Expression of Concern: T. Yu, Q. Qing, N. Deng, X.-H. Min, L.-N. Zhao, J.-Y. Li, Z.-S. Xia and Q.-k. Chen. (2015) CXCR4 positive cell-derived Pdx1-high/Shh-low cells originated from embryonic stem cells improve the repair of pancreatic injury in mice. Cell Biology International, 39(9), 995–1006. https://doi.org/10.1002/cbin.10470.
This Expression of Concern for the above article published online on 26 March 2015 in Wiley Online Library (wileyonlinelibrary.com), has been published by agreement between the journal Editor-in-Chief, Xuebiao Yao; International Federation for Cell Biology; and John Wiley & Sons Ltd. The Expression of Concern has been agreed following an investigation conducted by the first author's institution. Evidence of splicing in the western blots presented in Figures 2f, 3b,e and unexpected similarity between western blot bands in Figures 2f and 3e was observed. The first author admitted that western blots were spliced due to limitations in laboratory equipment available at the time. The authors did not provide an adequate explanation for the similarities observed between the western blot bands in Figures 2f and 3e. Due to the length of time that has elapsed since this article was published, the raw data is not available. The journal has decided to issue an Expression of Concern to alert the readers.
表达关切:T. Yu, Q. Qing, N. Deng, X.-H. Min, L.-N.Min, L.-N. Zhao, J.-Y.Zhao, J.-Y. Li, Z.-S.Li, Z.-S.Xia 和 Q.-k. Chen.Chen.(2015)源自胚胎干细胞的CXCR4阳性细胞源Pdx1-高/Shh-低细胞改善了小鼠胰腺损伤的修复。Cell Biology International, 39(9), 995-1006. https://doi.org/10.1002/cbin.10470.This 上述文章于 2015 年 3 月 26 日在线发表于 Wiley Online Library (wileyonlinelibrary.com),其关注声明已由期刊主编 Xuebiao Yao、国际细胞生物学联合会(International Federation for Cell Biology)和 John Wiley & Sons Ltd.(John Wiley & Sons Ltd.)协议发表。在第一作者所在机构进行调查后,同意发表该《关注表达》。在图 2f、3b、e 中的 Western 印迹中发现了拼接的证据,图 2f 和图 3e 中的 Western 印迹条带之间出现了意想不到的相似性。第一作者承认,由于当时实验室设备的限制,对 Western 印迹进行了拼接。作者没有对图 2f 和图 3e 中观察到的 western 印迹条带之间的相似性做出适当解释。由于这篇文章发表已过了很长时间,因此无法获得原始数据。本刊决定发布 "关注函",以提醒读者注意。
{"title":"Expression of concern: “CXCR4 positive cell-derived Pdx1-high/Shh-low cells originated from embryonic stem cells improve the repair of pancreatic injury in mice”","authors":"","doi":"10.1002/cbin.12254","DOIUrl":"10.1002/cbin.12254","url":null,"abstract":"<p><b>Expression of Concern</b>: T. Yu, Q. Qing, N. Deng, X.-H. Min, L.-N. Zhao, J.-Y. Li, Z.-S. Xia and Q.-k. Chen. (2015) CXCR4 positive cell-derived Pdx1-high/Shh-low cells originated from embryonic stem cells improve the repair of pancreatic injury in mice. <i>Cell Biology International</i>, 39(9), 995–1006. https://doi.org/10.1002/cbin.10470.</p><p>This Expression of Concern for the above article published online on 26 March 2015 in Wiley Online Library (wileyonlinelibrary.com), has been published by agreement between the journal Editor-in-Chief, Xuebiao Yao; International Federation for Cell Biology; and John Wiley & Sons Ltd. The Expression of Concern has been agreed following an investigation conducted by the first author's institution. Evidence of splicing in the western blots presented in Figures 2f, 3b,e and unexpected similarity between western blot bands in Figures 2f and 3e was observed. The first author admitted that western blots were spliced due to limitations in laboratory equipment available at the time. The authors did not provide an adequate explanation for the similarities observed between the western blot bands in Figures 2f and 3e. Due to the length of time that has elapsed since this article was published, the raw data is not available. The journal has decided to issue an Expression of Concern to alert the readers.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1906"},"PeriodicalIF":3.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The study aimed to investigate the effect of rotigaptide (ZP123) on spontaneous contractions of gastric smooth muscle in diabetic rats and explore the underlying mechanisms. Twelve rats were randomly divided into model and normal control groups. Changes in gastric smooth muscle spontaneous contractions in each group were observed. Western blot analysis was performed to detect Cx43 and PKCα expression. Rat gastric smooth muscle cells were cultured in vitro and divided into normal glucose, high glucose and high glucose+rotigaptide group. The intracellular Ca2+ content was observed by immunofluorescence. The amplitude and frequency of gastric smooth muscle spontaneous contractions were reduced in the model group than the normal control group (all p < .01), which were reduced after rotigatide treatment than before treatment in the model group (all p < .01). The model+rotigaptide group showed decreased membrane expression of Cx43, increased cytoplasmic expression of Cx43, increased membrane expression of p-PKCα Thr497 and lower membrane/cytoplasm ratio of Cx43 expression compared with the model group (all p < .01). The intracellular Ca2+ content was increased in the high glucose group than the normal glucose group (p < .01), while no significant difference was observed between the high glucose+rotigaptide and high glucose groups. Our findings suggest that rotigatide can stabilize the intracellular Ca2+ concentration in gastric smooth muscle cells under high glucose condition by upregulating PKCα activity and downregulating the number of GJs and the opening rate of GJ hemichannels through the PKCα-Cx43 pathway, thus inhibiting spontaneous contractions of gastric smooth muscle in diabetic rats.
本研究旨在探讨罗替加肽(ZP123)对糖尿病大鼠胃平滑肌自发性收缩的影响及其内在机制。研究将 12 只大鼠随机分为模型组和正常对照组。观察各组胃平滑肌自发收缩的变化。用 Western 印迹分析检测 Cx43 和 PKCα 的表达。体外培养大鼠胃平滑肌细胞,将其分为正常葡萄糖组、高葡萄糖组和高葡萄糖+罗格列肽组。免疫荧光法观察细胞内 Ca2+ 的含量。与正常对照组相比,模型组胃平滑肌自发收缩的幅度和频率降低(所有 p 497 和 Cx43 表达的膜/胞浆比值降低);与正常对照组相比,模型组胃平滑肌自发收缩的幅度和频率升高(所有 p 2+ 含量升高);与正常对照组相比,高糖组胃平滑肌自发收缩的幅度和频率升高(所有 p 2+ 含量升高)、从而抑制糖尿病大鼠胃平滑肌的自发收缩。
{"title":"Rotigaptide inhibits spontaneous contractions of gastric smooth muscle in diabetic rats via the PKCα-Cx43 pathway","authors":"Lu Changri, Haibei Sun, Yitegele Bao, Mohan Zhang","doi":"10.1002/cbin.12253","DOIUrl":"10.1002/cbin.12253","url":null,"abstract":"<p>The study aimed to investigate the effect of rotigaptide (ZP123) on spontaneous contractions of gastric smooth muscle in diabetic rats and explore the underlying mechanisms. Twelve rats were randomly divided into model and normal control groups. Changes in gastric smooth muscle spontaneous contractions in each group were observed. Western blot analysis was performed to detect Cx43 and PKCα expression. Rat gastric smooth muscle cells were cultured in vitro and divided into normal glucose, high glucose and high glucose+rotigaptide group. The intracellular Ca<sup>2+</sup> content was observed by immunofluorescence. The amplitude and frequency of gastric smooth muscle spontaneous contractions were reduced in the model group than the normal control group (all <i>p</i> < .01), which were reduced after rotigatide treatment than before treatment in the model group (all <i>p</i> < .01). The model+rotigaptide group showed decreased membrane expression of Cx43, increased cytoplasmic expression of Cx43, increased membrane expression of p-PKCα Thr<sup>497</sup> and lower membrane/cytoplasm ratio of Cx43 expression compared with the model group (all <i>p</i> < .01). The intracellular Ca<sup>2+</sup> content was increased in the high glucose group than the normal glucose group (<i>p</i> < .01), while no significant difference was observed between the high glucose+rotigaptide and high glucose groups. Our findings suggest that rotigatide can stabilize the intracellular Ca<sup>2+</sup> concentration in gastric smooth muscle cells under high glucose condition by upregulating PKCα activity and downregulating the number of GJs and the opening rate of GJ hemichannels through the PKCα-Cx43 pathway, thus inhibiting spontaneous contractions of gastric smooth muscle in diabetic rats.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 1","pages":"92-100"},"PeriodicalIF":3.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atherosclerosis is primarily an inflammatory reaction of the cardiovascular system caused by endothelial damage, leading to progressive thickening and hardening of the vessel walls, as well as extensive necrosis and fibrosis of the surrounding tissues, the most necessary pathological process causing cardiovascular disease. When the body responds to harmful internal and external stimuli, excess oxygen free radicals are produced causing oxidative stress to occur in cells and tissues. Simultaneously, the activation of inflammatory immunological processes is followed by an elevation in oxygen free radicals, which directly initiates the release of cytokines and chemokines, resulting in a detrimental cycle of vascular homeostasis abnormalities. Oxidative stress contributes to the harm inflicted upon vascular endothelial cells and the decrease in nitric oxide levels. Nitric oxide is crucial for maintaining vascular homeostasis and is implicated in the development of atherosclerosis. This study examines the influence of oxidative stress on the formation of atherosclerosis, which is facilitated by the vascular milieu. It also provides an overview of the pertinent targets and pharmaceutical approaches for treating this condition.
{"title":"Oxidative stress disrupts vascular microenvironmental homeostasis affecting the development of atherosclerosis","authors":"Ruifei Shao, Rui Chen, Qiang Zheng, Mengyu Yao, Kunlin Li, Yu Cao, Lihong Jiang","doi":"10.1002/cbin.12239","DOIUrl":"10.1002/cbin.12239","url":null,"abstract":"<p>Atherosclerosis is primarily an inflammatory reaction of the cardiovascular system caused by endothelial damage, leading to progressive thickening and hardening of the vessel walls, as well as extensive necrosis and fibrosis of the surrounding tissues, the most necessary pathological process causing cardiovascular disease. When the body responds to harmful internal and external stimuli, excess oxygen free radicals are produced causing oxidative stress to occur in cells and tissues. Simultaneously, the activation of inflammatory immunological processes is followed by an elevation in oxygen free radicals, which directly initiates the release of cytokines and chemokines, resulting in a detrimental cycle of vascular homeostasis abnormalities. Oxidative stress contributes to the harm inflicted upon vascular endothelial cells and the decrease in nitric oxide levels. Nitric oxide is crucial for maintaining vascular homeostasis and is implicated in the development of atherosclerosis. This study examines the influence of oxidative stress on the formation of atherosclerosis, which is facilitated by the vascular milieu. It also provides an overview of the pertinent targets and pharmaceutical approaches for treating this condition.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1781-1801"},"PeriodicalIF":3.3,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yalin Zhu, Yi Gong, Yifei Wang, Zhengyu Jiang, Ying Yao, Xiaoyong Miao, Shuoer Wang, Yan Zhang, Jianping Cao
Flurbiprofen axetil is commonly utilized in clinical practice as one of the nonsteroidal anti-inflammatory drugs (NSAIDs) and is included in multimodal analgesia regimens postbreast cancer surgery. Numerous NSAIDs have been studied for their potential to both promote and inhibit cancer. Given the variability in their effects on tumors, further investigation into the specific role of flurbiprofen axetil is warranted. Therefore, the primary objective of this study was to assess the impact of flurbiprofen axetil on basal-like breast cancer (BLBC) metastasis and elucidate the underlying molecular mechanisms involved. The BLBC metastasis mouse model was established by caudal vein injection of tumor cells. The lung metastasis of breast cancer in mice and the effect of flurbiprofen axetil were assessed by in vivo bioluminescence imaging, hematoxylin and eosin staining and immunohistochemistry. In vitro, the results of flurbiprofen axetil on the proliferation, migration, and invasion of MDA-MB-231 human breast cancer cells and BT-549 human breast cancer cells were assessed by colony formation assay and transwell assay. The effects of flurbiprofen axetil on several tumor metastasis-related signaling pathway proteins were examined by western blot, and the reversal extent of the flurbiprofen axetil effect by Ro 67-7476 (ERK phosphorylation agonist) was detected by transwell assay. The results showed that flurbiprofen axetil significantly inhibited BLBC lung metastasis in mice. Flurbiprofen axetil similarly inhibited breast cancer cell migration and invasion in vitro but did not affect their proliferation. Mechanistic investigations have revealed that flurbiprofen axetil exerts a noteworthy inhibitory influence on the MEK/ERK pathway while exhibiting no significant alteration in the expression of other pathway proteins intricately associated with epithelial–mesenchymal transition. In conclusion, the inhibitory effect of flurbiprofen axetil on BLBC metastasis is characterized by its selectivity in targeting the MEK/ERK signaling pathway rather than exerting a broad impact on the global signaling pathway.
{"title":"Flurbiprofen axetil is involved in basal-like breast cancer metastasis via suppressing the MEK/ERK signaling pathway","authors":"Yalin Zhu, Yi Gong, Yifei Wang, Zhengyu Jiang, Ying Yao, Xiaoyong Miao, Shuoer Wang, Yan Zhang, Jianping Cao","doi":"10.1002/cbin.12251","DOIUrl":"10.1002/cbin.12251","url":null,"abstract":"<p>Flurbiprofen axetil is commonly utilized in clinical practice as one of the nonsteroidal anti-inflammatory drugs (NSAIDs) and is included in multimodal analgesia regimens postbreast cancer surgery. Numerous NSAIDs have been studied for their potential to both promote and inhibit cancer. Given the variability in their effects on tumors, further investigation into the specific role of flurbiprofen axetil is warranted. Therefore, the primary objective of this study was to assess the impact of flurbiprofen axetil on basal-like breast cancer (BLBC) metastasis and elucidate the underlying molecular mechanisms involved. The BLBC metastasis mouse model was established by caudal vein injection of tumor cells. The lung metastasis of breast cancer in mice and the effect of flurbiprofen axetil were assessed by in vivo bioluminescence imaging, hematoxylin and eosin staining and immunohistochemistry. In vitro, the results of flurbiprofen axetil on the proliferation, migration, and invasion of MDA-MB-231 human breast cancer cells and BT-549 human breast cancer cells were assessed by colony formation assay and transwell assay. The effects of flurbiprofen axetil on several tumor metastasis-related signaling pathway proteins were examined by western blot, and the reversal extent of the flurbiprofen axetil effect by Ro 67-7476 (ERK phosphorylation agonist) was detected by transwell assay. The results showed that flurbiprofen axetil significantly inhibited BLBC lung metastasis in mice. Flurbiprofen axetil similarly inhibited breast cancer cell migration and invasion in vitro but did not affect their proliferation. Mechanistic investigations have revealed that flurbiprofen axetil exerts a noteworthy inhibitory influence on the MEK/ERK pathway while exhibiting no significant alteration in the expression of other pathway proteins intricately associated with epithelial–mesenchymal transition. In conclusion, the inhibitory effect of flurbiprofen axetil on BLBC metastasis is characterized by its selectivity in targeting the MEK/ERK signaling pathway rather than exerting a broad impact on the global signaling pathway.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 1","pages":"68-78"},"PeriodicalIF":3.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Darmadi Darmadi, Raed Obaid Saleh, Enwa Felix Oghenemaro, Maha Noori Shakir, Ahmed Hjazi, Zahraa F. Hassan, Ahmed Hussein Zwamel, Sanoeva Matlyuba, Mahamedha Deorari, Shamam Kareem Oudah
Since suppressor/enhancer of Lin-12-like (SEL1L) was cloned in 1997, various pieces of evidence from lower species suggest it plays a significant role in protein degradation via the ubiquitin-proteasome system. The relevance of SEL1L in many aspects of malignant transformation and tumorigenic events has been the subject of research, which has shown compelling in vitro and in vivo findings relating its altered expression to changes in tumor aggressiveness. The Endoplasmic Reticulum (ER) in tumor cells is crucial for preserving cellular proteostasis by inducing the unfolded protein response (UPR), a stress response. A crucial component of the UPR is ER-associated degradation (ERAD), which guards against ER stress-induced apoptosis and the removal of unfolded or misfolded proteins by the ubiquitin-proteasome system. As a protein stabilizer of HMG-CoA reductase degradation protein 1 (HRD1), one of the main components of ERAD, SEL1L plays an important role in ER homeostasis. Notably, the expression levels of these two proteins fluctuate independently in various cancer types, yet changes in their expression affect the levels of other associated proteins during cancer pathogenesis. Recent studies have also outlined the function of SEL1L in cancer medication resistance. This review explores the value of targeting SEL1L as a novel treatment approach for cancer, focusing on the molecular processes of SEL1L and its involvement in cancer etiology.
{"title":"Role of SEL1L in the progression of solid tumors, with a special focus on its recent therapeutic potential","authors":"Darmadi Darmadi, Raed Obaid Saleh, Enwa Felix Oghenemaro, Maha Noori Shakir, Ahmed Hjazi, Zahraa F. Hassan, Ahmed Hussein Zwamel, Sanoeva Matlyuba, Mahamedha Deorari, Shamam Kareem Oudah","doi":"10.1002/cbin.12242","DOIUrl":"10.1002/cbin.12242","url":null,"abstract":"<p>Since suppressor/enhancer of Lin-12-like (SEL1L) was cloned in 1997, various pieces of evidence from lower species suggest it plays a significant role in protein degradation via the ubiquitin-proteasome system. The relevance of SEL1L in many aspects of malignant transformation and tumorigenic events has been the subject of research, which has shown compelling in vitro and in vivo findings relating its altered expression to changes in tumor aggressiveness. The Endoplasmic Reticulum (ER) in tumor cells is crucial for preserving cellular proteostasis by inducing the unfolded protein response (UPR), a stress response. A crucial component of the UPR is ER-associated degradation (ERAD), which guards against ER stress-induced apoptosis and the removal of unfolded or misfolded proteins by the ubiquitin-proteasome system. As a protein stabilizer of HMG-CoA reductase degradation protein 1 (HRD1), one of the main components of ERAD, SEL1L plays an important role in ER homeostasis. Notably, the expression levels of these two proteins fluctuate independently in various cancer types, yet changes in their expression affect the levels of other associated proteins during cancer pathogenesis. Recent studies have also outlined the function of SEL1L in cancer medication resistance. This review explores the value of targeting SEL1L as a novel treatment approach for cancer, focusing on the molecular processes of SEL1L and its involvement in cancer etiology.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 1","pages":"16-32"},"PeriodicalIF":3.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingshuang Mu, Qin Wang, Ye Yang, Ganghua Wei, Hao Wang, Jing Liao, Xinling Yang, Fan Wang
Chronic obstructive pulmonary disease (COPD) is a pervasive and incapacitating respiratory condition, distinguished by airway inflammation and the remodeling of the lower respiratory tract. Central to its pathogenesis is an intricate inflammatory process, wherein macrophages exert significant regulatory functions, and High mobility group box 1 (HMGB1) emerges as a pivotal inflammatory mediator potentially driving COPD progression. This study explores the hypothesis that HMGB1, within macrophages, modulates COPD through inflammatory mechanisms, focusing on its influence on macrophage polarization. Our investigation uncovered that HMGB1 is upregulated in the context of COPD, associated with an enhanced proinflammatory M1 macrophage polarization induced by cigarette smoke. This polarization is linked to suppressed cell proliferation and induced apoptosis, indicative of HMGB1's role in the disease's inflammatory trajectory. The study further implicates HMGB1 in the activation of the Nuclear factor kappa-B (NF-κB) signaling pathway and chemokine signaling within macrophages, which are likely to amplify the inflammatory response characteristic of COPD. The findings underscore HMGB1's critical involvement in COPD pathogenesis, presenting it as a significant target for therapeutic intervention aimed at modulating macrophage polarization and inflammation.
{"title":"HMGB1 promotes M1 polarization of macrophages and induces COPD inflammation","authors":"Qingshuang Mu, Qin Wang, Ye Yang, Ganghua Wei, Hao Wang, Jing Liao, Xinling Yang, Fan Wang","doi":"10.1002/cbin.12252","DOIUrl":"10.1002/cbin.12252","url":null,"abstract":"<p>Chronic obstructive pulmonary disease (COPD) is a pervasive and incapacitating respiratory condition, distinguished by airway inflammation and the remodeling of the lower respiratory tract. Central to its pathogenesis is an intricate inflammatory process, wherein macrophages exert significant regulatory functions, and High mobility group box 1 (HMGB1) emerges as a pivotal inflammatory mediator potentially driving COPD progression. This study explores the hypothesis that HMGB1, within macrophages, modulates COPD through inflammatory mechanisms, focusing on its influence on macrophage polarization. Our investigation uncovered that HMGB1 is upregulated in the context of COPD, associated with an enhanced proinflammatory M1 macrophage polarization induced by cigarette smoke. This polarization is linked to suppressed cell proliferation and induced apoptosis, indicative of HMGB1's role in the disease's inflammatory trajectory. The study further implicates HMGB1 in the activation of the Nuclear factor kappa-B (NF-κB) signaling pathway and chemokine signaling within macrophages, which are likely to amplify the inflammatory response characteristic of COPD. The findings underscore HMGB1's critical involvement in COPD pathogenesis, presenting it as a significant target for therapeutic intervention aimed at modulating macrophage polarization and inflammation.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 1","pages":"79-91"},"PeriodicalIF":3.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Breast cancer (BC) has become the most prevalent cancer worldwide, and further research is being conducted to deepen our understanding of its pathogenesis and treatment. Lipid metabolism disorder is a significant alteration in cancer cells, and the investigation into the role of Interleukin-17 (IL-17) in malignant tumors has emerged as a research focus in recent years. Thus, exploring changes in lipid metabolism and inflammatory factors in BC cells is crucial in identifying potential therapeutic targets. This article summarizes the progress made in the research on the main low-density cholesterol (LDL) transporter and IL-17 in lipid metabolism, and their potential involvement in the development of BC. The article aims to establish a theoretical foundation for the development of BC-related therapies.
乳腺癌(BC)已成为全球发病率最高的癌症,为了加深对其发病机制和治疗方法的了解,我们正在开展进一步的研究。脂质代谢紊乱是癌细胞的一个重要改变,而白细胞介素-17(IL-17)在恶性肿瘤中的作用也成为近年来的研究重点。因此,探索 BC 细胞中脂质代谢和炎症因子的变化对于确定潜在的治疗靶点至关重要。本文总结了脂质代谢中主要的低密度胆固醇(LDL)转运体和IL-17的研究进展,以及它们在BC发病中的潜在参与。文章旨在为开发 BC 相关疗法奠定理论基础。
{"title":"Role of low-density cholesterol and Interleukin-17 interaction in breast cancer pathogenesis and treatment","authors":"Qingqing Liu, Rongyuan Yang, Dawei Wang, Qing Liu","doi":"10.1002/cbin.12250","DOIUrl":"10.1002/cbin.12250","url":null,"abstract":"<p>Breast cancer (BC) has become the most prevalent cancer worldwide, and further research is being conducted to deepen our understanding of its pathogenesis and treatment. Lipid metabolism disorder is a significant alteration in cancer cells, and the investigation into the role of Interleukin-17 (IL-17) in malignant tumors has emerged as a research focus in recent years. Thus, exploring changes in lipid metabolism and inflammatory factors in BC cells is crucial in identifying potential therapeutic targets. This article summarizes the progress made in the research on the main low-density cholesterol (LDL) transporter and IL-17 in lipid metabolism, and their potential involvement in the development of BC. The article aims to establish a theoretical foundation for the development of BC-related therapies.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 2","pages":"139-153"},"PeriodicalIF":3.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Crizotinib, as the first-generation of anaplastic lymphoma kinase (ALK) inhibitor, effectively improves the survival time of ALK-positive non-small cell lung cancer (NSCLC) patients. However, its efficacy is severely limited by drug resistance caused by secondary mutations. G1202R and L1196M are classical mutation sites located in ALK kinase domain. They may hinder the binding of ALK inhibitors to the target kinase domain, resulting in drug resistance in patients. However, the exact mechanism of drug resistance mediated by these mutations remains unclear. In this study, we aimed to evaluate how G1202R and L1196M mutations mediate crizotinib resistance. To explore the resistance mechanism, we constructed EML4-ALK G1202R and L1196M mutant cell lines with A549 cells. The results showed that the mutant cells exhibited significant epithelial–mesenchymal transition (EMT) and metastasis compared to control (A549-vector) or wild type (A549-EML4-ALK) cells. Subsequently, it was found that the occurrence of EMT was correlated to the high expression of murine double minute 2 (MDM2) protein and the activation of mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway in mutant cells. Down-regulation of MDM2 inhibited the activation of MEK/ERK pathway, thus reversed the EMT process and markedly increased the inhibitory effect of crizotinib on the growth of mutant cells. Collectively, resistance of ALK-positive NSCLC cells to crizotinib is induced by G1202R and L1196M mutations through activation of the MDM2/MEK/ERK signalling axis, promoting EMT process and metastasis. These findings suggest that the combination of MDM2 inhibitors and crizotinib could be a potential therapeutic strategy.
{"title":"EML4-ALK G1202R and EML4-ALK L1196M mutations induce crizotinib resistance in non-small cell lung cancer cells through activating epithelial–mesenchymal transition mediated by MDM2/MEK/ERK signal axis","authors":"Yuying Yang, Huan Yang, Yunhui Gao, Qian Yang, Xinya Zhu, Qianying Miao, Xiaobo Xu, Zengqiang Li, Daiying Zuo","doi":"10.1002/cbin.12249","DOIUrl":"10.1002/cbin.12249","url":null,"abstract":"<p>Crizotinib, as the first-generation of anaplastic lymphoma kinase (ALK) inhibitor, effectively improves the survival time of ALK-positive non-small cell lung cancer (NSCLC) patients. However, its efficacy is severely limited by drug resistance caused by secondary mutations. G1202R and L1196M are classical mutation sites located in ALK kinase domain. They may hinder the binding of ALK inhibitors to the target kinase domain, resulting in drug resistance in patients. However, the exact mechanism of drug resistance mediated by these mutations remains unclear. In this study, we aimed to evaluate how G1202R and L1196M mutations mediate crizotinib resistance. To explore the resistance mechanism, we constructed EML4-ALK G1202R and L1196M mutant cell lines with A549 cells. The results showed that the mutant cells exhibited significant epithelial–mesenchymal transition (EMT) and metastasis compared to control (A549-vector) or wild type (A549-EML4-ALK) cells. Subsequently, it was found that the occurrence of EMT was correlated to the high expression of murine double minute 2 (MDM2) protein and the activation of mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway in mutant cells. Down-regulation of MDM2 inhibited the activation of MEK/ERK pathway, thus reversed the EMT process and markedly increased the inhibitory effect of crizotinib on the growth of mutant cells. Collectively, resistance of ALK-positive NSCLC cells to crizotinib is induced by G1202R and L1196M mutations through activation of the MDM2/MEK/ERK signalling axis, promoting EMT process and metastasis. These findings suggest that the combination of MDM2 inhibitors and crizotinib could be a potential therapeutic strategy.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 1","pages":"55-67"},"PeriodicalIF":3.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayşenur Nazıroğlu, Ahmet Çarhan, Mustafa Nazıroğlu
Erucic acid (ErA) is a source of omega-9 monounsaturated fatty acids. ErA exhibited antitumor effects by causing apoptosis and oxidative stress in tumor cells, with the exception of the HT-29 human colorectal cancer cell line. The apoptotic and Ca2+ signaling pathways in tumor cells are triggered when mitochondrial Ca2+ and Zn2+ accumulation produce reactive free oxygen species (ROS), which in turn activate TRPM2. ErA-induced ROS and TRPM2 stimulation may augment the anticancer action of cisplatin (CSP). We aimed to study the effects of ErA and CSP incubations on ROS, apoptosis, and cell death in the HT-29 cells by activating TRPM2. The cells were divided into five groups: control, ErA (200 µM for 48 h), CSP (25 µM for 24 h), and ErA + CSP + TRPM2 antagonists (200 µM carvacrol and 25 µM N-(p-amylcinnamoyl)anthranilic acid for 24 h). The TRPM2 antagonists reduced ErA plus CSP-induced increases in H2O2-induced intracellular free Ca2+ concentration ([Ca2+]c) and adenosine diphosphate-ribose-caused TRPM2 currents. ErA and CSP were found to cause apoptosis and cell death by raising the intracellular free Zn2+ concentration (Zn2+]c), caspase-3, −8, and −9, mitochondrial membrane dysfunction, and ROS, while lowering reduced glutathione, cell viability, and cell number. The oxidative, apoptotic, and tumor cell death effects of CSP in the cells were enhanced by the increase of ErA-mediated [Ca2+]c and Zn2+]c entering mitochondria through the activation of TRPM2. In conclusion, we observed that the combination of ErA and CSP was synergistic via TRPM2 activation for the treatment of HT-29 tumor cells.
{"title":"Erucic acid increases the potency of cisplatin-induced colorectal cancer cell death and oxidative stress by upregulating the TRPM2 channel","authors":"Ayşenur Nazıroğlu, Ahmet Çarhan, Mustafa Nazıroğlu","doi":"10.1002/cbin.12248","DOIUrl":"10.1002/cbin.12248","url":null,"abstract":"<p>Erucic acid (ErA) is a source of omega-9 monounsaturated fatty acids. ErA exhibited antitumor effects by causing apoptosis and oxidative stress in tumor cells, with the exception of the HT-29 human colorectal cancer cell line. The apoptotic and Ca<sup>2+</sup> signaling pathways in tumor cells are triggered when mitochondrial Ca<sup>2+</sup> and Zn<sup>2+</sup> accumulation produce reactive free oxygen species (ROS), which in turn activate TRPM2. ErA-induced ROS and TRPM2 stimulation may augment the anticancer action of cisplatin (CSP). We aimed to study the effects of ErA and CSP incubations on ROS, apoptosis, and cell death in the HT-29 cells by activating TRPM2. The cells were divided into five groups: control, ErA (200 µM for 48 h), CSP (25 µM for 24 h), and ErA + CSP + TRPM2 antagonists (200 µM carvacrol and 25 µM N-(p-amylcinnamoyl)anthranilic acid for 24 h). The TRPM2 antagonists reduced ErA plus CSP-induced increases in H<sub>2</sub>O<sub>2</sub>-induced intracellular free Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>c</sub>) and adenosine diphosphate-ribose-caused TRPM2 currents. ErA and CSP were found to cause apoptosis and cell death by raising the intracellular free Zn<sup>2+</sup> concentration (Zn<sup>2+</sup>]<sub>c</sub>), caspase-3, −8, and −9, mitochondrial membrane dysfunction, and ROS, while lowering reduced glutathione, cell viability, and cell number. The oxidative, apoptotic, and tumor cell death effects of CSP in the cells were enhanced by the increase of ErA-mediated [Ca<sup>2+</sup>]<sub>c</sub> and Zn<sup>2+</sup>]<sub>c</sub> entering mitochondria through the activation of TRPM2. In conclusion, we observed that the combination of ErA and CSP was synergistic via TRPM2 activation for the treatment of HT-29 tumor cells.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1862-1876"},"PeriodicalIF":3.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
{"title":"Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective","authors":"Shubhangi More, Sumit Mallick, Sudheer Shenoy P., Bipasha Bose","doi":"10.1002/cbin.12246","DOIUrl":"10.1002/cbin.12246","url":null,"abstract":"<p>Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 12","pages":"1802-1815"},"PeriodicalIF":3.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}