减少。从机理上讲,OTUD6B 参与了 PTK2 的去泛素化。PTK2 进一步影响 STAT3 的磷酸化,从而调控 CCA 进程。我们的研究表明,敲除 OTUD6B 参与了 PTK2 的泛素化和 STAT3 的磷酸化,从而缓解了 CCA 的进程。这些结果表明,OTUD6B 可能是治疗 CCA 的一种潜在新策略。
{"title":"OTUD6B promotes cholangiocarcinoma growth by regulating STAT3 phosphorylation through deubiquitination of PTK2","authors":"Guoqiang Xing, Hekai Chen, Zhiyue Guo, Yu Cui, Yongyuan Li, Jianwei Shen","doi":"10.1002/cbin.12234","DOIUrl":"10.1002/cbin.12234","url":null,"abstract":"<p>Cholangiocarcinoma (CCA) is a hepatobiliary carcinoma with uncontrolled cell proliferation, poor prognosis, and high mortality. The ovarian tumor structural domain (OTU) containing protein 6B (OTUD6B) belongs to the OTU deubiquitin family and is vital in tumor development. However, its expression and biological function in CCA remain unknown. The expression of OTUD6B in CCA was analyzed using TIMER2.0, UALCAN, and GEO databases. MTT, clonal formation assay, immunofluorescence staining, immunohistochemistry staining, and flow cytometry examined the regulation of OTUD6B on cell proliferation, cycle, and apoptosis. The effects of OTUD6B on tumor volume and weight were assessed using the xenograft tumor model. The activities of PTK2 and STAT3 were detected by western blot and CO-IP. The biological database identified that OTUD6B was upregulated in CCA. In CCA cells, OTUD6B knockdown reduced CCA cell proliferation and promoted apoptosis. Cell cycle analysis indicated that the cycle stopped at the G0/G1 phase after OTU6B downregulation. Furthermore, OTUD6B knockdown resulted in a decrease in tumor volume and weight in xenograft tumor models. Mechanistically, OTUD6B is involved in the deubiquitination of PTK2. PTK2 further affected the phosphorylation of STAT3 thereby regulating the CCA process. Our study demonstrates that OTUD6B knockdown participates in the ubiquitination of PTK2 and phosphorylation of STAT3 to alleviate the process of CCA. These results suggest that OTUD6B may be a potential new strategy for CCA treatment.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1766-1778"},"PeriodicalIF":3.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristina Shilnikova, Kyoung Ah Kang, Mei Jing Piao, Herath Mudiyanselage Udari Lakmini Herath, Pincha Devage Sameera Madushan Fernando, Hye-Jin Boo, Sang Pil Yoon, Jin Won Hyun
Shikonin, an herbal naphthoquinone, demonstrates a broad spectrum of pharmacological properties. Owing to increasingly adverse environmental conditions, human skin is vulnerable to harmful influences from dust particles. This study explored the antioxidant capabilities of shikonin and its ability to protect human keratinocytes from oxidative stress induced by fine particulate matter (PM2.5). We found that shikonin at a concentration of 3 µM was nontoxic to human keratinocytes and effectively scavenged reactive oxygen species (ROS) while increasing the production of reduced glutathione (GSH). Furthermore, shikonin enhanced GSH level by upregulating glutamate-cysteine ligase catalytic subunit and glutathione synthetase mediated by nuclear factor-erythroid 2-related factor. Shikonin reduced ROS levels induced by PM2.5, leading to recovering PM2.5-impaired cellular biomolecules and cell viability. Shikonin restored the GSH level in PM2.5-exposed keratinocytes via enhancing the expression of GSH-synthesizing enzymes. Notably, buthionine sulphoximine, an inhibitor of GSH synthesis, diminished effect of shikonin against PM2.5-induced cell damage, confirming the role of GSH in shikonin-induced cytoprotection. Collectively, these findings indicated that shikonin could provide substantial cytoprotection against the adverse effects of PM2.5 through direct ROS scavenging and modulation of cellular antioxidant system.
{"title":"Shikonin protects skin cells against oxidative stress and cellular dysfunction induced by fine particulate matter","authors":"Kristina Shilnikova, Kyoung Ah Kang, Mei Jing Piao, Herath Mudiyanselage Udari Lakmini Herath, Pincha Devage Sameera Madushan Fernando, Hye-Jin Boo, Sang Pil Yoon, Jin Won Hyun","doi":"10.1002/cbin.12233","DOIUrl":"10.1002/cbin.12233","url":null,"abstract":"<p>Shikonin, an herbal naphthoquinone, demonstrates a broad spectrum of pharmacological properties. Owing to increasingly adverse environmental conditions, human skin is vulnerable to harmful influences from dust particles. This study explored the antioxidant capabilities of shikonin and its ability to protect human keratinocytes from oxidative stress induced by fine particulate matter (PM<sub>2.5</sub>). We found that shikonin at a concentration of 3 µM was nontoxic to human keratinocytes and effectively scavenged reactive oxygen species (ROS) while increasing the production of reduced glutathione (GSH). Furthermore, shikonin enhanced GSH level by upregulating glutamate-cysteine ligase catalytic subunit and glutathione synthetase mediated by nuclear factor-erythroid 2-related factor. Shikonin reduced ROS levels induced by PM<sub>2.5</sub>, leading to recovering PM<sub>2.5</sub>-impaired cellular biomolecules and cell viability. Shikonin restored the GSH level in PM<sub>2.5</sub>-exposed keratinocytes via enhancing the expression of GSH-synthesizing enzymes. Notably, buthionine sulphoximine, an inhibitor of GSH synthesis, diminished effect of shikonin against PM<sub>2.5</sub>-induced cell damage, confirming the role of GSH in shikonin-induced cytoprotection. Collectively, these findings indicated that shikonin could provide substantial cytoprotection against the adverse effects of PM<sub>2.5</sub> through direct ROS scavenging and modulation of cellular antioxidant system.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1836-1848"},"PeriodicalIF":3.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12233","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) is an α/β hydrolase fold protein that is, widely distributed throughout the body. Recent studies have highlighted that sEH, in the metabolism of polyunsaturated fatty acids, plays a part in the pathogenesis of various diseases, including cardiovascular disease, Alzheimer's disease and intestine-associated disease. This review discusses the current findings on the role of sEH in the development of intestine- and intestine-associated diseases, including colitis, colorectal cancer, and other intestinal diseases, as well as the potential underlying mechanisms involved.
{"title":"The role of soluble epoxide hydrolase in the intestine","authors":"Yanbei Ren, Ting Wang, Jiuheng Yin","doi":"10.1002/cbin.12232","DOIUrl":"10.1002/cbin.12232","url":null,"abstract":"<p>The soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) is an α/β hydrolase fold protein that is, widely distributed throughout the body. Recent studies have highlighted that sEH, in the metabolism of polyunsaturated fatty acids, plays a part in the pathogenesis of various diseases, including cardiovascular disease, Alzheimer's disease and intestine-associated disease. This review discusses the current findings on the role of sEH in the development of intestine- and intestine-associated diseases, including colitis, colorectal cancer, and other intestinal diseases, as well as the potential underlying mechanisms involved.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1612-1620"},"PeriodicalIF":3.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sulieman I. Shelash Al-Hawary, Farag M. A. Altalbawy, Saade Abdalkareem Jasim, Renuka Jyothi S, Azfar Jamal, Mohammed M. Naiyer, Shriya Mahajan, Hitesh Kalra, Mohammed Abed Jawad, Ahmed Hussein Zwamel
This study explores the critical role of inhibitors targeting the mammalian target of rapamycin (mTOR) signaling pathway in breast cancer research and treatment. The mTOR pathway, a central regulator of cellular processes, has been identified as a crucial factor in the development and progression of breast cancer. The essay explains the complex molecular mechanisms through which mTOR inhibitors, such as rapamycin and its analogs, exert their anticancer effects. These inhibitors can stop cell growth, proliferation, and survival in breast cancer cells by blocking critical signaling pathways within the mTOR pathway. Furthermore, the essay discusses the implications of using mTOR inhibitors as a comprehensive therapeutic strategy. It emphasizes the potential benefits of combining mTOR inhibitors with other treatment approaches to enhance the effectiveness of breast cancer treatment. The evolving landscape of breast cancer research underscores the significance of mTOR as a therapeutic target and highlights ongoing efforts to improve and optimize mTOR inhibitors for clinical use. In conclusion, the essay asserts that inhibitors of the mTOR signaling pathway offer a promising approach in the fight against breast cancer. These inhibitors provide a focused and effective intervention targeting specific dysregulations within the mTOR pathway. As research advances, the integration of mTOR inhibitors into customized combination therapies holds excellent potential for shaping a more effective and personalized approach to breast cancer treatment, ultimately leading to improved outcomes for individuals affected by this complex and diverse disease.
{"title":"Inhibitors of the mTOR signaling pathway can play an important role in breast cancer immunopathogenesis","authors":"Sulieman I. Shelash Al-Hawary, Farag M. A. Altalbawy, Saade Abdalkareem Jasim, Renuka Jyothi S, Azfar Jamal, Mohammed M. Naiyer, Shriya Mahajan, Hitesh Kalra, Mohammed Abed Jawad, Ahmed Hussein Zwamel","doi":"10.1002/cbin.12231","DOIUrl":"10.1002/cbin.12231","url":null,"abstract":"<p>This study explores the critical role of inhibitors targeting the mammalian target of rapamycin (mTOR) signaling pathway in breast cancer research and treatment. The mTOR pathway, a central regulator of cellular processes, has been identified as a crucial factor in the development and progression of breast cancer. The essay explains the complex molecular mechanisms through which mTOR inhibitors, such as rapamycin and its analogs, exert their anticancer effects. These inhibitors can stop cell growth, proliferation, and survival in breast cancer cells by blocking critical signaling pathways within the mTOR pathway. Furthermore, the essay discusses the implications of using mTOR inhibitors as a comprehensive therapeutic strategy. It emphasizes the potential benefits of combining mTOR inhibitors with other treatment approaches to enhance the effectiveness of breast cancer treatment. The evolving landscape of breast cancer research underscores the significance of mTOR as a therapeutic target and highlights ongoing efforts to improve and optimize mTOR inhibitors for clinical use. In conclusion, the essay asserts that inhibitors of the mTOR signaling pathway offer a promising approach in the fight against breast cancer. These inhibitors provide a focused and effective intervention targeting specific dysregulations within the mTOR pathway. As research advances, the integration of mTOR inhibitors into customized combination therapies holds excellent potential for shaping a more effective and personalized approach to breast cancer treatment, ultimately leading to improved outcomes for individuals affected by this complex and diverse disease.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1601-1611"},"PeriodicalIF":3.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leptomeningeal carcinomatosis (LMC) is a devastating complication of advanced cancers, such as lung cancer and breast cancer, which is usually indicative of a poor prognosis. The current treatments for LMC include palliative care, with others aiming to prolong survival and relieve neurological symptoms. Traditional treatments for LMC include radiotherapy, systemic chemotherapy, and intrathecal injection. Furthermore, the application of molecularly targeted agents, such as antiepidermal growth factor receptor (anti-EGFR), antihuman epidermal growth factor receptor 2 (anti-HER2), and anti-PD-1 monoclonal antibody, have prolonged the survival of LMC patients. Targeted therapy with tyrosine kinase inhibitors has also been proven to be an effective treatment. Tyrosine kinases can be overactive or expressed at high levels in some cancer cells; therefore, the use of tyrosine kinase inhibitors may prevent the activation of tumor-related pathways, preventing cancer cell growth. The EGFR family are cell surface receptors directly related to tumor occurrence with tyrosine kinase activity; it is the most widely used target for tyrosine kinase inhibitors in the treatment of LMC. In this review, we introduced the clinical manifestation and diagnostic criteria of LMC, clarified the treatment mechanism of tyrosine kinase inhibitors for LMC with mutations in EGFR, HER2, or anaplastic lymphoma kinase, reviewed the current application of various generation tyrosine kinase inhibitors in patients with LMC, and discussed new clinical trials and the future directions of tyrosine kinase inhibitor therapy.
{"title":"Tyrosine kinase inhibitors in the treatment of leptomeningeal carcinomatosis","authors":"Hanyu Ni, Zilan Wang, Yanbing Tang, Jiaye Lu, Zixiang Zhu, Youjia Qiu, Zhouqing Chen, Zhong Wang","doi":"10.1002/cbin.12230","DOIUrl":"10.1002/cbin.12230","url":null,"abstract":"<p>Leptomeningeal carcinomatosis (LMC) is a devastating complication of advanced cancers, such as lung cancer and breast cancer, which is usually indicative of a poor prognosis. The current treatments for LMC include palliative care, with others aiming to prolong survival and relieve neurological symptoms. Traditional treatments for LMC include radiotherapy, systemic chemotherapy, and intrathecal injection. Furthermore, the application of molecularly targeted agents, such as antiepidermal growth factor receptor (anti-EGFR), antihuman epidermal growth factor receptor 2 (anti-HER2), and anti-PD-1 monoclonal antibody, have prolonged the survival of LMC patients. Targeted therapy with tyrosine kinase inhibitors has also been proven to be an effective treatment. Tyrosine kinases can be overactive or expressed at high levels in some cancer cells; therefore, the use of tyrosine kinase inhibitors may prevent the activation of tumor-related pathways, preventing cancer cell growth. The EGFR family are cell surface receptors directly related to tumor occurrence with tyrosine kinase activity; it is the most widely used target for tyrosine kinase inhibitors in the treatment of LMC. In this review, we introduced the clinical manifestation and diagnostic criteria of LMC, clarified the treatment mechanism of tyrosine kinase inhibitors for LMC with mutations in EGFR, HER2, or anaplastic lymphoma kinase, reviewed the current application of various generation tyrosine kinase inhibitors in patients with LMC, and discussed new clinical trials and the future directions of tyrosine kinase inhibitor therapy.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 10","pages":"1450-1462"},"PeriodicalIF":3.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methyltransferase-like 3 (METTL3) plays a role in the development of knee osteoarthritis (KOA). However, the mechanism underlying the role of METTL3 in KOA is unclear. This work investigated the effects of MELLT3 on ferroptosis and pain relief in in vitro and in vivo KOA models. Chondrocytes were treated with 10 ng/mL interleukin-1β (IL-1β) or 5 μM Erastin (ferroptosis inducer). IL-1β or Erastin treatment inhibited cell viability and glutathione levels; increased Fe2+, lipid reactive oxygen species and malondialdehyde production; and decreased glutathione peroxidase 4, ferritin light chain and solute carrier family 7 member 11 levels. The overexpression of METTL3 facilitated the N6-methyladenosine methylation of high mobility group box 1 (HMGB1). HMGB1 overexpression reversed the effect of sh-METTL3 on IL-1β-treated chondrocytes. A KOA rat model was established by the injection of monosodium iodoacetate into the joints and successful model establishment was confirmed by haematoxylin and eosin staining and Safranin O/Fast Green staining. METTL3 depletion alleviated cartilage damage, the inflammatory response, ferroptosis and knee pain in KOA model rats, and these effects were reversed by the addition of HMGB1. In conclusion, METTL3 depletion inhibited ferroptosis and the inflammatory response, and ameliorated cartilage damage and knee pain during KOA progression by regulating HMGB1.
{"title":"METTL3 mediated ferroptosis in chondrocytes and promoted pain in KOA via HMGB1 m6A modification","authors":"Tianchi Bao, Taiyang Liao, Xuefeng Cai, Binjie Lu, Gaole Dai, Shuai Pei, Yunqing Zhang, Yuwei Li, Bo Xu","doi":"10.1002/cbin.12229","DOIUrl":"10.1002/cbin.12229","url":null,"abstract":"<p>Methyltransferase-like 3 (METTL3) plays a role in the development of knee osteoarthritis (KOA). However, the mechanism underlying the role of METTL3 in KOA is unclear. This work investigated the effects of MELLT3 on ferroptosis and pain relief in in vitro and in vivo KOA models. Chondrocytes were treated with 10 ng/mL interleukin-1β (IL-1β) or 5 μM Erastin (ferroptosis inducer). IL-1β or Erastin treatment inhibited cell viability and glutathione levels; increased Fe<sup>2+</sup>, lipid reactive oxygen species and malondialdehyde production; and decreased glutathione peroxidase 4, ferritin light chain and solute carrier family 7 member 11 levels. The overexpression of METTL3 facilitated the N6-methyladenosine methylation of high mobility group box 1 (HMGB1). HMGB1 overexpression reversed the effect of sh-METTL3 on IL-1β-treated chondrocytes. A KOA rat model was established by the injection of monosodium iodoacetate into the joints and successful model establishment was confirmed by haematoxylin and eosin staining and Safranin O/Fast Green staining. METTL3 depletion alleviated cartilage damage, the inflammatory response, ferroptosis and knee pain in KOA model rats, and these effects were reversed by the addition of HMGB1. In conclusion, METTL3 depletion inhibited ferroptosis and the inflammatory response, and ameliorated cartilage damage and knee pain during KOA progression by regulating HMGB1.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1755-1765"},"PeriodicalIF":3.3,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}