Pub Date : 2023-10-19DOI: 10.3390/chemistry5040151
Ahmed M. Abd-ElGawad, Rania F. Ahmed, Ahmed F. Essa, Abd El-Nasser G. El Gendy, Samah A. El-Newary, Abdelsamed I. Elshamy, Tushar C. Sarker, Yasser A. El-Amier
Essential oils (EOs) are advised by traditional medical systems for the treatment of a variety of disorders worldwide. In many ancient medical systems around the world, Polygonum herbs have been employed as remedies including P. equisetiforme Sm. The EO profile of P. equisetiforme and its bioactivities have yet to be discussed in depth. As a result, the current study aims to investigate the chemical profile and free radical scavenging capacity of P. equisetiforme EO. Hydrodistillation was used to obtain the EO from P. equisetiforme, and gas chromatography–mass spectrometry (GC-MS) was used for analysis. A total of forty-three compounds, including terpenes and sesquiterpenes as the main components (76.13% and 69.06%, respectively), were identified in the oil using the GC-MS analysis. The main constituents of the oil were hexahydrofarnesyl acetone (29.45%), 7-epi-selinene (14.45%), isospathulenol (8.35%), and n-docosane (6.79%). The chemosystematic significance of the plant was established via multivariate assessing, comprising principal component analysis (PCA), hierarchical clustering, and constellation plot, of the EO principal components of the various Polygonum plants. The P. equisetiforme exhibited different associations with the studied Polygonum spp. Then, the scavenging of the free radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was used to evaluate the radical scavenging abilities of EO compared with those of vitamin C, a reference antioxidant. P. equisetiforme EO exhibited the scavenging capacity of the DPPH and the ABTS free radical with respective IC50 values of 470.01 and 113.74 mg L−1 compared with vitamin C, and with IC50 values of 39.06 and 26.09 mg L−1, respectively. The in silico studies revealed that the oxygenated sesquiterpenes, especially ar-turmerone, hexahydrofarnesyl acetone, and 5E,9E-farnesyl acetone, exhibited the best fitting with hematopoietic cell kinase (Hck) and human Peroxiredoxin 5 proteins with ΔG values of −6.14 and −4.93, −6.83 and −5.34, and −7.08 and −5.47 kcal/mol, respectively. The major components’ combined or individual effects may be responsible for the antioxidant properties. Therefore, additional extensive studies are advised to characterize the essential compounds as radical scavenger agents, either individually or in combination.
{"title":"Gas Chromatography–Mass Spectrometry Chemical Profiling and Radical Scavenging Potential of Sesquiterpene-Rich Essential Oil of Polygonum equisetiforme Sm.: In Silico Study on Hematopoietic Cell Kinase (Hck) and Human Peroxiredoxin 5","authors":"Ahmed M. Abd-ElGawad, Rania F. Ahmed, Ahmed F. Essa, Abd El-Nasser G. El Gendy, Samah A. El-Newary, Abdelsamed I. Elshamy, Tushar C. Sarker, Yasser A. El-Amier","doi":"10.3390/chemistry5040151","DOIUrl":"https://doi.org/10.3390/chemistry5040151","url":null,"abstract":"Essential oils (EOs) are advised by traditional medical systems for the treatment of a variety of disorders worldwide. In many ancient medical systems around the world, Polygonum herbs have been employed as remedies including P. equisetiforme Sm. The EO profile of P. equisetiforme and its bioactivities have yet to be discussed in depth. As a result, the current study aims to investigate the chemical profile and free radical scavenging capacity of P. equisetiforme EO. Hydrodistillation was used to obtain the EO from P. equisetiforme, and gas chromatography–mass spectrometry (GC-MS) was used for analysis. A total of forty-three compounds, including terpenes and sesquiterpenes as the main components (76.13% and 69.06%, respectively), were identified in the oil using the GC-MS analysis. The main constituents of the oil were hexahydrofarnesyl acetone (29.45%), 7-epi-selinene (14.45%), isospathulenol (8.35%), and n-docosane (6.79%). The chemosystematic significance of the plant was established via multivariate assessing, comprising principal component analysis (PCA), hierarchical clustering, and constellation plot, of the EO principal components of the various Polygonum plants. The P. equisetiforme exhibited different associations with the studied Polygonum spp. Then, the scavenging of the free radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was used to evaluate the radical scavenging abilities of EO compared with those of vitamin C, a reference antioxidant. P. equisetiforme EO exhibited the scavenging capacity of the DPPH and the ABTS free radical with respective IC50 values of 470.01 and 113.74 mg L−1 compared with vitamin C, and with IC50 values of 39.06 and 26.09 mg L−1, respectively. The in silico studies revealed that the oxygenated sesquiterpenes, especially ar-turmerone, hexahydrofarnesyl acetone, and 5E,9E-farnesyl acetone, exhibited the best fitting with hematopoietic cell kinase (Hck) and human Peroxiredoxin 5 proteins with ΔG values of −6.14 and −4.93, −6.83 and −5.34, and −7.08 and −5.47 kcal/mol, respectively. The major components’ combined or individual effects may be responsible for the antioxidant properties. Therefore, additional extensive studies are advised to characterize the essential compounds as radical scavenger agents, either individually or in combination.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"162 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135729668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mixed-valence complexes contain two metals with different formal oxidation numbers and, therefore, show mixed properties that are influenced by the electronic coupling between the two metals, which is, in turn, regulated by a bridging ligand. This is an attractive point for many researchers. Oxalate is widely used as a bridging ligand for preparing polynuclear complexes. More than 1000 complexes have been reported until now. However, dithiooxamidate, which is an oxalate analog, is less popular as a bridging ligand. Here, a new dithiooxamidate-bridged Ni-diphosphine dinuclear complex with the formula [(μ2-toxa){Ni(dppe)}2](BF4)2 (toxa = dithiooxamidate; dppe = 1,2-bis(diphenylphosphino)ethane) was prepared and characterized via single-crystal X-ray diffraction. When using 1,3-bis(diphenylphosphino)propane (dppp) instead of dppe, dinuclear, trinuclear, and tetranuclear complexes were obtained, i.e., [(μ2-toxa){Ni(dppp)}2](BF4)2, [{μ2-Ni(toxa)2}{Ni(dppp)}2](BF4)2, and [{μ3-Ni(toxa)3}{Ni(dppp)}3](BF4)2, respectively. Bidentate toxa ligands in dinuclear complexes coordinate each Ni atom as κ(S,N). However, the trinuclear and the tetranuclear complexes have the toxa ligands with κ(N,N) and κ(S,S) coordination. The [(μ2-toxa){Ni(dppe)}2](BF4)2 complex undergoes four reversible redox processes, whose analysis via a controlled-potential absorption spectrum reveals the presence of a Ni(II)-Ni(I) mixed-valence state at ∆E1/2 = 0.22 V with a comproportionation constant of 6.1 × 103.
{"title":"Synthesis and Characterization of Dithiooxamidate-Bridged Polynuclear Ni Complexes","authors":"Tomohiko Hamaguchi, Ryo Kuraoka, Takumi Yamamoto, Naoya Takagi, Isao Ando, Satoshi Kawata","doi":"10.3390/chemistry5040150","DOIUrl":"https://doi.org/10.3390/chemistry5040150","url":null,"abstract":"Mixed-valence complexes contain two metals with different formal oxidation numbers and, therefore, show mixed properties that are influenced by the electronic coupling between the two metals, which is, in turn, regulated by a bridging ligand. This is an attractive point for many researchers. Oxalate is widely used as a bridging ligand for preparing polynuclear complexes. More than 1000 complexes have been reported until now. However, dithiooxamidate, which is an oxalate analog, is less popular as a bridging ligand. Here, a new dithiooxamidate-bridged Ni-diphosphine dinuclear complex with the formula [(μ2-toxa){Ni(dppe)}2](BF4)2 (toxa = dithiooxamidate; dppe = 1,2-bis(diphenylphosphino)ethane) was prepared and characterized via single-crystal X-ray diffraction. When using 1,3-bis(diphenylphosphino)propane (dppp) instead of dppe, dinuclear, trinuclear, and tetranuclear complexes were obtained, i.e., [(μ2-toxa){Ni(dppp)}2](BF4)2, [{μ2-Ni(toxa)2}{Ni(dppp)}2](BF4)2, and [{μ3-Ni(toxa)3}{Ni(dppp)}3](BF4)2, respectively. Bidentate toxa ligands in dinuclear complexes coordinate each Ni atom as κ(S,N). However, the trinuclear and the tetranuclear complexes have the toxa ligands with κ(N,N) and κ(S,S) coordination. The [(μ2-toxa){Ni(dppe)}2](BF4)2 complex undergoes four reversible redox processes, whose analysis via a controlled-potential absorption spectrum reveals the presence of a Ni(II)-Ni(I) mixed-valence state at ∆E1/2 = 0.22 V with a comproportionation constant of 6.1 × 103.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135888562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.3390/chemistry5040149
Mohammad-Jamal A. Shammout, Majd M. Alsaleh, Iyad Y. Natsheh, Duaa K. Albadawi, Ahmad K. Alkhawaldeh
Natural dyes, obtained without the use of chemical treatment, are derived from naturally occurring sources, such as plants, animals, insects, and minerals. The usage of natural substances and their medicinal properties dates back to the origins of human civilization. The purpose of this review is to highlight the medicinal importance of selected natural colors, which sheds light on the critical role played by these dyes in the pharmaceutical industry. The objective is to showcase the health benefits of each color that can be obtained from nature for medicinal purposes based on their chemical structure. The review presents the reasons for utilizing natural resources in addressing various health issues, with a focus on three specific problems: microbial infections, cancer, and oxidative stress. Our review highlights the potential of natural resource structures, particularly anthocyanins, genipin, carotenoids, phycocyanin, and chlorophylls, in combating these ailments, emphasizing the need to explore their resources further for medicinal purposes. While most reviews provide a survey about colorful crude plant extracts in relation to one or a few categories of human health, our review focuses on the specific chromophore extracted not only from plants but also from any natural resource to provide a specific chromophore effect in a whole resource. The review highlights the significant role performed by organic pigments in the medicinal domain, with organic colorants acting as an essential element of the pharmaceutical sector’s weaponry. Hence, it is of paramount significance to actively promote and stress the adoptions of naturally existing chromophores in diverse everyday commodities, while simultaneously acknowledging and valuing their substantial importance and worth in the vast realm of the pharmaceutical industry.
{"title":"Dyes Are the Rainbow of Our Health","authors":"Mohammad-Jamal A. Shammout, Majd M. Alsaleh, Iyad Y. Natsheh, Duaa K. Albadawi, Ahmad K. Alkhawaldeh","doi":"10.3390/chemistry5040149","DOIUrl":"https://doi.org/10.3390/chemistry5040149","url":null,"abstract":"Natural dyes, obtained without the use of chemical treatment, are derived from naturally occurring sources, such as plants, animals, insects, and minerals. The usage of natural substances and their medicinal properties dates back to the origins of human civilization. The purpose of this review is to highlight the medicinal importance of selected natural colors, which sheds light on the critical role played by these dyes in the pharmaceutical industry. The objective is to showcase the health benefits of each color that can be obtained from nature for medicinal purposes based on their chemical structure. The review presents the reasons for utilizing natural resources in addressing various health issues, with a focus on three specific problems: microbial infections, cancer, and oxidative stress. Our review highlights the potential of natural resource structures, particularly anthocyanins, genipin, carotenoids, phycocyanin, and chlorophylls, in combating these ailments, emphasizing the need to explore their resources further for medicinal purposes. While most reviews provide a survey about colorful crude plant extracts in relation to one or a few categories of human health, our review focuses on the specific chromophore extracted not only from plants but also from any natural resource to provide a specific chromophore effect in a whole resource. The review highlights the significant role performed by organic pigments in the medicinal domain, with organic colorants acting as an essential element of the pharmaceutical sector’s weaponry. Hence, it is of paramount significance to actively promote and stress the adoptions of naturally existing chromophores in diverse everyday commodities, while simultaneously acknowledging and valuing their substantial importance and worth in the vast realm of the pharmaceutical industry.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"77 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135889948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sustainable water desalination and purification membrane processes require new practical pathways to improve their efficiency. To this end, the inclusion of two-dimensional materials in membrane structure has proven to have a significant impact in various applications. In particular, in processes such as membrane distillation and crystallization, these materials, thanks to their characteristics, help to increase the recovery of clean water and, at the same time, to improve the quality and the production of the recovered salts. Therefore, a fundamental aspect of obtaining 2D materials with certain characteristics is the technique used for the preparation. This review provides a broad discussion on the preparation and proprieties of 2D materials, including examples of organic structures (such as graphene and structures containing transition metals and organic metals). Finally, the critical challenges, future research directions, and the opportunities for developing advanced membranes based on 2D materials are outlined.
{"title":"Two-Dimensional Materials: From Discovery to Application in Membrane Distillation/Crystallization Processes","authors":"Mirko Frappa, Francesca Alessandro, Francesca Macedonio, Enrico Drioli","doi":"10.3390/chemistry5040148","DOIUrl":"https://doi.org/10.3390/chemistry5040148","url":null,"abstract":"Sustainable water desalination and purification membrane processes require new practical pathways to improve their efficiency. To this end, the inclusion of two-dimensional materials in membrane structure has proven to have a significant impact in various applications. In particular, in processes such as membrane distillation and crystallization, these materials, thanks to their characteristics, help to increase the recovery of clean water and, at the same time, to improve the quality and the production of the recovered salts. Therefore, a fundamental aspect of obtaining 2D materials with certain characteristics is the technique used for the preparation. This review provides a broad discussion on the preparation and proprieties of 2D materials, including examples of organic structures (such as graphene and structures containing transition metals and organic metals). Finally, the critical challenges, future research directions, and the opportunities for developing advanced membranes based on 2D materials are outlined.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"223 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136115576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.3390/chemistry5040147
Yingfei Wang, Yue Zhang, Huangxian Ju, Ying Liu
DNA nanostructures have been widely explored as an encouraging tool for bioanalysis and cancer therapy due to its structural programmability and good biocompatibility. The incorporation of stimulus-responsive modules enables the accurate targeting and flexible control of structure and morphology, which is benefit to precise bioanalysis and therapy. This mini review briefly discusses the advancements in stimuli-responsive DNA nanostructures construction and their applications in biomolecules sensing and cancer treatment.
{"title":"Responsive DNA Nanostructures for Bioanalysis and Therapy","authors":"Yingfei Wang, Yue Zhang, Huangxian Ju, Ying Liu","doi":"10.3390/chemistry5040147","DOIUrl":"https://doi.org/10.3390/chemistry5040147","url":null,"abstract":"DNA nanostructures have been widely explored as an encouraging tool for bioanalysis and cancer therapy due to its structural programmability and good biocompatibility. The incorporation of stimulus-responsive modules enables the accurate targeting and flexible control of structure and morphology, which is benefit to precise bioanalysis and therapy. This mini review briefly discusses the advancements in stimuli-responsive DNA nanostructures construction and their applications in biomolecules sensing and cancer treatment.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135855645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dibenzoxazepinones exhibit unique biological activities and serve as building blocks for synthesizing pharmaceutical compounds. Despite remarkable advancements in organic chemistry and recent developments in synthetic approaches to dibenzoxazepinone motifs, there is a strong demand for more streamlined synthesis methods. The application of the catalytic C–H amination strategy, which enables the direct transformation of inert aromatic C–H bonds into C–N bonds, offers a rapid route to access dibenzoxazepinone frameworks. Hypervalent-iodine-catalyzed oxidative C–H amination has the potential to become an effective approach for synthesizing dibenzoxazepinones. In this study, we present our method of employing μ-oxo hypervalent iodine catalysis for intramolecular oxidative C–H amination of O-aryl salicylamides, facilitating the synthesis of target dibenzoxazepinone derivatives bearing various functional groups in a highly efficient manner.
{"title":"Efficient Metal-Free Oxidative C–H Amination for Accessing Dibenzoxazepinones via μ-Oxo Hypervalent Iodine Catalysis","authors":"Hirotaka Sasa, Syotaro Hamatani, Mayu Hirashima, Naoko Takenaga, Tomonori Hanasaki, Toshifumi Dohi","doi":"10.3390/chemistry5040145","DOIUrl":"https://doi.org/10.3390/chemistry5040145","url":null,"abstract":"Dibenzoxazepinones exhibit unique biological activities and serve as building blocks for synthesizing pharmaceutical compounds. Despite remarkable advancements in organic chemistry and recent developments in synthetic approaches to dibenzoxazepinone motifs, there is a strong demand for more streamlined synthesis methods. The application of the catalytic C–H amination strategy, which enables the direct transformation of inert aromatic C–H bonds into C–N bonds, offers a rapid route to access dibenzoxazepinone frameworks. Hypervalent-iodine-catalyzed oxidative C–H amination has the potential to become an effective approach for synthesizing dibenzoxazepinones. In this study, we present our method of employing μ-oxo hypervalent iodine catalysis for intramolecular oxidative C–H amination of O-aryl salicylamides, facilitating the synthesis of target dibenzoxazepinone derivatives bearing various functional groups in a highly efficient manner.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.3390/chemistry5040144
Neani Tshilande, Liliana Mammino
Euglobals are a subclass of acylphloroglucinols, mostly found in plants of the Eucalyptus genus. They possess anticancer activity, being potent inhibitors of the Epstein–Barr virus activation. Their molecules can be viewed as acylphloroglucinol monoterpene or sesquiterpene adducts, with the former having greater activity than the latter. The acylphloroglucinol moiety contains two mutually meta acyl (R–C=O) groups, respectively, in ortho and meta positions with respect to the two C atoms shared by the two moieties. The current work focuses on euglobal molecules in which R = H is in one acyl group and R = isobutyl is in the other. It aims to identify the property differences between molecules having the same terpene moiety and the two acyl groups in reversed positions. Ten such pairs were studied computationally using different levels of theory (HF, DFT, and MP2). The results highlight considerable differences between the two molecules of each pair, regarding molecular features such as relative energies, characteristics of the intramolecular hydrogen bonds (IHBs), dipole moment, bond vibrational frequencies, and frequency changes caused by the IHBs. A comparison of the results from the different levels of theory utilised shows similar patterns for the influence of position reversal on the same characteristic.
{"title":"Comparison of the Molecular Properties of Euglobals Differing by the Mutual Positions of the Two R–C=O Groups (R = H and CH2CH(CH3)2): A Computational Study","authors":"Neani Tshilande, Liliana Mammino","doi":"10.3390/chemistry5040144","DOIUrl":"https://doi.org/10.3390/chemistry5040144","url":null,"abstract":"Euglobals are a subclass of acylphloroglucinols, mostly found in plants of the Eucalyptus genus. They possess anticancer activity, being potent inhibitors of the Epstein–Barr virus activation. Their molecules can be viewed as acylphloroglucinol monoterpene or sesquiterpene adducts, with the former having greater activity than the latter. The acylphloroglucinol moiety contains two mutually meta acyl (R–C=O) groups, respectively, in ortho and meta positions with respect to the two C atoms shared by the two moieties. The current work focuses on euglobal molecules in which R = H is in one acyl group and R = isobutyl is in the other. It aims to identify the property differences between molecules having the same terpene moiety and the two acyl groups in reversed positions. Ten such pairs were studied computationally using different levels of theory (HF, DFT, and MP2). The results highlight considerable differences between the two molecules of each pair, regarding molecular features such as relative energies, characteristics of the intramolecular hydrogen bonds (IHBs), dipole moment, bond vibrational frequencies, and frequency changes caused by the IHBs. A comparison of the results from the different levels of theory utilised shows similar patterns for the influence of position reversal on the same characteristic.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.3390/chemistry5040146
Claudia V. Lopez, Katelyn M. Derr, Ashlyn D. Smith, Andrew G. Tennyson, Rhett C. Smith
High sulfur-content materials (HSMs) formed via inverse vulcanization of elemental sulfur with animal fats and/or plant oils can exhibit remarkable mechanical strength and chemical resistance, sometimes superior to commercial building products. Adding pozzolan fine materials—fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), or metakaolin (MK)—can further improve HSM mechanical properties and stability. Herein, we detail nine materials comprised of rancidified chicken fat, elemental sulfur, and canola or sunflower oil (to yield CFS or GFS, respectively) and, with or without FA, SF, GGBFS, or MK. The base HSMs, CFS90 or GFS90, contained 90 wt% sulfur, 5 wt% chicken fat, and 5 wt% canola or sunflower oil, respectively. For each HSM/fine combination, the resulting material was prepared using a 95:5 mass input ratio of HSM/fine. No material exhibited water uptake >0.2 wt% after immersion in water for 24 h, significantly lower than the 28 wt% observed with ordinary Portland cement (OPC). Impressively, CFS90, GFS90, and all HSM/fine combinations exhibited compressive strength values 15% to 55% greater than OPC. After immersion in 0.5 M H2SO4, CFS90, GFS90, and its derivatives retained 90% to 171% of the initial strength of OPC, whereas OPC disintegrated under these conditions. CFS90, GFS90, and its derivatives collectively show promise as sustainable materials and materials with superior performance versus concrete.
{"title":"Chemical, Thermal, and Mechanical Properties of Sulfur Polymer Composites Comprising Low-Value Fats and Pozzolan Additives","authors":"Claudia V. Lopez, Katelyn M. Derr, Ashlyn D. Smith, Andrew G. Tennyson, Rhett C. Smith","doi":"10.3390/chemistry5040146","DOIUrl":"https://doi.org/10.3390/chemistry5040146","url":null,"abstract":"High sulfur-content materials (HSMs) formed via inverse vulcanization of elemental sulfur with animal fats and/or plant oils can exhibit remarkable mechanical strength and chemical resistance, sometimes superior to commercial building products. Adding pozzolan fine materials—fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), or metakaolin (MK)—can further improve HSM mechanical properties and stability. Herein, we detail nine materials comprised of rancidified chicken fat, elemental sulfur, and canola or sunflower oil (to yield CFS or GFS, respectively) and, with or without FA, SF, GGBFS, or MK. The base HSMs, CFS90 or GFS90, contained 90 wt% sulfur, 5 wt% chicken fat, and 5 wt% canola or sunflower oil, respectively. For each HSM/fine combination, the resulting material was prepared using a 95:5 mass input ratio of HSM/fine. No material exhibited water uptake >0.2 wt% after immersion in water for 24 h, significantly lower than the 28 wt% observed with ordinary Portland cement (OPC). Impressively, CFS90, GFS90, and all HSM/fine combinations exhibited compressive strength values 15% to 55% greater than OPC. After immersion in 0.5 M H2SO4, CFS90, GFS90, and its derivatives retained 90% to 171% of the initial strength of OPC, whereas OPC disintegrated under these conditions. CFS90, GFS90, and its derivatives collectively show promise as sustainable materials and materials with superior performance versus concrete.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135968075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-06DOI: 10.3390/chemistry5040143
Paula Sanguiñedo, Ricardo Faccio, Eduardo Abreo, Silvana Alborés
Metal nanoparticles are widely studied due to their various applications, such as their potential use in the control of phytopathogens and the promotion of plant growth, with a significant impact on agriculture. Various microbial metabolites are used to reduce and stabilize metals and metal oxides to the nanoscale. In the present work, the biological synthesis of silver and copper oxide nanoparticles using Trichoderma harzianum TA2 is reported. The nanoparticles were purified and characterized with complementary methodologies to obtain information on the size, distribution, morphology, surface charge, and functional groups of the nanoparticles. The in vitro antifungal activity of the nanoparticles against pathogens of rice and wheat, as well as their effect on seed germination, were evaluated. In general, the nanoparticles showed a spherical shape, an average size of 17–26 nm, and low polydispersity. Furthermore, they showed antifungal activity at low concentrations against Sclerotium oryzae (0.140 ηM), Rhizoctonia oryzae-sativae (0.140 ηM), Fusarium graminearum (0.034 ηM), and Pyricularia oryzae (0.034 ηM). The germination of seeds treated with nanoparticles was not negatively affected. This is the first report of biogenic silver and copper oxide nanoparticles from a single strain of T.harzianum with antifungal activity against four phytopathogens of interest in Uruguay. Furthermore, the synthesis of the biogenic nanoparticles was faster and more efficient than previous reports using other fungi. In conclusion, this work reveals that biogenic metallic nanoparticles from T. harzianum TA2 can be considered as candidates for the control of phytopathogens affecting important crops.
{"title":"Biogenic Silver and Copper Nanoparticles: Potential Antifungal Agents in Rice and Wheat Crops","authors":"Paula Sanguiñedo, Ricardo Faccio, Eduardo Abreo, Silvana Alborés","doi":"10.3390/chemistry5040143","DOIUrl":"https://doi.org/10.3390/chemistry5040143","url":null,"abstract":"Metal nanoparticles are widely studied due to their various applications, such as their potential use in the control of phytopathogens and the promotion of plant growth, with a significant impact on agriculture. Various microbial metabolites are used to reduce and stabilize metals and metal oxides to the nanoscale. In the present work, the biological synthesis of silver and copper oxide nanoparticles using Trichoderma harzianum TA2 is reported. The nanoparticles were purified and characterized with complementary methodologies to obtain information on the size, distribution, morphology, surface charge, and functional groups of the nanoparticles. The in vitro antifungal activity of the nanoparticles against pathogens of rice and wheat, as well as their effect on seed germination, were evaluated. In general, the nanoparticles showed a spherical shape, an average size of 17–26 nm, and low polydispersity. Furthermore, they showed antifungal activity at low concentrations against Sclerotium oryzae (0.140 ηM), Rhizoctonia oryzae-sativae (0.140 ηM), Fusarium graminearum (0.034 ηM), and Pyricularia oryzae (0.034 ηM). The germination of seeds treated with nanoparticles was not negatively affected. This is the first report of biogenic silver and copper oxide nanoparticles from a single strain of T.harzianum with antifungal activity against four phytopathogens of interest in Uruguay. Furthermore, the synthesis of the biogenic nanoparticles was faster and more efficient than previous reports using other fungi. In conclusion, this work reveals that biogenic metallic nanoparticles from T. harzianum TA2 can be considered as candidates for the control of phytopathogens affecting important crops.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134944707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.3390/chemistry5040142
Abdur Rauf, Zuneera Akram, Muhammad Naveed, Najla AlMasoud, Taghrid S. Alomar, Muhammad Saleem, Abdul Waheed, Giovanni Ribaudo
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) regulates skeletal and soft tissue mineralization by hydrolyzing nucleotide triphosphates and cyclic nucleotides, and is involved in the modulation of immune system. In fact, ENPP1 degrades 2′,3′-cyclic GMP-AMP dinucleotide (2′,3′-cGAMP), which is an agonist of surface receptor stimulator of interferon genes (STING), thus downregulating immune response. Consequently, ENPP1 inhibitors are being studied as adjuvant agents in infections and cancer. Pistacia chinensis is a medicinal plant endowed with several biological activities and traditional uses. In the current study, we report the isolation of transilitin (2-(3,4-dihydroxyphenyl)-7,8-dihydroxy-3-methoxychromen-4-one) from the methanolic extract of P. chinensis barks and the investigation of its activity as ENPP1 inhibitor. The compound was tested in vitro against snake venom phosphodiesterase, which is structurally related to ENPP1, and dose-dependently inhibited the enzyme. Moreover, molecular modeling studies were employed to assess the binding motif of the transilitin with the macromolecular target. Our findings support the traditional medical application of P. chinensis and its extracts by shedding new light on the mechanisms underlying their biological action.
{"title":"Studies on the Inhibition of Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) by 2-(3,4-Dihydroxyphenyl)-7,8-dihydroxy-3-methoxychromen-4-one, a Flavonoid from Pistacia chinensis","authors":"Abdur Rauf, Zuneera Akram, Muhammad Naveed, Najla AlMasoud, Taghrid S. Alomar, Muhammad Saleem, Abdul Waheed, Giovanni Ribaudo","doi":"10.3390/chemistry5040142","DOIUrl":"https://doi.org/10.3390/chemistry5040142","url":null,"abstract":"Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) regulates skeletal and soft tissue mineralization by hydrolyzing nucleotide triphosphates and cyclic nucleotides, and is involved in the modulation of immune system. In fact, ENPP1 degrades 2′,3′-cyclic GMP-AMP dinucleotide (2′,3′-cGAMP), which is an agonist of surface receptor stimulator of interferon genes (STING), thus downregulating immune response. Consequently, ENPP1 inhibitors are being studied as adjuvant agents in infections and cancer. Pistacia chinensis is a medicinal plant endowed with several biological activities and traditional uses. In the current study, we report the isolation of transilitin (2-(3,4-dihydroxyphenyl)-7,8-dihydroxy-3-methoxychromen-4-one) from the methanolic extract of P. chinensis barks and the investigation of its activity as ENPP1 inhibitor. The compound was tested in vitro against snake venom phosphodiesterase, which is structurally related to ENPP1, and dose-dependently inhibited the enzyme. Moreover, molecular modeling studies were employed to assess the binding motif of the transilitin with the macromolecular target. Our findings support the traditional medical application of P. chinensis and its extracts by shedding new light on the mechanisms underlying their biological action.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136343678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}