{"title":"Expression of Concern.","authors":"","doi":"10.33594/000000724","DOIUrl":"10.33594/000000724","url":null,"abstract":"","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 4","pages":"458"},"PeriodicalIF":2.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gunnar Goerges, Paul Disse, Stefan Peischard, Nadine Ritter, Christoph Brenker, Guiscard Seebohm, Nathalie Strutz-Seebohm, Julian A Schreiber
Background/aims: Over the years, the number of patients with neurodegenerative diseases is constantly rising illustrating the need for new neuroprotective drugs. A promising treatment approach is the reduction of excitotoxicity induced by rising (S)-glutamate levels and subsequent NMDA receptor overactivation. To facilitate the search for new NMDA receptor inhibitors neuronal cell models are needed. In this study, we evaluated the suitability of human SK-N-SH cells to serve as a cell model for neurodegeneration induced by NMDA receptor overstimulation.
Methods: The cytoprotective effect of the unselective NMDA receptor blocker ketamine as well as the GluN2B-selective inhibitor WMS14-10 was evaluated utilizing different cell viability assays, such as endpoint (LDH, CCK-8, DAPI/FACS) and time dependent methods (bioimpedance).
Results: Non-differentiated as well as differentiated SK-N-SH cells express GluN1 and GluN2B subunits. Furthermore, 50 mM (S)-glutamate led to an instantaneous decrease in cell survival. Only application of unselective channel blocker ketamine could protect differentiated cells against this effect, while the selective inhibitor WMS14-10 did not significantly increase cell survival.
Conclusion: SK-N-SH cells show an increased sensitivity to (S)-glutamate mediated cytotoxicity with higher differentiation level, that is only partially induced by NMDA receptor overstimulation. Furthermore, we showed that only unselective NMDA receptor inhibition can partially reverse (S)-glutamate-induced toxicity.
{"title":"Evaluation of SK-N-SH Cells as a Model for NMDA Receptor Induced Toxicity.","authors":"Gunnar Goerges, Paul Disse, Stefan Peischard, Nadine Ritter, Christoph Brenker, Guiscard Seebohm, Nathalie Strutz-Seebohm, Julian A Schreiber","doi":"10.33594/000000722","DOIUrl":"10.33594/000000722","url":null,"abstract":"<p><strong>Background/aims: </strong>Over the years, the number of patients with neurodegenerative diseases is constantly rising illustrating the need for new neuroprotective drugs. A promising treatment approach is the reduction of excitotoxicity induced by rising (<i>S</i>)-glutamate levels and subsequent NMDA receptor overactivation. To facilitate the search for new NMDA receptor inhibitors neuronal cell models are needed. In this study, we evaluated the suitability of human SK-N-SH cells to serve as a cell model for neurodegeneration induced by NMDA receptor overstimulation.</p><p><strong>Methods: </strong>The cytoprotective effect of the unselective NMDA receptor blocker ketamine as well as the GluN2B-selective inhibitor WMS14-10 was evaluated utilizing different cell viability assays, such as endpoint (LDH, CCK-8, DAPI/FACS) and time dependent methods (bioimpedance).</p><p><strong>Results: </strong>Non-differentiated as well as differentiated SK-N-SH cells express GluN1 and GluN2B subunits. Furthermore, 50 mM (<i>S</i>)-glutamate led to an instantaneous decrease in cell survival. Only application of unselective channel blocker ketamine could protect differentiated cells against this effect, while the selective inhibitor WMS14-10 did not significantly increase cell survival.</p><p><strong>Conclusion: </strong>SK-N-SH cells show an increased sensitivity to (<i>S</i>)-glutamate mediated cytotoxicity with higher differentiation level, that is only partially induced by NMDA receptor overstimulation. Furthermore, we showed that only unselective NMDA receptor inhibition can partially reverse (<i>S</i>)-glutamate-induced toxicity.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 4","pages":"431-444"},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Cheng, Prashanth K B Nagesh, Regina Feldman, Tambudzai Shamu, Zhigang Zhang, Zvi Fuks, Richard Kolesnick
Background/aims: After 9/11, multiple government agencies instituted programs aimed at developing medical radiation countermeasures (MRCs) for two syndromes lethal within weeks of a limited nuclear attack; the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS). While re-purposing drugs that enhance marrow repopulation treats H-ARS, no mitigator protects GI tract.
Methods: We recently reported anti-ceramide 6B5 single-chain variable fragment (scFv) pre-treatment abrogates ongoing small intestinal endothelial apoptosis to rescue Lgr5+ stem cells, preventing GI-ARS lethality in C57B/L6J mice. Here, with US Department of Defense support, we provide evidence that humanized anti-ceramide scFv (CX-01) is a promising prophylactic MRC for first responders, who risk exposure upon entering a radiation-contaminated site.
Results: CX-01, when delivered up to 90 min before irradiation, is highly-effective in preventing small intestinal endothelial apoptosis in mice and lethality in both sexes. Unexpectedly, females require an ~2-fold higher CX-01 dose than males for full protection. CX-01 is effective subcutaneously and intramuscularly, a property critical for battlefield use. Increasing the maximally-effective dose 5-fold does not extend duration of bioeffectiveness.
Conclusion: While CX-01 prevents GI-ARS lethality, structural modification to extend half-life may be necessary to optimize first responder prophylaxis.
{"title":"Anti-Ceramide ScFv Prophylaxis for First Responders to a Limited Nuclear Attack.","authors":"Jin Cheng, Prashanth K B Nagesh, Regina Feldman, Tambudzai Shamu, Zhigang Zhang, Zvi Fuks, Richard Kolesnick","doi":"10.33594/000000721","DOIUrl":"10.33594/000000721","url":null,"abstract":"<p><strong>Background/aims: </strong>After 9/11, multiple government agencies instituted programs aimed at developing medical radiation countermeasures (MRCs) for two syndromes lethal within weeks of a limited nuclear attack; the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS). While re-purposing drugs that enhance marrow repopulation treats H-ARS, no mitigator protects GI tract.</p><p><strong>Methods: </strong>We recently reported anti-ceramide 6B5 single-chain variable fragment (scFv) pre-treatment abrogates ongoing small intestinal endothelial apoptosis to rescue Lgr5<sup>+</sup> stem cells, preventing GI-ARS lethality in C57B/L6J mice. Here, with US Department of Defense support, we provide evidence that humanized anti-ceramide scFv (CX-01) is a promising prophylactic MRC for first responders, who risk exposure upon entering a radiation-contaminated site.</p><p><strong>Results: </strong>CX-01, when delivered up to 90 min before irradiation, is highly-effective in preventing small intestinal endothelial apoptosis in mice and lethality in both sexes. Unexpectedly, females require an ~2-fold higher CX-01 dose than males for full protection. CX-01 is effective subcutaneously and intramuscularly, a property critical for battlefield use. Increasing the maximally-effective dose 5-fold does not extend duration of bioeffectiveness.</p><p><strong>Conclusion: </strong>While CX-01 prevents GI-ARS lethality, structural modification to extend half-life may be necessary to optimize first responder prophylaxis.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 4","pages":"418-430"},"PeriodicalIF":2.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cecilia Del Vecchio, Rossella Gratton, Cécile Nait-Meddour, Elena Maria Nardacchione, Ronald Moura, Eduardo Sommella, Chiara Moltrasio, Angelo Valerio Marzano, Blendi Ura, Donatella Mentino, Michele Boniotto, Adamo Pio d'Adamo, Giuseppe Calamita, Sergio Crovella, Paola Maura Tricarico
Background/aims: Aquaporin-3 (AQP3) is an aquaglyceroporin and peroxiporin that plays a crucial role in skin barrier homeostasis. Dysregulated AQP3 expression has been observed in different inflammatory skin conditions. Hidradenitis Suppurativa (HS) is an autoinflammatory keratinization disease that typically appears between 10 and 21 years of age, characterized by alteration of skin barrier homeostasis.
Methods: To evaluate in vitro the role of AQP3 in the development of HS, we performed real-time PCR and Western blot to analyze gene and protein levels in human keratinocyte cell lines knock-out (KO) for NCSTN and PSENEN genes, simulating genetic-associated HS. Additionally, we investigated the impact of Glyceryl Glucoside (GG) on biological processes by performing MTT, scratch, proliferation assays and proteome studies.
Results: We detected a significant decrease of the levels of AQP3 gene and protein in KO cell lines. GG effectively elevated the levels of mRNA and protein, significantly decreased the hyperproliferation rate, and enhanced cell migration in our in vitro model of genetic Hidradenitis Suppurativa. Pathway enrichment analysis further confirmed GG's role in the migration and proliferation pathways of keratinocytes.
Conclusion: Our results suggest that AQP3 may act as a new novel actor in HS etio-pathogenesis, and GG could be further explored as potential treatment option for managing HS in patients.
{"title":"Dysregulation of Aquaporin-3 and Glyceryl Glucoside Restoring Action in Hidradenitis Suppurativa in Vitro Models.","authors":"Cecilia Del Vecchio, Rossella Gratton, Cécile Nait-Meddour, Elena Maria Nardacchione, Ronald Moura, Eduardo Sommella, Chiara Moltrasio, Angelo Valerio Marzano, Blendi Ura, Donatella Mentino, Michele Boniotto, Adamo Pio d'Adamo, Giuseppe Calamita, Sergio Crovella, Paola Maura Tricarico","doi":"10.33594/000000720","DOIUrl":"https://doi.org/10.33594/000000720","url":null,"abstract":"<p><strong>Background/aims: </strong>Aquaporin-3 (AQP3) is an aquaglyceroporin and peroxiporin that plays a crucial role in skin barrier homeostasis. Dysregulated AQP3 expression has been observed in different inflammatory skin conditions. Hidradenitis Suppurativa (HS) is an autoinflammatory keratinization disease that typically appears between 10 and 21 years of age, characterized by alteration of skin barrier homeostasis.</p><p><strong>Methods: </strong>To evaluate <i>in vitro</i> the role of AQP3 in the development of HS, we performed real-time PCR and Western blot to analyze gene and protein levels in human keratinocyte cell lines knock-out (KO) for <i>NCSTN</i> and <i>PSENEN</i> genes, simulating genetic-associated HS. Additionally, we investigated the impact of Glyceryl Glucoside (GG) on biological processes by performing MTT, scratch, proliferation assays and proteome studies.</p><p><strong>Results: </strong>We detected a significant decrease of the levels of AQP3 gene and protein in KO cell lines. GG effectively elevated the levels of mRNA and protein, significantly decreased the hyperproliferation rate, and enhanced cell migration in our <i>in vitro</i> model of genetic Hidradenitis Suppurativa. Pathway enrichment analysis further confirmed GG's role in the migration and proliferation pathways of keratinocytes.</p><p><strong>Conclusion: </strong>Our results suggest that AQP3 may act as a new novel actor in HS etio-pathogenesis, and GG could be further explored as potential treatment option for managing HS in patients.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 4","pages":"404-417"},"PeriodicalIF":2.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felipe Jadán Piedra, Rodolfo Andrés Rivadeneira Z, María Isabel Zambrano Vélez, José Patricio Muñoz Murillo, Frank Guillermo Intriago Flor, Andrés Miguel Anchundia Loor, Yanelis Ramos Alfonso, Jose Alberto Vigueras Moreno, Herman Cevallos Sánchez, Jorge Milton Velepucha Sánchez, Efrain Pérez Vega, Lorena Daniela Domínguez Brito
Background/aims: Due to rapid metabolic and growth rates during the first two years of life, the nutritional needs of young children are high. Given the small portion sizes consumed by children between the ages of 6 and 24 months, it is necessary to improve diets to meet the nutritional needs of this age group. Therefore, the analysis of lysine content is an important parameter in the evaluation of enriched foods.
Methods: The utilization of an enzymatic sensor employing lysine-α-oxidase (LOx) as a biorecognition element represents an alternative to the existing methods. This sensor was optimized for quantifying the lysine content in flour mixtures: Quinoa-Lablab purpureus rye - Lablab purpureus, and pole beans - Lablab purpureus, with a maximum ratio of 85g/100g.
Results: The addition of lablab purpureus significantly increased the lysine concentration in the enriched samples. When 30 percent was substituted in quinoa, it reached a 143 percent increase. And when 15 percent was substituted in the rye flour, the final concentration of this amino acid increased by 64 percent. In order to quantify the lysine concentration, it was necessary to optimize various parameters during the use of the sensor, e.g. a potentiometric signal was detected upon the depletion of oxygen present during the oxidation of lysine in the samples, and the sensor response was recorded at 2 s. This was possible due to the modification of the pH and the thickness of the membrane. The oxidation of lysine is catalyzed by LOx using molecular oxygen as the electron acceptor. The corresponding acidic compounds and hydrogen peroxide were formed in the reaction medium.
Conclusion: It was possible to increase and verify the concentration of lysine in all the flours tested through the use of the biosensor, which turned out to be a valid method for controlling the nutritional quality of flours.
{"title":"Flour Fortification Using Lablab Purpureus Evaluation with a Biosensor.","authors":"Felipe Jadán Piedra, Rodolfo Andrés Rivadeneira Z, María Isabel Zambrano Vélez, José Patricio Muñoz Murillo, Frank Guillermo Intriago Flor, Andrés Miguel Anchundia Loor, Yanelis Ramos Alfonso, Jose Alberto Vigueras Moreno, Herman Cevallos Sánchez, Jorge Milton Velepucha Sánchez, Efrain Pérez Vega, Lorena Daniela Domínguez Brito","doi":"10.33594/000000719","DOIUrl":"https://doi.org/10.33594/000000719","url":null,"abstract":"<p><strong>Background/aims: </strong>Due to rapid metabolic and growth rates during the first two years of life, the nutritional needs of young children are high. Given the small portion sizes consumed by children between the ages of 6 and 24 months, it is necessary to improve diets to meet the nutritional needs of this age group. Therefore, the analysis of lysine content is an important parameter in the evaluation of enriched foods.</p><p><strong>Methods: </strong>The utilization of an enzymatic sensor employing lysine-α-oxidase (LOx) as a biorecognition element represents an alternative to the existing methods. This sensor was optimized for quantifying the lysine content in flour mixtures: Quinoa-Lablab purpureus rye - Lablab purpureus, and pole beans - Lablab purpureus, with a maximum ratio of 85g/100g.</p><p><strong>Results: </strong>The addition of lablab purpureus significantly increased the lysine concentration in the enriched samples. When 30 percent was substituted in quinoa, it reached a 143 percent increase. And when 15 percent was substituted in the rye flour, the final concentration of this amino acid increased by 64 percent. In order to quantify the lysine concentration, it was necessary to optimize various parameters during the use of the sensor, e.g. a potentiometric signal was detected upon the depletion of oxygen present during the oxidation of lysine in the samples, and the sensor response was recorded at 2 s. This was possible due to the modification of the pH and the thickness of the membrane. The oxidation of lysine is catalyzed by LOx using molecular oxygen as the electron acceptor. The corresponding acidic compounds and hydrogen peroxide were formed in the reaction medium.</p><p><strong>Conclusion: </strong>It was possible to increase and verify the concentration of lysine in all the flours tested through the use of the biosensor, which turned out to be a valid method for controlling the nutritional quality of flours.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 4","pages":"393-403"},"PeriodicalIF":2.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suhailah S Al-Jameel, Ibtisam M Ababutain, Azzah I Alghamdi, Amor Ben-Ali, Aml H Al-Nasir, Asayel H Alqhtani, Latifah K Aldewely, Mariam M Alhassan, Reem E Bakhurji, Wasan M AlGhamdi, Rana A Alzahrani, Israa A Alrabghi
Background/aims: The naturally occurring phenolic chemical curcumin (CUR), which was derived from the Curcuma longa plant, has a variety of biological actions, including anti-inflammatory, antimicrobial, antioxidant, and anticancer activities. Curcumin is known for its restricted bioavailability due to its hydrophobicity, poor intestinal absorption, and quick metabolism. To boost the biological effects of these bioactive molecules, it is necessary to raise both their bioavailability and their solubility in water. Aim: The aim of this study is to synthesize and characterize hybrid organic-inorganic complexes of copper and cobalt, and to evaluate their antimicrobial potential against a range of pathogenic microorganisms.
Methods: The synthesis of metal curcumin complexes (Cu-CUR and Co-CUR) was achieved by mixing curcumin with copper acetate monohydrate. The solid residue was isolated, filtered, and dried in an oven. X-ray diffraction analysis was used to identify the structure and phase of the prepared samples. FTIR spectra were recorded using a Shimadzu 2200 module. The antimicrobial activity of the prepared complexes was evaluated against four bacterial strains and two Candida species. The chemical materials were dissolved in DMSO to a final concentration of 20%, and the plates were incubated at 37°C for 24 hours. The results showed that the prepared complexes had antimicrobial activity against the tested microorganisms.
Results: The study compared the Powder X-ray diffraction (XRD) patterns of prepared copper and cobalt complexes to pure curcumin, revealing new, isostructural complexes. The FTIR analysis showed that the Cu-CUR and Co-CUR complexes varied in their inhibitory effect against microorganisms, with Co-CUR being more effective. The results are consistent with previous studies showing the cobalt-curcumin complex was effective against various bacterial genera, with inhibition activity varying depending on the species and strains of microorganisms.
Conclusion: Copper and cobalt curcumin complexes, synthesized at room temperature, exhibit high crystallinity and antimicrobial activity. Co-CUR, with its superior antibacterial potential, outperforms pure curcumin in inhibiting microbes. Further investigation is needed to understand their interaction mechanisms with bacteria and fungi.
{"title":"Hybrid Organic-Inorganic Copper and Cobalt Complexes for Antimicrobial Potential Applications.","authors":"Suhailah S Al-Jameel, Ibtisam M Ababutain, Azzah I Alghamdi, Amor Ben-Ali, Aml H Al-Nasir, Asayel H Alqhtani, Latifah K Aldewely, Mariam M Alhassan, Reem E Bakhurji, Wasan M AlGhamdi, Rana A Alzahrani, Israa A Alrabghi","doi":"10.33594/000000718","DOIUrl":"https://doi.org/10.33594/000000718","url":null,"abstract":"<p><strong>Background/aims: </strong>The naturally occurring phenolic chemical curcumin (CUR), which was derived from the Curcuma longa plant, has a variety of biological actions, including anti-inflammatory, antimicrobial, antioxidant, and anticancer activities. Curcumin is known for its restricted bioavailability due to its hydrophobicity, poor intestinal absorption, and quick metabolism. To boost the biological effects of these bioactive molecules, it is necessary to raise both their bioavailability and their solubility in water. Aim: The aim of this study is to synthesize and characterize hybrid organic-inorganic complexes of copper and cobalt, and to evaluate their antimicrobial potential against a range of pathogenic microorganisms.</p><p><strong>Methods: </strong>The synthesis of metal curcumin complexes (Cu-CUR and Co-CUR) was achieved by mixing curcumin with copper acetate monohydrate. The solid residue was isolated, filtered, and dried in an oven. X-ray diffraction analysis was used to identify the structure and phase of the prepared samples. FTIR spectra were recorded using a Shimadzu 2200 module. The antimicrobial activity of the prepared complexes was evaluated against four bacterial strains and two Candida species. The chemical materials were dissolved in DMSO to a final concentration of 20%, and the plates were incubated at 37°C for 24 hours. The results showed that the prepared complexes had antimicrobial activity against the tested microorganisms.</p><p><strong>Results: </strong>The study compared the Powder X-ray diffraction (XRD) patterns of prepared copper and cobalt complexes to pure curcumin, revealing new, isostructural complexes. The FTIR analysis showed that the Cu-CUR and Co-CUR complexes varied in their inhibitory effect against microorganisms, with Co-CUR being more effective. The results are consistent with previous studies showing the cobalt-curcumin complex was effective against various bacterial genera, with inhibition activity varying depending on the species and strains of microorganisms.</p><p><strong>Conclusion: </strong>Copper and cobalt curcumin complexes, synthesized at room temperature, exhibit high crystallinity and antimicrobial activity. Co-CUR, with its superior antibacterial potential, outperforms pure curcumin in inhibiting microbes. Further investigation is needed to understand their interaction mechanisms with bacteria and fungi.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 4","pages":"382-392"},"PeriodicalIF":2.5,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background/aims: Traumatic brain injury is a significant public problem with an incidence of 10 million people per year, causing the largest deaths and disabilities worldwide. Head injuries can be classified into primary and secondary head injuries. Secondary head injuries can be caused by several factors such as ischemia, cerebral edema, and neuroinflammation. AIF and MMP-9 are two parameters that can be indicators in measuring the effect of Oleuropein on traumatic brain injury in rats. Oleuropein itself has many activities such as antioxidant, anti-apoptotic, antimicrobial, anti-inflammatory, and neuroprotective.
Methods: Adult male Sprague-Dawley rats (250-350 grams) were exposed to head injury, with or without intraperitoneal administration of Oleuropein. Within 24-72 hours brain tissue was isolated for immunohistochemical analysis, ELISA, and TUNEL. AIF, GFAP, MMP-9, and HMGB-1 levels were determined using immunohistochemistry in both the control and treatment groups. Statistical analysis was made using the One-Way Analysis of Variance (ANOVA) and paired t-test.
Results: The results showed that Oleuropein was able to reduce AIF and MMP-9 levels in rats with traumatic brain injury. This indicates that Oleuropein has a neuroprotective effect by reducing inflammation and apoptosis.
Conclusion: Oleuropein has a potential neuroprotective effect in traumatic brain injury by reducing inflammation and apoptosis. Therefore, Oleuropein can be considered as a potential therapeutic agent for traumatic brain injury in the future.
{"title":"The Effect of Oleuropein in AIF and MMP-9 in Traumatic Brain Injury Rat Model.","authors":"Abdurrahman Mousa, Ridha Dharmajaya, Julia Reveny, Khairul Putra Surbakti, Hanif Gordang Tobing, Syafruddin Ilyas, Rosita Juwita Sembiring, Cut Aria Arina, Wibi Riawan","doi":"10.33594/000000717","DOIUrl":"https://doi.org/10.33594/000000717","url":null,"abstract":"<p><strong>Background/aims: </strong>Traumatic brain injury is a significant public problem with an incidence of 10 million people per year, causing the largest deaths and disabilities worldwide. Head injuries can be classified into primary and secondary head injuries. Secondary head injuries can be caused by several factors such as ischemia, cerebral edema, and neuroinflammation. AIF and MMP-9 are two parameters that can be indicators in measuring the effect of Oleuropein on traumatic brain injury in rats. Oleuropein itself has many activities such as antioxidant, anti-apoptotic, antimicrobial, anti-inflammatory, and neuroprotective.</p><p><strong>Methods: </strong>Adult male Sprague-Dawley rats (250-350 grams) were exposed to head injury, with or without intraperitoneal administration of Oleuropein. Within 24-72 hours brain tissue was isolated for immunohistochemical analysis, ELISA, and TUNEL. AIF, GFAP, MMP-9, and HMGB-1 levels were determined using immunohistochemistry in both the control and treatment groups. Statistical analysis was made using the One-Way Analysis of Variance (ANOVA) and paired t-test.</p><p><strong>Results: </strong>The results showed that Oleuropein was able to reduce AIF and MMP-9 levels in rats with traumatic brain injury. This indicates that Oleuropein has a neuroprotective effect by reducing inflammation and apoptosis.</p><p><strong>Conclusion: </strong>Oleuropein has a potential neuroprotective effect in traumatic brain injury by reducing inflammation and apoptosis. Therefore, Oleuropein can be considered as a potential therapeutic agent for traumatic brain injury in the future.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 4","pages":"361-381"},"PeriodicalIF":2.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Halina Tkaczenko, Oleksandr Lukash, Piotr Kamiński, Natalia Kurhaluk
Background/aims: Individual resistance to hypoxia is an important feature of the physiological profile of an organism, particularly in relation to lead-induced toxicity.
Methods: Our study focused on evaluating parameters of mitochondrial oxygen consumption, microsomal oxidation, intensity of lipoperoxidation processes and antioxidant defences in the liver of rats with low (LR) and high (HR) resistance to hypoxia to elucidate the mechanisms of action of L-arginine and the NO synthase inhibitor L-NNA before or after exposure to lead nitrate.
Results: Our study suggests that the redistribution of oxygen-dependent processes towards mitochondrial processes under the influence of the nitric oxide precursor amino acid L-arginine is an important mechanism for maintaining mitochondrial respiratory chain function during per os lead nitrate exposure (3.6 mg lead nitrate/kg bw per day for 30 days). Animals were given L-arginine at a dose of 600 mg/kg bw (i.p., 30 min) before and after exposure to lead nitrate or the NO synthase inhibitor Nω-nitro-L-arginine (L-NNA) at a dose of 35 mg/kg bw (i.p., 30 min) before and after exposure to lead nitrate. Our experiments demonstrated the efficacy of using lead nitrate to simulate lead-related toxic processes via Pb levels in liver tissue; we demonstrated significantly reduced levels of nitrites and nitrates, i.e. stable metabolites of the nitric oxide system, in both LR and HR animals. The effect of the amino acid L-arginine stabilised the negative effects of lead nitrate exposure in both groups of LR and HR rats. We observed the efficiency of mitochondrial energy supply processes and showed a greater vulnerability of NADH-dependent oxidation during lead nitrate exposure in the liver of HR rats.
Conclusion: L-arginine initiated the processes of oxidation of NADH-dependent substrates in the LR group, whereas in the HR group this directionality of processes was more effective when the role of the nitric oxide system was reduced (use of L-NNA). Our study of key antioxidant enzyme activities in rat liver tissue during lead nitrate exposure revealed changes in the catalase-peroxidase activity ratio. We found different activities of antioxidant enzymes in the liver tissue of rats treated with lead nitrate and L-arginine or L-NNA, with a significant increase in GPx activity in the LR group when L-arginine was administered both before and after exposure to lead nitrate.
背景/目的:个体对缺氧的抵抗力是生物体生理特征的一个重要特征,尤其是在铅诱导毒性方面:我们的研究重点是评估低耐受性(LR)和高耐受性(HR)大鼠肝脏中线粒体耗氧量、微粒体氧化、脂过氧化过程强度和抗氧化防御能力等参数,以阐明在接触硝酸铅之前或之后左旋精氨酸和 NO 合酶抑制剂 L-NNA 的作用机制:我们的研究表明,在一氧化氮前体氨基酸 L-精氨酸的影响下,氧依赖过程向线粒体过程的重新分配是在暴露于硝酸铅(每天 3.6 毫克硝酸铅/千克体重,持续 30 天)期间维持线粒体呼吸链功能的重要机制。在暴露于硝酸铅之前和之后,给动物服用剂量为 600 毫克/千克体重(静注,30 分钟)的 L-精氨酸或剂量为 35 毫克/千克体重(静注,30 分钟)的 NO 合酶抑制剂 Nω-硝基-L-精氨酸(L-NNA)。我们的实验证明了使用硝酸铅通过肝脏组织中的铅含量来模拟铅相关毒性过程的有效性;我们还证明了亚硝酸盐和硝酸盐(即一氧化氮系统的稳定代谢产物)在 LR 和 HR 动物中的含量显著降低。氨基酸 L-精氨酸的作用稳定了硝酸铅暴露对 LR 和 HR 两组大鼠的负面影响。我们观察了线粒体能量供应过程的效率,发现在接触硝酸铅的过程中,HR 大鼠肝脏中依赖 NADH 的氧化作用更加脆弱:结论:在 LR 组中,L-精氨酸启动了 NADH 依赖性底物的氧化过程,而在 HR 组中,当一氧化氮系统的作用降低(使用 L-NNA)时,这种过程的方向性更为有效。我们对接触硝酸铅期间大鼠肝脏组织中关键抗氧化酶活性的研究显示,过氧化氢酶-过氧化物酶活性比率发生了变化。我们发现,用硝酸铅和左旋精氨酸或左旋 NNA 处理的大鼠肝组织中抗氧化酶的活性不同,在暴露于硝酸铅之前和之后服用左旋精氨酸时,LR 组 GPx 活性显著增加。
{"title":"Elucidation of the Role of L-Arginine and N<sup>ω</sup>-Nitro-L-Arginine in the Treatment of Rats with Different Levels of Hypoxic Tolerance and Exposure to Lead Nitrate.","authors":"Halina Tkaczenko, Oleksandr Lukash, Piotr Kamiński, Natalia Kurhaluk","doi":"10.33594/000000716","DOIUrl":"https://doi.org/10.33594/000000716","url":null,"abstract":"<p><strong>Background/aims: </strong>Individual resistance to hypoxia is an important feature of the physiological profile of an organism, particularly in relation to lead-induced toxicity.</p><p><strong>Methods: </strong>Our study focused on evaluating parameters of mitochondrial oxygen consumption, microsomal oxidation, intensity of lipoperoxidation processes and antioxidant defences in the liver of rats with low (LR) and high (HR) resistance to hypoxia to elucidate the mechanisms of action of L-arginine and the NO synthase inhibitor L-NNA before or after exposure to lead nitrate.</p><p><strong>Results: </strong>Our study suggests that the redistribution of oxygen-dependent processes towards mitochondrial processes under the influence of the nitric oxide precursor amino acid L-arginine is an important mechanism for maintaining mitochondrial respiratory chain function during <i>per os</i> lead nitrate exposure (3.6 mg lead nitrate/kg bw per day for 30 days). Animals were given L-arginine at a dose of 600 mg/kg bw (i.p., 30 min) before and after exposure to lead nitrate or the NO synthase inhibitor N<sup>ω</sup>-nitro-L-arginine (L-NNA) at a dose of 35 mg/kg bw (i.p., 30 min) before and after exposure to lead nitrate. Our experiments demonstrated the efficacy of using lead nitrate to simulate lead-related toxic processes via Pb levels in liver tissue; we demonstrated significantly reduced levels of nitrites and nitrates, i.e. stable metabolites of the nitric oxide system, in both LR and HR animals. The effect of the amino acid L-arginine stabilised the negative effects of lead nitrate exposure in both groups of LR and HR rats. We observed the efficiency of mitochondrial energy supply processes and showed a greater vulnerability of NADH-dependent oxidation during lead nitrate exposure in the liver of HR rats.</p><p><strong>Conclusion: </strong>L-arginine initiated the processes of oxidation of NADH-dependent substrates in the LR group, whereas in the HR group this directionality of processes was more effective when the role of the nitric oxide system was reduced (use of L-NNA). Our study of key antioxidant enzyme activities in rat liver tissue during lead nitrate exposure revealed changes in the catalase-peroxidase activity ratio. We found different activities of antioxidant enzymes in the liver tissue of rats treated with lead nitrate and L-arginine or L-NNA, with a significant increase in GPx activity in the LR group when L-arginine was administered both before and after exposure to lead nitrate.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 ","pages":"336-360"},"PeriodicalIF":2.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lamin B Cham, Miriam Rosas-Umbert, Lin Lin, Martin Tolstrup, Ole S Søgaard
Background/aims: Immune cells are reported to upregulate CD47 during infection, however, the role of CD47 in innate and adaptive immune cells remains unclear.
Methods: To bridge this knowledge gap, we analysed our single cell (sc)-RNA dataset along with other publicly available sc-RNA datasets from healthy controls, people with HIV-1 (PWH) and COVID-19 patients. We characterized each immune cell based on low, intermediate, and high expression of CD47 .
Results: Our analyses revealed that CD47high pDCs and monocytes exhibited relatively higher expression of IFN-α regulatory genes, antiviral interferon-stimulated genes (ISGs) and MHC-I associated genes compared to CD47inter. and CD47low cells. Furthermore, CD47high NK and CD8+ T cells showed higher expression of antiviral ISGs, as well as genes encoding for cytotoxic markers like granzyme B, perforin, granulysin, interferon gamma and NKG7. Additionally, CD47high CD8+ T cells expressed higher levels of PD-1 and LAG-3 genes. Lastly, we found that CD47high B cells had enriched expression of genes involved in cell activation and humoral responses.
Conclusion: Overall, our analyses revealed that innate and adaptive immune cells expressing elevated activation and functional gene signatures also express higher CD47 levels.
{"title":"Single-Cell Analysis Reveals That CD47 mRNA Expression Correlates with Immune Cell Activation, Antiviral Isgs, and Cytotoxicity.","authors":"Lamin B Cham, Miriam Rosas-Umbert, Lin Lin, Martin Tolstrup, Ole S Søgaard","doi":"10.33594/000000715","DOIUrl":"https://doi.org/10.33594/000000715","url":null,"abstract":"<p><strong>Background/aims: </strong>Immune cells are reported to upregulate CD47 during infection, however, the role of CD47 in innate and adaptive immune cells remains unclear.</p><p><strong>Methods: </strong>To bridge this knowledge gap, we analysed our single cell (sc)-RNA dataset along with other publicly available sc-RNA datasets from healthy controls, people with HIV-1 (PWH) and COVID-19 patients. We characterized each immune cell based on low, intermediate, and high expression of <i>CD47</i> .</p><p><strong>Results: </strong>Our analyses revealed that <i>CD47</i> <sup>high</sup> pDCs and monocytes exhibited relatively higher expression of IFN-α regulatory genes, antiviral interferon-stimulated genes (ISGs) and MHC-I associated genes compared to <i>CD47</i> <sup>inter.</sup> and <i>CD47</i> <sup>low</sup> cells. Furthermore, <i>CD47</i> <sup>high</sup> NK and CD8+ T cells showed higher expression of antiviral ISGs, as well as genes encoding for cytotoxic markers like granzyme B, perforin, granulysin, interferon gamma and NKG7. Additionally, <i>CD47</i> <sup>high</sup> CD8+ T cells expressed higher levels of PD-1 and LAG-3 genes. Lastly, we found that <i>CD47</i> <sup>high</sup> B cells had enriched expression of genes involved in cell activation and humoral responses.</p><p><strong>Conclusion: </strong>Overall, our analyses revealed that innate and adaptive immune cells expressing elevated activation and functional gene signatures also express higher <i>CD47</i> levels.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 4","pages":"322-335"},"PeriodicalIF":2.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background/aims: The objectives of our study were to determine salivary α-amylase activity (stress biomarker) and its association with psychological status and quality of life (QoL), disease duration and intensity of symptoms (pain/burning) in patients with OLP.
Methods: A total of 50 subjects participated in this case-control study: 30 patients with oral lichen planus (OLP); 20 control subjects. Unstimulated whole saliva (UWS) was collected between 9 and 10 am to avoid diurnal fluctuations. Psychological status was assessed using the Croatian validated version of the original Depression, Anxiety and Stress Scale (DASS-21). The impact of oral health on QoL was assessed using the Croatian version of the Oral Health Impact Profile Questionnaire (OHIP-CRO14).
Results: There was no statistically significant difference in salivary α-amylase activity between patients with OLP (N=30) and control subjects (N=20) (133813.3 vs. 166815.5 U/L, p=0.314; t-test). Depression, anxiety and stress showed no statistically significant difference between patients with OLP and control subjects (p=0.076, p=0.111, p=0.209; t-test). The patients with OLP had statistically significantly poorer QoL (total) compared to control subjects (p=0.004, t-test). There was a moderate positive correlation between symptom intensity (pain/burning) and poor QoL (total) (r=0.584, p<0.001), the OHIP-CRO14 dimension "physical pain" (r=0.661, p<0.001), "psychological impossibility" (r=0.555, p<0.01), "handicap" (r=0.546, p<0.01).
Conclusion: Although salivary α-amylase showed no statistically significant difference between patients with OLP and control subjects, the patients with OLP had poorer psychological status (three times higher scores for depression and two times higher scores for anxiety) and poorer QoL compared to the control subjects. Recognising and treating mental disorders in patients with OLP is important in order to break the "vicious circle" and achieve a better QoL in these patients.
{"title":"Is Salivary Α-Amylase a Reliable Indicator of Psychological Status and Quality of Life in Patients with Oral Lichen Planus: a Case-Control Study.","authors":"Ana Glavina, Antonija Zoranić, Antonija Tadin, Livia Cigić, Daniela Šupe-Domić, Liborija Lugović-Mihić","doi":"10.33594/000000714","DOIUrl":"10.33594/000000714","url":null,"abstract":"<p><strong>Background/aims: </strong>The objectives of our study were to determine salivary α-amylase activity (stress biomarker) and its association with psychological status and quality of life (QoL), disease duration and intensity of symptoms (pain/burning) in patients with OLP.</p><p><strong>Methods: </strong>A total of 50 subjects participated in this case-control study: 30 patients with oral lichen planus (OLP); 20 control subjects. Unstimulated whole saliva (UWS) was collected between 9 and 10 am to avoid diurnal fluctuations. Psychological status was assessed using the Croatian validated version of the original Depression, Anxiety and Stress Scale (DASS-21). The impact of oral health on QoL was assessed using the Croatian version of the Oral Health Impact Profile Questionnaire (OHIP-CRO14).</p><p><strong>Results: </strong>There was no statistically significant difference in salivary α-amylase activity between patients with OLP (N=30) and control subjects (N=20) (133813.3 vs. 166815.5 U/L, p=0.314; t-test). Depression, anxiety and stress showed no statistically significant difference between patients with OLP and control subjects (p=0.076, p=0.111, p=0.209; t-test). The patients with OLP had statistically significantly poorer QoL (total) compared to control subjects (p=0.004, t-test). There was a moderate positive correlation between symptom intensity (pain/burning) and poor QoL (total) (r=0.584, p<0.001), the OHIP-CRO14 dimension \"physical pain\" (r=0.661, p<0.001), \"psychological impossibility\" (r=0.555, p<0.01), \"handicap\" (r=0.546, p<0.01).</p><p><strong>Conclusion: </strong>Although salivary α-amylase showed no statistically significant difference between patients with OLP and control subjects, the patients with OLP had poorer psychological status (three times higher scores for depression and two times higher scores for anxiety) and poorer QoL compared to the control subjects. Recognising and treating mental disorders in patients with OLP is important in order to break the \"vicious circle\" and achieve a better QoL in these patients.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 4","pages":"311-321"},"PeriodicalIF":2.5,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}