Background/aims: Obesity resistance is associated with the complex interaction of stringent and environmental factors that confer the ability to resist mass gain and body fat deposition, even when eating high-calorie diets. Considering that there are numerous gaps in the literature on the metabolic processes that explain Obesity resistance, specifically in relation to oxidative stress, the purpose of the study was to investigate whether obesity-resistant (OR) rats develop elevated reactive oxygen species in cardiac tissue.
Methods: Wistar rats were initially randomized into two groups: a standard diet (SD) and a high-fat diet (HFD) group. The SD and HFD groups were further divided into control (C), OR, and obese prone (OP) subgroups based on body weight. This criterion consisted of organizing the animals in each group in ascending order according to body weight (BW), and the cutoff point was identified in the animals by terciles: 1) lower BW; 2) intermediate BW; and 3) higher BW. Rats were sacrificed on the 14th week, and serum and organs were collected. Nutritional assessment, food profiles, histological analysis, comorbidities, and cardiovascular characteristics were determined.
Results: BW showed a significant difference between the standard diet and high-fat diet groups in the 4th week of the experimental protocol, characterizing obesity. In the 4th week, after the characterization of Obesity resistance, there was a significant difference in BW between groups C, OP, and OR. The OP and OR groups showed a significant increase in caloric intake in relation to the C group. The OP group showed a significant increase in final BW, retroperitoneal fat pad mass, sum of corporal fat deposits and reactive oxygen species, in relation to groups C and OR. The area under the glycemic curve, insulin resistance index and basal glucose were elevated in the OP group in relation to the C. OP also promoted an increase in HOMA-IR when compared with C. OR rats showed a non-significant increase in insulin and HOMA-IR in OR vs. C (p = ~0.1), but no significant differences were observed between OP vs. OR for these parameters, suggesting that both groups suffered from decreased metabolic health. Total cardiac mass, left ventricular cross-sectional area, and cholesterol levels were significantly elevated in the OP and OR groups compared with the C group.
Conclusion: A high-fat diet induces cardiac damage in obesity-resistant rodents with reduction in metabolic health.
Background/aims: The functional significance of the Na+/Ca2+ exchanger (NCX) in basolateral membranes in the proximal tubule remains controversial. The key factor in crosstalk between the apical and basolateral sides is not known.
Methods: We investigated the basolateral membranes, using double-barreled Ca2+ or pH ion-selective microelectrodes. We used doubly perfused bullfrog kidneys in vivo, and switched the basolateral solution (renal portal vein) to experimental solutions.
Results: In the control, cellular pH (pHi) was 7.33 ± 0.032 (mean ± SE, n = 7) and in separate experiments, cellular Ca2+ activity (aCai) was 249.6 ± 35.54 nM (n = 28). Changing to respiratory acidosis, pHi was significantly acidified by 0.123 pH units on average and the change of aCai was +53.1 nM (n = 9 ns). In metabolic acidosis, pHi was reduced by 0.151 while aCai was reduced by 143.4. Using the 30 mM K+ solution, pHi was increased by 0.233 while aCai was reduced by 203.9, with depolarization. Both ionomycin and ouabain caused aCai to increase. In the 0.5 mM Na+ solution (replaced with BIDAC Cl), pHi was reduced by 0.177. No changes in aCai (+49.8 ns) were observed although we recorded depolarization of 15.2 mV. In the 0.5 mM Na+ solution, replaced with raffinose, no changes in aCai (-126.4 ns) were observed with depolarization (6.5 ns).
Conclusion: Our results suggest that thermodynamic calculations of cellular Na+ concentration led to the conclusion that either a Na+/HCO3- exchanger (NBC) or NCX could be present in the same basolateral membrane. H+ ions are the most plausible key factor in the crosstalk.
Background/aims: Mechanosensitive ion channels are the principal elements in the transduction of mechanical force to neural activity. To date, considerably fewer studies have been published about the molecular and structural properties of mechanosensitive channels. Piezo channels are the only ion channel family in eukaryotes which is selectively gated by the membrane tension. Piezo channels have been described in mammals and some other eukaryotes. However, not much information is available for the crustaceans.
Methods: Conventional cloning methods were used to clone the putative PIEZO channel mRNA in crayfish ganglia samples. HEK293T cells were transfected by the plasmid of the cloned gene for functional studies. The CDS of the mRNA translated into the protein sequence and three-dimensional structure of the channel has been calculated.
Results: An mRNA, 9378 bp, was firstly cloned from crayfish which codes a 2674 residues protein. The cloned sequence is similar to the piezo channel mRNAs reported in the other species. The sequence of the coded protein has been analyzed, and some functional domains have been identified. A three-dimensional structure of the coded protein was successfully calculated in reference to mouse piezo 1 channel protein data. A plasmid with a fluorescent protein indicator was synthesized for heterologous expression in HEK293T cells. The evoked calcium response to mechanical stimulation was not different from those observed in the control cells. However, the transfected cells were more sensitive to the gating modifier YODA-1.
Conclusion: Based on the apparent similarity in sequence, structure and functional properties to other known piezo channels, it has been proposed that cloned mRNA may code a piezo-like ion channel in crayfish.
Background/aims: Pancreatic cancer has the poorest survival rate among all cancer types. Therefore, it is essential to develop an effective treatment strategy for this cancer.
Methods: We performed carbon ion radiotherapy (CIRT) in human pancreatic cancer cell lines and analyzed their survival, apoptosis, necrosis, and autophagy. To investigate the role of CIRT-induced autophagy, autophagy inhibitors were added to cells prior to CIRT. To evaluate tumor formation, we inoculated CIRT-treated murine pancreatic cancer cells on the flank of syngeneic mice and measured tumor weight. We immunohistochemically measured autophagy levels in surgical sections from patients with pancreatic cancer who received neoadjuvant chemotherapy (NAC) plus CIRT or NAC alone.
Results: CIRT reduced the survival fraction of pancreatic cancer cells and induced apoptotic and necrotic alterations, along with autophagy. Preincubation with an autophagy inhibitor accelerated cell death. Mice inoculated with control pancreatic cancer cells developed tumors, while those inoculated with CIRT/autophagy inhibitor-treated cells showed significant evasion. Surgical specimens of NAC-treated patients expressed autophagy comparable to control patients, while those in the NAC plus CIRT group expressed little autophagy and nuclear staining.
Conclusion: CIRT effectively killed the pancreatic cancer cells by inhibiting their autophagy-inducing abilities.
Background/aims: Seminal plasma composition is affected by the physiological state of the prostate, the major male reproductive gland. Semen components, like vitamin C, can modulate sperm function. Vitamin C is an effective scavenger of free radicals and is an essential component of enzymes such as TET proteins involved in the DNA demethylation process. In the present study, a broad range of parameters which may influence the metabolic state of the prostate gland were analysed including blood and prostate tissue vitamin C, epigenetic DNA modifications and 8-oxo-7,8-dihydro-2'-deoxyguanosine in DNA of leukocytes and prostate tissues.
Methods: The experimental material were tissue samples from patients with benign prostatic hyperplasia (BPH), normal/marginal prostate tissues from prostate cancer patients, leukocytes from healthy donors, and blood plasma from BPH patients and healthy donors. We applied ultra-performance liquid chromatography methods with mass spectrometry and/or UV detection.
Results: We found an unprecedentedly high level of intracellular vitamin C in all analysed prostatic tissues (benign prostatic hyperplasia and normal, marginal ones), a value much higher than in leukocytes and most human tissues. DNA epigenetic patterns in prostate cells are similar to other soft tissues like the colon, however, its uniqueness is the unprecedentedly high level of 5-(hydroxymethyl)-2'-deoxyuridine and a significant increase in 5-formyl-2'-deoxycytidine value compared to aforementioned tissues. Moreover, the level of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an established marker of oxidative stress, is significantly higher in prostate tissues than in leukocytes and many previously studied soft tissues.
Conclusion: Our results pointed out that prostatic vitamin C (regarded as the main supplier of the vitamin C to seminal plasma) and the DNA modifications (which may be linked to the regeneration of prostate epithelium) may play important role to maintain the prostate health.
Breast cancer is the most common type of cancer in women. It has been extensively researched over the past decades, but the underlying mechanisms of its growth, proliferation, invasion, and metastasis require further investigation. Dysregulation of O-GlcNAcylation which is one of the most abundant post-translational modifications, impacts on the malignant features of breast cancer. O-GlcNAcylation is broadly recognized as a nutrient sensor and participates in cells' survival and death. Through its involvement in protein synthesis and energy metabolism, especially glucose metabolism, O-GlcNAcylation enables adaptation to a hostile environment. It supports the migration and invasion of cancer cells and may be crucial for breast cancer metastasis. This review summarizes the current state of knowledge about O-GlcNAcylation in breast cancer: the origins of its dysregulation, its effect on the different aspects of breast cancer biology, and the potential utility in diagnostics and therapy.
Sarcopenia is a progressive skeletal muscle disorder associated with aging, resulting in loss of muscle mass and function. It has been linked to inflammation, oxidative stress, insulin resistance, hormonal changes (i.e. alterations in the levels or activity of hormones which can occur due to a variety of factors, including aging, stress, disease, medication, and environmental factors), and impaired muscle satellite cell activation. The gut microbiome is also essential for muscle health, and supplements such as probiotics, prebiotics, protein, creatine, and betaalanine can support muscle growth and function while also promoting gut health. Chronic low-grade inflammation is a leading cause of sarcopenia, which can activate signaling pathways that lead to muscle wasting and reduce muscle protein synthesis. Insulin resistance, hormonal changes, and impaired muscle satellite cell activation contribute to sarcopenia, and high levels of fat mass also play a role in the pathogenesis of sarcopenia. Resistance exercise and dietary supplementation have been shown to be effective treatments for sarcopenia. In addition, a combination of resistance exercise and supplementation has been shown to have a more significant beneficial effect on anthropometric and muscle function parameters, leading to a decrease in sarcopenic state. Thus, understanding the relationship between the gut microbiome and muscle metabolism is crucial for developing new treatments for sarcopenia across age groups.