首页 > 最新文献

Cell Regeneration最新文献

英文 中文
Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. 针对衰老和 COVID-19 中的衰老细胞:从细胞机制到治疗机会。
IF 4 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-10-02 DOI: 10.1186/s13619-024-00201-1
Yuan Yu, Kaixuan Lin, Haoyu Wu, Mingli Hu, Xuejie Yang, Jie Wang, Johannes Grillari, Jiekai Chen

The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.

COVID-19 大流行已造成全球健康危机和重大社会经济负担。虽然大多数人会出现轻微或非特异性症状,但老年人出现严重症状和危及生命的并发症的风险更高。对与临床严重性相关的关键因素进行探讨,可以发现衰老的关键特征,如细胞衰老、免疫失调、代谢改变和再生潜能受损,会导致肺部组织稳态的破坏和更糟糕的临床结果。衰老分解药物和衰老形态药物是旨在消除衰老细胞或减少相关表型的抗衰老治疗药物,在缓解与衰老相关的功能障碍方面已显示出前景,并为治疗与衰老有某些共同潜在机制的疾病(包括 COVID-19)提供了一种新方法。本综述总结了目前对衰老在 COVID-19 进展中的作用的认识,并重点介绍了抗衰老药物的最新研究成果,这些药物可重新用于 COVID-19 的治疗,以补充现有疗法的不足。
{"title":"Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities.","authors":"Yuan Yu, Kaixuan Lin, Haoyu Wu, Mingli Hu, Xuejie Yang, Jie Wang, Johannes Grillari, Jiekai Chen","doi":"10.1186/s13619-024-00201-1","DOIUrl":"10.1186/s13619-024-00201-1","url":null,"abstract":"<p><p>The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"20"},"PeriodicalIF":4.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin remodeling in tissue stem cell fate determination. 组织干细胞命运决定过程中的染色质重塑
IF 4 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-09-30 DOI: 10.1186/s13619-024-00203-z
Xinyang Li, Gaoxiang Zhu, Bing Zhao

Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.

组织干细胞(TSCs)存在于特异性组织中,是组织稳态和再生的主要细胞来源,过去几十年来,人们一直在讨论组织干细胞转录或表观遗传调控对不同生物过程的贡献。与此同时,依赖 ATP 的染色质重塑者利用 ATP 水解产生的能量重塑核小体,从而影响染色质动态和各细胞类型中基因表达程序的调控。然而,染色质重塑者在组织干细胞命运决定中的作用还不太清楚。在这篇综述中,我们系统讨论了染色质重塑因子对造血干细胞、肠上皮干细胞、神经干细胞和皮肤干细胞命运决定的表观遗传调控的最新进展,并强调了它们在组织稳态、发育和再生中的重要作用。此外,对TSCs的分子和细胞机制的探索对于促进我们对组织维持的理解和发现新的治疗靶点至关重要。
{"title":"Chromatin remodeling in tissue stem cell fate determination.","authors":"Xinyang Li, Gaoxiang Zhu, Bing Zhao","doi":"10.1186/s13619-024-00203-z","DOIUrl":"10.1186/s13619-024-00203-z","url":null,"abstract":"<p><p>Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"18"},"PeriodicalIF":4.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression levels and stoichiometry of Hnf1β, Emx2, Pax8 and Hnf4 influence direct reprogramming of induced renal tubular epithelial cells. Hnf1β、Emx2、Pax8和Hnf4的表达水平和配比影响诱导肾小管上皮细胞的直接重编程。
IF 4 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-09-30 DOI: 10.1186/s13619-024-00202-0
Xueli Hu, Jianjian Sun, Meng Wan, Bianhong Zhang, Linhui Wang, Tao P Zhong

Generation of induced renal epithelial cells (iRECs) from fibroblasts offers great opportunities for renal disease modeling and kidney regeneration. However, the low reprogramming efficiency of the current approach to generate iRECs has hindered potential therapeutic application and regenerative approach. This could be in part attributed to heterogeneous and unbalanced expression of reprogramming factors (RFs) Hnf1β (H1), Emx2 (E), Pax8 (P), and Hnf4α (H4) in transduced fibroblasts. Here, we establish an advanced retroviral vector system that expresses H1, E, P, and H4 in high levels and distinct ratios from bicistronic transcripts separated by P2A. Mouse embryonic fibroblasts (MEFs) harboring Cdh16-Cre; mT/mG allele are utilized to conduct iREC reprogramming via directly monitoring single cell fate conversion. Three sets of bicistronic RF combinations including H1E/H4P, H1H4/EP, and H1P/H4E have been generated to induce iREC reprogramming. Each of the RF combinations gives rise to distinct H1, E, P, and H4 expression levels and different reprogramming efficiencies. The desired H1E/H4P combination that results in high expression levels of RFs with balanced stoichiometry. substantially enhances the efficiency and quality of iRECs compared with transduction of separate H1, E, P, and H4 lentiviruses. We find that H1E/H4P-induced iRECs exhibit the superior features of renal tubular epithelial cells, as evidenced by expressing renal tubular-specific genes, possessing endocytotic arrogation activity and assembling into tubules along decellularized kidney scaffolds. This study establishes H1E/H4P cassette as a valuable platform for future iREC studies and regenerative medicine.

从成纤维细胞生成诱导肾上皮细胞(iRECs)为肾脏疾病建模和肾脏再生提供了巨大的机遇。然而,目前生成 iRECs 的重编程效率较低,阻碍了其潜在的治疗应用和再生方法。部分原因可能是转导成纤维细胞中的重编程因子(RFs)Hnf1β(H1)、Emx2(E)、Pax8(P)和Hnf4α(H4)表达不均且不平衡。在这里,我们建立了一种先进的逆转录病毒载体系统,它能高水平地表达 H1、E、P 和 H4,而且这些转录本与由 P2A 分离出来的双组分转录本的比例截然不同。利用携带Cdh16-Cre; mT/mG等位基因的小鼠胚胎成纤维细胞(MEF),通过直接监测单细胞命运转换来进行iREC重编程。为了诱导iREC重编程,产生了三组双核RF组合,包括H1E/H4P、H1H4/EP和H1P/H4E。每种RF组合都能产生不同的H1、E、P和H4表达水平以及不同的重编程效率。与单独的 H1、E、P 和 H4 慢病毒转导相比,理想的 H1E/H4P 组合能以平衡的化学计量产生高表达水平的 RF,从而大大提高 iRECs 的效率和质量。我们发现,H1E/H4P 诱导的 iRECs 表现出肾小管上皮细胞的优异特征,如表达肾小管特异性基因、具有内吞傲慢活性以及沿着脱细胞肾支架组装成肾小管。这项研究确立了 H1E/H4P 盒作为未来 iREC 研究和再生医学的宝贵平台的地位。
{"title":"Expression levels and stoichiometry of Hnf1β, Emx2, Pax8 and Hnf4 influence direct reprogramming of induced renal tubular epithelial cells.","authors":"Xueli Hu, Jianjian Sun, Meng Wan, Bianhong Zhang, Linhui Wang, Tao P Zhong","doi":"10.1186/s13619-024-00202-0","DOIUrl":"10.1186/s13619-024-00202-0","url":null,"abstract":"<p><p>Generation of induced renal epithelial cells (iRECs) from fibroblasts offers great opportunities for renal disease modeling and kidney regeneration. However, the low reprogramming efficiency of the current approach to generate iRECs has hindered potential therapeutic application and regenerative approach. This could be in part attributed to heterogeneous and unbalanced expression of reprogramming factors (RFs) Hnf1β (H1), Emx2 (E), Pax8 (P), and Hnf4α (H4) in transduced fibroblasts. Here, we establish an advanced retroviral vector system that expresses H1, E, P, and H4 in high levels and distinct ratios from bicistronic transcripts separated by P2A. Mouse embryonic fibroblasts (MEFs) harboring Cdh16-Cre; mT/mG allele are utilized to conduct iREC reprogramming via directly monitoring single cell fate conversion. Three sets of bicistronic RF combinations including H1E/H4P, H1H4/EP, and H1P/H4E have been generated to induce iREC reprogramming. Each of the RF combinations gives rise to distinct H1, E, P, and H4 expression levels and different reprogramming efficiencies. The desired H1E/H4P combination that results in high expression levels of RFs with balanced stoichiometry. substantially enhances the efficiency and quality of iRECs compared with transduction of separate H1, E, P, and H4 lentiviruses. We find that H1E/H4P-induced iRECs exhibit the superior features of renal tubular epithelial cells, as evidenced by expressing renal tubular-specific genes, possessing endocytotic arrogation activity and assembling into tubules along decellularized kidney scaffolds. This study establishes H1E/H4P cassette as a valuable platform for future iREC studies and regenerative medicine.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"19"},"PeriodicalIF":4.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endogenous retroviral ERVH48-1 promotes human urine cell reprogramming. 内源性逆转录病毒 ERVH48-1 促进人类尿液细胞重编程
IF 4.7 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-09-13 DOI: 10.1186/s13619-024-00200-2
Yuling Peng, Jieying Zhu, Qi Zhang, Ran Zhang, Zhenhua Wang, Zesen Ye, Ning Ma, Dajiang Qin, Duanqing Pei, Dongwei Li

Endogenous retroviruses (ERVs), once thought to be mere remnants of ancient viral integrations in the mammalian genome, are now recognized for their critical roles in various physiological processes, including embryonic development, innate immunity, and tumorigenesis. Their impact on host organisms is significant driver of evolutionary changes, offering insight into evolutionary mechanisms. In our study, we explored the functionality of ERVs by examining single-cell transcriptomic profiles from human embryonic stem cells and urine cells. This led to the discovery of a unique ERVH48-1 expression pattern between these cell types. Additionally, somatic cell reprogramming efficacy was enhanced when ERVH48-1 was overexpressed in a urine cell-reprogramming system. Induced pluripotent stem cells (iPSCs) generated with ERVH48-1 overexpression recapitulated the traits of those produced by traditional reprogramming approaches, and the resulting iPSCs demonstrated the capability to differentiate into all three germ layers in vitro. Our research elucidated the role of ERVs in somatic cell reprogramming.

内源性逆转录病毒(ERV)曾被认为只是哺乳动物基因组中古老病毒整合的残余,但现在人们认识到它们在胚胎发育、先天免疫和肿瘤发生等各种生理过程中发挥着关键作用。它们对宿主生物的影响是进化变化的重要驱动力,有助于深入了解进化机制。在我们的研究中,我们通过检测人类胚胎干细胞和尿液细胞的单细胞转录组图谱,探索了ERV的功能。结果发现了这些细胞类型之间独特的 ERVH48-1 表达模式。此外,当ERVH48-1在尿液细胞重编程系统中过度表达时,体细胞重编程的功效得到了增强。过表达ERVH48-1产生的诱导多能干细胞(iPSCs)再现了传统重编程方法产生的多能干细胞的特征,所产生的iPSCs显示出在体外分化成所有三个胚层的能力。我们的研究阐明了ERV在体细胞重编程中的作用。
{"title":"Endogenous retroviral ERVH48-1 promotes human urine cell reprogramming.","authors":"Yuling Peng, Jieying Zhu, Qi Zhang, Ran Zhang, Zhenhua Wang, Zesen Ye, Ning Ma, Dajiang Qin, Duanqing Pei, Dongwei Li","doi":"10.1186/s13619-024-00200-2","DOIUrl":"10.1186/s13619-024-00200-2","url":null,"abstract":"<p><p>Endogenous retroviruses (ERVs), once thought to be mere remnants of ancient viral integrations in the mammalian genome, are now recognized for their critical roles in various physiological processes, including embryonic development, innate immunity, and tumorigenesis. Their impact on host organisms is significant driver of evolutionary changes, offering insight into evolutionary mechanisms. In our study, we explored the functionality of ERVs by examining single-cell transcriptomic profiles from human embryonic stem cells and urine cells. This led to the discovery of a unique ERVH48-1 expression pattern between these cell types. Additionally, somatic cell reprogramming efficacy was enhanced when ERVH48-1 was overexpressed in a urine cell-reprogramming system. Induced pluripotent stem cells (iPSCs) generated with ERVH48-1 overexpression recapitulated the traits of those produced by traditional reprogramming approaches, and the resulting iPSCs demonstrated the capability to differentiate into all three germ layers in vitro. Our research elucidated the role of ERVs in somatic cell reprogramming.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"17"},"PeriodicalIF":4.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Standard: human intestine-on-a-chip. 标准:人体肠芯片。
IF 4 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-05 DOI: 10.1186/s13619-024-00198-7
Haitao Liu, Yaqing Wang, Xu Zhang, Min Zhang, Peng Wang, Jing Shang, Zhongqiang Li, Likun Gong, Jiabin Guo, Wei Sun, Jingbo Pi, Xianliang Li, Wei Ding, Dianbing Wang, Zhongyu Li, Jingzhong Zhang, Lan Wang, Xingchao Geng, Ruifu Yang, Pingkun Zhou, Wanjin Tang, Xian'en Zhang, Chunying Chen, Shengli Yang, Jianhua Qin

Organs-on-chips are microphysiological systems that allow to replicate the key functions of human organs and accelerate the innovation in life sciences including disease modeling, drug development, and precision medicine. However, due to the lack of standards in their definition, structural design, cell source, model construction, and functional validation, a wide range of translational application of organs-on-chips remains a challenging. "Organs-on-chips: Intestine" is the first group standard on human intestine-on-a-chip in China, jointly agreed and released by the experts from the Chinese Society of Biotechnology on 29th April 2024. This standard specifies the scope, terminology, definitions, technical requirements, detection methods, and quality control in building the human intestinal model on a chip. The publication of this group standard will guide the institutional establishment, acceptance and execution of proper practical protocols and accelerate the international standardization of intestine-on-a-chip for translational applications.

片上器官是一种微生理系统,可以复制人体器官的关键功能,加速疾病建模、药物开发和精准医疗等生命科学领域的创新。然而,由于在定义、结构设计、细胞来源、模型构建和功能验证等方面缺乏标准,片上器官的广泛转化应用仍面临挑战。"片上器官2024年4月29日,由中国生物技术学会专家共同商定并发布的《芯片上器官:肠道》是我国首个芯片上人体肠道的团体标准。该标准规定了建立芯片人体肠道模型的范围、术语、定义、技术要求、检测方法和质量控制。该团体标准的发布将指导机构建立、接受和执行适当的实用协议,并加速转化应用中的芯片肠道的国际标准化。
{"title":"Standard: human intestine-on-a-chip.","authors":"Haitao Liu, Yaqing Wang, Xu Zhang, Min Zhang, Peng Wang, Jing Shang, Zhongqiang Li, Likun Gong, Jiabin Guo, Wei Sun, Jingbo Pi, Xianliang Li, Wei Ding, Dianbing Wang, Zhongyu Li, Jingzhong Zhang, Lan Wang, Xingchao Geng, Ruifu Yang, Pingkun Zhou, Wanjin Tang, Xian'en Zhang, Chunying Chen, Shengli Yang, Jianhua Qin","doi":"10.1186/s13619-024-00198-7","DOIUrl":"10.1186/s13619-024-00198-7","url":null,"abstract":"<p><p>Organs-on-chips are microphysiological systems that allow to replicate the key functions of human organs and accelerate the innovation in life sciences including disease modeling, drug development, and precision medicine. However, due to the lack of standards in their definition, structural design, cell source, model construction, and functional validation, a wide range of translational application of organs-on-chips remains a challenging. \"Organs-on-chips: Intestine\" is the first group standard on human intestine-on-a-chip in China, jointly agreed and released by the experts from the Chinese Society of Biotechnology on 29th April 2024. This standard specifies the scope, terminology, definitions, technical requirements, detection methods, and quality control in building the human intestinal model on a chip. The publication of this group standard will guide the institutional establishment, acceptance and execution of proper practical protocols and accelerate the international standardization of intestine-on-a-chip for translational applications.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"16"},"PeriodicalIF":4.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Future of low back pain: unravelling IVD components and MSCs' potential. 撤稿说明:腰背痛的未来:了解 IVD 成分和间充质干细胞的潜力。
IF 4 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-05 DOI: 10.1186/s13619-024-00199-6
Raquel Leão Monteiro
{"title":"Retraction Note: Future of low back pain: unravelling IVD components and MSCs' potential.","authors":"Raquel Leão Monteiro","doi":"10.1186/s13619-024-00199-6","DOIUrl":"10.1186/s13619-024-00199-6","url":null,"abstract":"","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"15"},"PeriodicalIF":4.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL3 restricts RIPK1-dependent cell death via the ATF3-cFLIP axis in the intestinal epithelium. METTL3 在肠上皮细胞中通过 ATF3-cFLIP 轴限制 RIPK1 依赖性细胞死亡。
IF 4 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-02 DOI: 10.1186/s13619-024-00197-8
Meimei Huang, Xiaodan Wang, Mengxian Zhang, Yuan Liu, Ye-Guang Chen

Intestinal epithelial cells (IECs) are pivotal for maintaining intestinal homeostasis through self-renewal, proliferation, differentiation, and regulated cell death. While apoptosis and necroptosis are recognized as distinct pathways, their intricate interplay remains elusive. In this study, we report that Mettl3-mediated m6A modification maintains intestinal homeostasis by impeding epithelial cell death. Mettl3 knockout induces both apoptosis and necroptosis in IECs. Targeting different modes of cell death with specific inhibitors unveils that RIPK1 kinase activity is critical for the cell death triggered by Mettl3 knockout. Mechanistically, this occurs via the m6A-mediated transcriptional regulation of Atf3, a transcription factor that directly binds to Cflar, the gene encoding the anti-cell death protein cFLIP. cFLIP inhibits RIPK1 activity, thereby suppressing downstream apoptotic and necroptotic signaling. Together, these findings delineate the essential role of the METTL3-ATF3-cFLIP axis in homeostatic regulation of the intestinal epithelium by blocking RIPK1 activity.

肠上皮细胞(IECs)是通过自我更新、增殖、分化和调节细胞死亡来维持肠道平衡的关键。虽然凋亡和坏死被认为是不同的途径,但它们之间错综复杂的相互作用仍然难以捉摸。在这项研究中,我们报告了 Mettl3 介导的 m6A 修饰通过阻碍上皮细胞死亡来维持肠道稳态。Mettl3 基因敲除可诱导 IECs 细胞凋亡和坏死。用特异性抑制剂针对不同的细胞死亡模式发现,RIPK1激酶活性对Mettl3基因敲除引发的细胞死亡至关重要。从机制上讲,这是通过 m6A 介导的 Atf3 转录调控发生的,Atf3 是一种转录因子,可直接与 Cflar(编码抗细胞死亡蛋白 cFLIP 的基因)结合。cFLIP 可抑制 RIPK1 的活性,从而抑制下游的凋亡和坏死信号传导。这些发现共同阐明了 METTL3-ATF3-cFLIP 轴通过阻断 RIPK1 的活性在肠上皮细胞平衡调节中的重要作用。
{"title":"METTL3 restricts RIPK1-dependent cell death via the ATF3-cFLIP axis in the intestinal epithelium.","authors":"Meimei Huang, Xiaodan Wang, Mengxian Zhang, Yuan Liu, Ye-Guang Chen","doi":"10.1186/s13619-024-00197-8","DOIUrl":"10.1186/s13619-024-00197-8","url":null,"abstract":"<p><p>Intestinal epithelial cells (IECs) are pivotal for maintaining intestinal homeostasis through self-renewal, proliferation, differentiation, and regulated cell death. While apoptosis and necroptosis are recognized as distinct pathways, their intricate interplay remains elusive. In this study, we report that Mettl3-mediated m<sup>6</sup>A modification maintains intestinal homeostasis by impeding epithelial cell death. Mettl3 knockout induces both apoptosis and necroptosis in IECs. Targeting different modes of cell death with specific inhibitors unveils that RIPK1 kinase activity is critical for the cell death triggered by Mettl3 knockout. Mechanistically, this occurs via the m<sup>6</sup>A-mediated transcriptional regulation of Atf3, a transcription factor that directly binds to Cflar, the gene encoding the anti-cell death protein cFLIP. cFLIP inhibits RIPK1 activity, thereby suppressing downstream apoptotic and necroptotic signaling. Together, these findings delineate the essential role of the METTL3-ATF3-cFLIP axis in homeostatic regulation of the intestinal epithelium by blocking RIPK1 activity.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"14"},"PeriodicalIF":4.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The emerging and diverse roles of F-box proteins in spermatogenesis and male infertility. F-box 蛋白在精子发生和男性不育中新出现的多种作用。
IF 4 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-06-26 DOI: 10.1186/s13619-024-00196-9
Xuan Zhuang, Jun Ruan, Canquan Zhou, Zhiming Li

F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.

F-box 蛋白通过泛素化和随后的靶蛋白降解,在精子发生的各种细胞过程中发挥着重要作用。它们是 SKP1-Cullin 1-F-box 蛋白(SCF)E3 连接酶复合物的底物识别亚基。F-box 蛋白介导的蛋白水解失调可导致人类和小鼠的雄性不育。新的研究揭示了 F-box 蛋白在男性生殖细胞发育过程中的生理功能、病理证据和生化底物,这促使我们重新审视目前对 F-box 蛋白如何促进精子发生的认识。更多的功能和机理研究将有助于明确F-box蛋白在精子发生中的作用,这将为F-box蛋白靶向诊断和治疗男性不育症的合理设计铺平道路,因为许多F-box蛋白的生精作用仍然难以捉摸。
{"title":"The emerging and diverse roles of F-box proteins in spermatogenesis and male infertility.","authors":"Xuan Zhuang, Jun Ruan, Canquan Zhou, Zhiming Li","doi":"10.1186/s13619-024-00196-9","DOIUrl":"10.1186/s13619-024-00196-9","url":null,"abstract":"<p><p>F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"13"},"PeriodicalIF":4.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophages in tissue repair and regeneration: insights from zebrafish. 组织修复和再生中的巨噬细胞:斑马鱼的启示。
Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-06-11 DOI: 10.1186/s13619-024-00195-w
Changlong Zhao, Zhiyong Yang, Yunbo Li, Zilong Wen

Macrophages play crucial and versatile roles in regulating tissue repair and regeneration upon injury. However, due to their complex compositional heterogeneity and functional plasticity, deciphering the nature of different macrophage subpopulations and unraveling their dynamics and precise roles during the repair process have been challenging. With its distinct advantages, zebrafish (Danio rerio) has emerged as an invaluable model for studying macrophage development and functions, especially in tissue repair and regeneration, providing valuable insights into our understanding of macrophage biology in health and diseases. In this review, we present the current knowledge and challenges associated with the role of macrophages in tissue repair and regeneration, highlighting the significant contributions made by zebrafish studies. We discuss the unique advantages of the zebrafish model, including its genetic tools, imaging techniques, and regenerative capacities, which have greatly facilitated the investigation of macrophages in these processes. Additionally, we outline the potential of zebrafish research in addressing the remaining challenges and advancing our understanding of the intricate interplay between macrophages and tissue repair and regeneration.

巨噬细胞在损伤后调节组织修复和再生的过程中发挥着多方面的关键作用。然而,由于巨噬细胞具有复杂的组成异质性和功能可塑性,破译不同巨噬细胞亚群的性质并揭示它们在修复过程中的动态变化和精确作用一直是一项挑战。斑马鱼(Danio rerio)具有独特的优势,已成为研究巨噬细胞发育和功能(尤其是在组织修复和再生中)的宝贵模型,为我们了解巨噬细胞在健康和疾病中的生物学特性提供了宝贵的见解。在这篇综述中,我们介绍了与巨噬细胞在组织修复和再生中的作用相关的现有知识和挑战,并强调了斑马鱼研究的重大贡献。我们讨论了斑马鱼模型的独特优势,包括其遗传工具、成像技术和再生能力,这些都极大地促进了对这些过程中巨噬细胞的研究。此外,我们还概述了斑马鱼研究在应对剩余挑战和促进我们对巨噬细胞与组织修复和再生之间错综复杂的相互作用的理解方面的潜力。
{"title":"Macrophages in tissue repair and regeneration: insights from zebrafish.","authors":"Changlong Zhao, Zhiyong Yang, Yunbo Li, Zilong Wen","doi":"10.1186/s13619-024-00195-w","DOIUrl":"10.1186/s13619-024-00195-w","url":null,"abstract":"<p><p>Macrophages play crucial and versatile roles in regulating tissue repair and regeneration upon injury. However, due to their complex compositional heterogeneity and functional plasticity, deciphering the nature of different macrophage subpopulations and unraveling their dynamics and precise roles during the repair process have been challenging. With its distinct advantages, zebrafish (Danio rerio) has emerged as an invaluable model for studying macrophage development and functions, especially in tissue repair and regeneration, providing valuable insights into our understanding of macrophage biology in health and diseases. In this review, we present the current knowledge and challenges associated with the role of macrophages in tissue repair and regeneration, highlighting the significant contributions made by zebrafish studies. We discuss the unique advantages of the zebrafish model, including its genetic tools, imaging techniques, and regenerative capacities, which have greatly facilitated the investigation of macrophages in these processes. Additionally, we outline the potential of zebrafish research in addressing the remaining challenges and advancing our understanding of the intricate interplay between macrophages and tissue repair and regeneration.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New progress in roles of TGF-β signaling crosstalks in cellular functions, immunity and diseases. TGF-β 信号串在细胞功能、免疫和疾病中的作用研究取得新进展。
Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-05-23 DOI: 10.1186/s13619-024-00194-x
Shuchen Gu, Rik Derynck, Ye-Guang Chen, Xin-Hua Feng

The family of secreted dimeric proteins known as the Transforming Growth Factor-β (TGF-β) family plays a critical role in facilitating intercellular communication within multicellular animals. A recent symposium on TGF-β Biology - Signaling, Development, and Diseases, held on December 19-21, 2023, in Hangzhou, China, showcased some latest advances in our understanding TGF-β biology and also served as an important forum for scientific collaboration and exchange of ideas. More than twenty presentations and discussions at the symposium delved into the intricate mechanisms of TGF-β superfamily signaling pathways, their roles in normal development and immunity, and the pathological conditions associated with pathway dysregulation.

被称为转化生长因子-β(TGF-β)家族的分泌型二聚体蛋白在促进多细胞动物的细胞间通讯方面发挥着至关重要的作用。最近于2023年12月19-21日在中国杭州举行的 "TGF-β生物学--信号传导、发育和疾病 "研讨会展示了我们对TGF-β生物学认识的最新进展,同时也是科学合作和思想交流的重要论坛。二十多场报告和讨论深入探讨了TGF-β超家族信号通路的复杂机制、其在正常发育和免疫中的作用以及与通路失调相关的病理状况。
{"title":"New progress in roles of TGF-β signaling crosstalks in cellular functions, immunity and diseases.","authors":"Shuchen Gu, Rik Derynck, Ye-Guang Chen, Xin-Hua Feng","doi":"10.1186/s13619-024-00194-x","DOIUrl":"10.1186/s13619-024-00194-x","url":null,"abstract":"<p><p>The family of secreted dimeric proteins known as the Transforming Growth Factor-β (TGF-β) family plays a critical role in facilitating intercellular communication within multicellular animals. A recent symposium on TGF-β Biology - Signaling, Development, and Diseases, held on December 19-21, 2023, in Hangzhou, China, showcased some latest advances in our understanding TGF-β biology and also served as an important forum for scientific collaboration and exchange of ideas. More than twenty presentations and discussions at the symposium delved into the intricate mechanisms of TGF-β superfamily signaling pathways, their roles in normal development and immunity, and the pathological conditions associated with pathway dysregulation.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Regeneration
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1