Huangjiu (Chinese rice wine) is a traditional Chinese fermented wine with a unique flavor. The components of this wine are complex, and the ethanol content of different Huangjiu preparations varies greatly. In this study, changes in the chromatographic peak areas of the volatile components of Huangjiu samples with different ethanol contents were measured using headspace-gas chromatography (HS-GC). The influence of ethanol on the quantitative detection of different volatile components of Huangjiu at gas-liquid equilibrium was also analyzed. When the ethanol content of Huangjiu was in the range of 10%-19% vol, the peak areas of 16 volatile components (i. e., sec-butanol, n-propanol, isobutanol, n-butanol, isoamyl alcohol, β-phenyl-ethanol, acetaldehyde, isovaleraldehyde, benzaldehyde, ethyl formate, ethyl acetate, isobutyl acetate, isoamyl acetate, ethyl hexanoate, ethyl lactate, and diethyl succinate) were negatively correlated with the ethanol content. Increases in the ethanol content of the liquor changed the gas-liquid equilibrium of most other trace volatile components. In addition, only the peak area of acetal was positively correlated with ethanol content. The content of acetal in Huangjiu was affected by the alcohol content, and its decomposition reaction occurred along with the dilution process. The influence coefficient of ethanol content on the peak area of the above compounds ranged from -12.4% to 4.9%. The vapor pressure of most volatile components decreased with increasing ethanol content, and different components were affected in different ways. Compared with those of other components, the peak areas of methanol, furfural, and acetic acid were less affected by the ethanol content. These components were also affected by other factors, such as ionization and chemical reactions occurring during the dilution process. When different wine samples were adjusted to the same ethanol content, the concentration of volatile components in these samples became proportional to the total chromatographic peak area and the influence of the matrix effect of ethanol on the quantitative analysis was effectively eliminated. Thus, when researchers use pretreatment methods based on the principle of gas-liquid balance to carry out the quantitative detection of flavor components, they should adjust different rice wine samples to the same alcohol content to effectively control the matrix effect caused by differences in ethanol content and achieve accurate quantitative analysis.
A novel method was developed for the simultaneous determination of eight cannabinoids in six types of food matrices, including chocolate, fondant, biscuit, beverage, cookie and baijiu, using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample extraction and cleanup steps were optimized, and various purification methods were investigated to remove the oil matrix and glue in chocolate and fudge, respectively. Enhanced matrix removal-lipid adsorbent (EMR-Lipid) provided efficient, selective cleanup of the evaluated matrices. The sample was extracted using acetonitrile, followed by EMR-Lipid cleanup, and then dried using anhydrous sodium sulfate. The acetonitrile layer was concentrated by nitrogen to near-dry after 100 μL 10% glycerol in methanol was added to improve the recovery by reducing loss during concentration under the stream of nitrogen gas. Eight cannabinoids were separated using a Waters ACQUITY UPLC BEH Shield RP18 column (100 mm×3.0 mm, 1.7 μm). The responses of the cannabinoids in the positive and negative ionization modes were investigated and optimized, and the responses were superior in the negative ion mode compared to those in the positive ion mode. MS detection was performed in the multi-reaction monitoring (MRM) mode using an electrospray source in the negative ion mode. The cannabinoids were quantified using an external standard with matrix calibration curves to reduce the influences of the matrix effects on the quantitative results. The developed method was verified, and the conditions of sample pretreatment were also optimized. The calibration curves of tetrahydrocannabinol, cannabidivarin, tetrahydrocannabivarin, and cannabigerol and those of cannabidiol, cannabinol, cannabidiolic acid, and tetrahydrocannabinolic acid exhibited good linearities, with r>0.995, in the ranges of 2-200 and 0.4-40 ng/mL, respectively. The respective limits of detection (LODs, S/N=3) and quantification (LOQs, S/N=10) of tetrahydrocannabinol, cannabidivarin, tetrahydrocannabivarin, and cannabigerol were 4 and 10 μg/kg, and those of cannabidiol, cannabinol, cannabidiolic acid, and tetrahydrocannabinolic acid were 0.8 and 2 μg/kg. The average recoveries of the cannabinoids were 82.0%-114.9% under three spiked levels with corresponding relative standard deviations (RSDs) of <15% (n=6). EMR-Lipid provided efficient, selective cleanups of food matrices with good accuracy. The method is sensitive, rapid, accurate, simple to execute, and it is suitable for the determination of cannabinol compounds in typical food matrices.
This article provides a detailed review of capillary electrophoresis (CE) technology in 2022, summarizing a total of 881 CE technology-related articles searched from ISI Web of Science using the keywords "capillary electrophoresis mass spectrometry" or "capillary isoelectric focusing" or "micellar electrokinetic chromatography" or "capillary electrophoresis" (excluding "capillary electrochromatography""microchip" "microfluidic" "capillary monolithic column"). The review focuses on 16 articles published in Lancet Global Health, ACS Central Science, Microbiome, Trends in Food Science & Technology, TrAC-Trends in Analytical Chemistry, Journal of Pharmaceutical Analysis, Journal of Cachexia, Sarcopenia and Muscle, Food Hydrocolloids, Science of the Total Environment, and Carbohydrate Polymers with impact factors (IFs) greater than 10.0, and 46 articles published in Analytical Chemistry, Analytica Chimica Acta, Talanta, and Food Chemistry with IFs between 5.0 and 10.0. A comprehensive overview of representative CE works published in Journal of Chromatography A, Electrophoresis, and important Chinese core journals (Peking University) with IFs<5.0 is also provided. Based on IFs, this review introduces representative works on CE to facilitate readers' understanding of important research advances in CE technology over the last year.
Because of the widespread application of anesthetic drugs in the fields of animal breeding and transportation, demand for the rapid, sensitive detection of anesthetic drugs in animal meat is increasing. The complex animal meat matrix contains various interfering substances, such as proteins, fats, and phospholipids, along with anesthetic drug residues at very low concentrations. Therefore, adopting appropriate pretreatment methods is necessary to improve the sensitivity of detection. In this study, a rapid, accurate analytical method based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and solid phase extraction (SPE) was established to determine the contents of 18 caines in animal meat. The MS parameters, such as the collision energies of 18 caines, were optimized. Furthermore, the chromatographic separation conditions and response intensities of the caine in different mobile phases were compared. The effects of different pretreatment conditions on the extraction efficiencies of the 18 caines in meat samples and those of different purification conditions, such as extraction solvent, SPE column, and dimethylsulfoxide (DMSO) dosage, on their recoveries were investigated. Combined with the external standard method, the 18 caines in meat were successfully quantified. Sample pretreatment is a three-step process. First, in ultrasound-assisted extraction, 2.0 g samples were added to 2.0 mL water and extracted using 10 mL 0.1% (v/v) formic acid in acetonitrile under ultrasound conditions for 10 min. SPE was then performed using an Oasis PRIME HLB column. Finally, DMSO-assisted concentration was employed: the organic layer was collected and dried at 40 ℃ under a stream of N2 gas with the addition of 100 μL DMSO. Acetonitrile-water (1∶9, v/v) was added to the residue to yield a final volume of 1.0 mL for use in UPLC-MS/MS. The 18 caines were separated using an HSS T3 (100 mm×2.1 mm, 1.8 μm) column with 0.1% (v/v) formic acid in water (containing 0.02 mmol/L ammonium acetate) and methanol as mobile phases. Samples were detected using an electrospray ion source (ESI) in the positive ion and multiple reaction monitoring (MRM) modes during UPLC-MS/MS. Under the optimized conditions, the 18 target caine anesthetics displayed good linearities in the range of 1.00-50.0 μg/L, and the correlation coefficients (R2) were >0.999. The respective limits of detection (LODs) and quantification (LOQs) were 0.2-0.5 μg/kg, and 0.6-1.5 μg/kg. In pork, beef, and mutton samples, the recoveries obtained at three spiked levels were 83.4%-100.4% with relative standard deviations (RSDs) of 3.1%-8.5%. This simple, rapid, sensitive method may be applied in the detection of 18 caine anesthetics in animal meat and may provide technical support to the food safety department in China in monitoring the residues of caine anesthetics in animal meat.