A new ratiometric and colorimetric fluorescent probe HTD was synthesized based on the reaction of 4-aminophenyl boronic acid pinacol ester and 4-(3-formyl-4-hydroxyphenyl) benzonitrile. The probe exhibited a unique fluorescence response to hypochlorous acid and had good anti-interference performance in the presence of other interference. When HTD met the NaClO, the light orange fluorescence was changed to green with the blue-shifted emission wavelength from 550 to 500 nm. Moreover, the absorbance of HTD's UV-vis at 300 nm and 375 nm decreased in the presence of NaClO. The limit of detection was 1.83 × 10-7 M and 2.96 × 10-6 M based on the fluorescence and UV-vis titration data. NMR, HRMS, and IR spectra suggested that the possible sensing mechanism of HTD to NaClO was the formation of initial compound 4-(3-formyl-4-hydroxyphenyl) benzonitrile due to the oxidation of hypochlorous acid in aqueous solution. The portable test strips were obtained, and the real water sample test reached good results with spiking recoveries among 92.00% ~ 103.25%. Finally, endogenous hypochlorous acid produced by LPS and PMA was successfully detected by HTD in living mice using in situ fluorescence bioimaging.
{"title":"A colorimetric and ratiometric fluorescent probe of hypochlorous acid and its bio-imaging application.","authors":"Yumiao Sheng, Kedian Xu, Zhenzhen Wang, Yunling Gao","doi":"10.1007/s43630-024-00672-w","DOIUrl":"10.1007/s43630-024-00672-w","url":null,"abstract":"<p><p>A new ratiometric and colorimetric fluorescent probe HTD was synthesized based on the reaction of 4-aminophenyl boronic acid pinacol ester and 4-(3-formyl-4-hydroxyphenyl) benzonitrile. The probe exhibited a unique fluorescence response to hypochlorous acid and had good anti-interference performance in the presence of other interference. When HTD met the NaClO, the light orange fluorescence was changed to green with the blue-shifted emission wavelength from 550 to 500 nm. Moreover, the absorbance of HTD's UV-vis at 300 nm and 375 nm decreased in the presence of NaClO. The limit of detection was 1.83 × 10<sup>-7</sup> M and 2.96 × 10<sup>-6</sup> M based on the fluorescence and UV-vis titration data. NMR, HRMS, and IR spectra suggested that the possible sensing mechanism of HTD to NaClO was the formation of initial compound 4-(3-formyl-4-hydroxyphenyl) benzonitrile due to the oxidation of hypochlorous acid in aqueous solution. The portable test strips were obtained, and the real water sample test reached good results with spiking recoveries among 92.00% ~ 103.25%. Finally, endogenous hypochlorous acid produced by LPS and PMA was successfully detected by HTD in living mice using in situ fluorescence bioimaging.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"65-77"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects. In this way, the synthesis of IONPs (iron oxide nanoparticles) was carried out, and their subsequent coating was done with curcumin (IONPs@curcumin) so that they could act as therapeutic agents against breast cancer. Curcumin solubility tests were carried out to achieve the best results, with ethanol as a solvent, in different concentrations of ethanolic curcumin solution, with the optimal outcome observed at a concentration of 1 mM. Subsequently, the stability analysis was conducted by adjusting the pH of the medium, revealing that at pH 10, the IONPs@curcumin exhibited the best stability and dispersion conditions. Then, cytotoxicity tests of IONPs@curcumin were carried out on the MDA-MB-468 triple-negative breast cancer cell line, under experimental conditions without irradiation and subjected to PDT. The results revealed a viability greater than 70%, as it did not exhibit cytotoxicity for cells in the dark. After 1 h of incubation, the PDT associated with IONPs@curcumin showed 32% of cell viability at a concentration of 30 mg/mL.
{"title":"Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer.","authors":"Virginia Rezende Ferreira, Aveline Ventura, Marcela Cândido, Juliana Ferreira-Strixino, Leandro Raniero","doi":"10.1007/s43630-025-00682-2","DOIUrl":"10.1007/s43630-025-00682-2","url":null,"abstract":"<p><p>Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects. In this way, the synthesis of IONPs (iron oxide nanoparticles) was carried out, and their subsequent coating was done with curcumin (IONPs@curcumin) so that they could act as therapeutic agents against breast cancer. Curcumin solubility tests were carried out to achieve the best results, with ethanol as a solvent, in different concentrations of ethanolic curcumin solution, with the optimal outcome observed at a concentration of 1 mM. Subsequently, the stability analysis was conducted by adjusting the pH of the medium, revealing that at pH 10, the IONPs@curcumin exhibited the best stability and dispersion conditions. Then, cytotoxicity tests of IONPs@curcumin were carried out on the MDA-MB-468 triple-negative breast cancer cell line, under experimental conditions without irradiation and subjected to PDT. The results revealed a viability greater than 70%, as it did not exhibit cytotoxicity for cells in the dark. After 1 h of incubation, the PDT associated with IONPs@curcumin showed 32% of cell viability at a concentration of 30 mg/mL.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"181-190"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-15DOI: 10.1007/s43630-024-00671-x
M N Zavalishin, A A Guschin, G A Nikitin, G A Gamov
Colorimetric chemosensors L1 and L2, based on isoniazid hydrazones, have been designed for the highly sensitive and selective recognition of CN- ion. Competing experiments were conducted with various other anions such as F-, Cl-, Br-, I-, SCN-, ClO3-, ClO4-, NO3-, H2PO4-, SO32-, and HSO4- in an acetonitrile solution. In the UV-Vis spectra, a bathochromic shift in the absorption bands of both hydrazones was observed following the addition of cyanide. These spectral changes were accompanied by a color transition from transparent to orange for L1 and from pale yellow to peach for L2, which is attributed to the deprotonation of the chemosensors. The detection limits for cyanide ions were determined to be 0.36 µM for L1 and 2.79 µM for L2 using the 3σ rule. Quantum chemical calculations were employed to optimize the structure of the chemosensors, compute their UV-Vis spectra, and confirm the proposed detection mechanism for CN⁻ ions.
{"title":"Two isoniazid-based chemosensors for the detection of cyanide ions in solution: an experimental and computational study.","authors":"M N Zavalishin, A A Guschin, G A Nikitin, G A Gamov","doi":"10.1007/s43630-024-00671-x","DOIUrl":"10.1007/s43630-024-00671-x","url":null,"abstract":"<p><p>Colorimetric chemosensors L<sub>1</sub> and L<sub>2</sub>, based on isoniazid hydrazones, have been designed for the highly sensitive and selective recognition of CN<sup>-</sup> ion. Competing experiments were conducted with various other anions such as F<sup>-</sup>, Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, SCN<sup>-</sup>, ClO<sub>3</sub><sup>-</sup>, ClO<sub>4</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, H<sub>2</sub>PO<sub>4</sub><sup>-</sup>, SO<sub>3</sub><sup>2-</sup>, and HSO<sub>4</sub><sup>-</sup> in an acetonitrile solution. In the UV-Vis spectra, a bathochromic shift in the absorption bands of both hydrazones was observed following the addition of cyanide. These spectral changes were accompanied by a color transition from transparent to orange for L<sub>1</sub> and from pale yellow to peach for L<sub>2</sub>, which is attributed to the deprotonation of the chemosensors. The detection limits for cyanide ions were determined to be 0.36 µM for L<sub>1</sub> and 2.79 µM for L<sub>2</sub> using the 3σ rule. Quantum chemical calculations were employed to optimize the structure of the chemosensors, compute their UV-Vis spectra, and confirm the proposed detection mechanism for CN⁻ ions.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"53-63"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The precise monitoring of pH is critical in various applications, particularly in biology-related areas. In this work, we report the synthesis and characterization of a novel cyanine-based fluorescent pH sensor with a pKa around 6. This pH-sensitive dye features a cyanine chromophore coupled to a piperazine moiety, which modulates the protonation equilibrium and thus the optical response. DTF calculation corroborates the changes in the photophysical properties upon protonation. Upon immobilization within a hydrophilic polymer matrix, the resulting fluorescent sensor is exhibited a pKa around 4.5, facilitating ratiometric pH measurements for acidic media (for instance in food-examples given in milk and fresh yogurt). Importantly, this probe design allowed a less than 5 min response time to pH changes while avoiding cytotoxic effects towards E. coli. The development of such a fluorescent pH indicator is motivated by the growing need for optical monitoring tools capable of providing real-time, non-invasive readouts of pH dynamics in complex media and microfluidic systems.
{"title":"Cyanine dye-embedded fluorescent film for ratiometric pH measurement.","authors":"Roch Sobczyk, Laurent Galmiche, Cédric Mongin, Meriem Djendli, Isabelle Leray, Rachel Méallet","doi":"10.1007/s43630-025-00681-3","DOIUrl":"10.1007/s43630-025-00681-3","url":null,"abstract":"<p><p>The precise monitoring of pH is critical in various applications, particularly in biology-related areas. In this work, we report the synthesis and characterization of a novel cyanine-based fluorescent pH sensor with a pK<sub>a</sub> around 6. This pH-sensitive dye features a cyanine chromophore coupled to a piperazine moiety, which modulates the protonation equilibrium and thus the optical response. DTF calculation corroborates the changes in the photophysical properties upon protonation. Upon immobilization within a hydrophilic polymer matrix, the resulting fluorescent sensor is exhibited a pK<sub>a</sub> around 4.5, facilitating ratiometric pH measurements for acidic media (for instance in food-examples given in milk and fresh yogurt). Importantly, this probe design allowed a less than 5 min response time to pH changes while avoiding cytotoxic effects towards E. coli. The development of such a fluorescent pH indicator is motivated by the growing need for optical monitoring tools capable of providing real-time, non-invasive readouts of pH dynamics in complex media and microfluidic systems.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"165-179"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The chirality and chiroptical response of materials have attracted significant attention for their potential to introduce the new science of light-matter interactions. We demonstrate that collective mode formation under modal coupling between localized surface plasmon resonances (LSPRs) with a chiral arrangement and Fabry-Pérot (FP) nanocavity modes can induce chiroptical responses. We fabricated a cluster of isotropic gold nanodisks with a chiral arrangement (gold nano-windmills, Au-NWs) on the FP nanocavities of TiO2 and Au film. The differential absorption of the Au-NWs coupled with the FP nanocavities under left- and right-handed circularly polarized light irradiations in the far field was significantly enhanced compared with the differential absorption without the FP nanocavities. Far- and near-field analyses by numerical simulation revealed that the Au-NWs coupled with the FP nanocavities formed a collective mode in the near field, and the collective mode represented the chiroptical response in the far field. The light field with the large helicity, can be used in chiral light-matter interactions. The concept of collective mode formation using isotropic metal nanodisks coupled with FP nanocavities provides a platform for controlling complex light fields.
{"title":"Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction.","authors":"Tomoya Oshikiri, Yasutaka Matsuo, Hiromasa Niinomi, Masaru Nakagawa","doi":"10.1007/s43630-024-00667-7","DOIUrl":"10.1007/s43630-024-00667-7","url":null,"abstract":"<p><p>The chirality and chiroptical response of materials have attracted significant attention for their potential to introduce the new science of light-matter interactions. We demonstrate that collective mode formation under modal coupling between localized surface plasmon resonances (LSPRs) with a chiral arrangement and Fabry-Pérot (FP) nanocavity modes can induce chiroptical responses. We fabricated a cluster of isotropic gold nanodisks with a chiral arrangement (gold nano-windmills, Au-NWs) on the FP nanocavities of TiO<sub>2</sub> and Au film. The differential absorption of the Au-NWs coupled with the FP nanocavities under left- and right-handed circularly polarized light irradiations in the far field was significantly enhanced compared with the differential absorption without the FP nanocavities. Far- and near-field analyses by numerical simulation revealed that the Au-NWs coupled with the FP nanocavities formed a collective mode in the near field, and the collective mode represented the chiroptical response in the far field. The light field with the large helicity, can be used in chiral light-matter interactions. The concept of collective mode formation using isotropic metal nanodisks coupled with FP nanocavities provides a platform for controlling complex light fields.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"13-21"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photodynamic Therapy (PDT) offers a minimally invasive approach for treating various health conditions, employing a photosensitizer (PS) and specific light. Recent enhancements make PDT outpatient-friendly and less discomforting. Effectiveness hinges on selecting the appropriate PS. This article delves into natural and synthetic PSs, emphasizing the rising interest in natural alternatives for their safety. It explores their mechanisms, characteristics, and applications, offering insights into their potential contributions to advancing PDT. This extensive review delves into the preclinical and clinical landscape of natural PSs for PDT, shedding light on their diverse applications and promising outcomes. Compounds like curcumin, piperine, riboflavin, psoralen, hypericin, and others show significant potential in preclinical in vitro studies across various cell lines. In vivo, these photosensitizers prove effective against skin tumors, carcinomas, and sarcomas, inducing apoptosis, autophagy, and ROS generation for therapeutic efficacy. The review underscores the critical role of proper dosing and monitoring in balancing therapeutic benefits and risks. It highlights the advantages and limitations of natural PSs, emphasizing their specific targeting, bioavailability, and limited side effects. The future of PDT holds promising breakthroughs, taking from some evidence like Bergamot oil in nanostructured lipid carriers for dermatological conditions. Second-generation photosensitizer Tookad shows potential in prostate cancer treatment, while Tripterygium wilfordii Hook. F. emerges as an antimicrobial PDT source etc. Thus, environmental concerns in PDT prompt a shift to plant extracts for PS purification. The evidence-supported focus on natural PSs establishes this article as a key resource for advancing natural compounds in PDT and their therapeutic applications.
{"title":"Divulging the potency of naturally derived photosensitizers in green PDT: an inclusive review Of mechanisms, advantages, and future prospects.","authors":"Muskan Gupta, Anwesha Sahu, Tuhin Mukherjee, Satyajit Mohanty, Priyamjeet Das, Nikita Nayak, Shivangi Kumari, Ravi Pratap Singh, Ashok Pattnaik","doi":"10.1007/s43630-024-00669-5","DOIUrl":"10.1007/s43630-024-00669-5","url":null,"abstract":"<p><p>Photodynamic Therapy (PDT) offers a minimally invasive approach for treating various health conditions, employing a photosensitizer (PS) and specific light. Recent enhancements make PDT outpatient-friendly and less discomforting. Effectiveness hinges on selecting the appropriate PS. This article delves into natural and synthetic PSs, emphasizing the rising interest in natural alternatives for their safety. It explores their mechanisms, characteristics, and applications, offering insights into their potential contributions to advancing PDT. This extensive review delves into the preclinical and clinical landscape of natural PSs for PDT, shedding light on their diverse applications and promising outcomes. Compounds like curcumin, piperine, riboflavin, psoralen, hypericin, and others show significant potential in preclinical in vitro studies across various cell lines. In vivo, these photosensitizers prove effective against skin tumors, carcinomas, and sarcomas, inducing apoptosis, autophagy, and ROS generation for therapeutic efficacy. The review underscores the critical role of proper dosing and monitoring in balancing therapeutic benefits and risks. It highlights the advantages and limitations of natural PSs, emphasizing their specific targeting, bioavailability, and limited side effects. The future of PDT holds promising breakthroughs, taking from some evidence like Bergamot oil in nanostructured lipid carriers for dermatological conditions. Second-generation photosensitizer Tookad shows potential in prostate cancer treatment, while Tripterygium wilfordii Hook. F. emerges as an antimicrobial PDT source etc. Thus, environmental concerns in PDT prompt a shift to plant extracts for PS purification. The evidence-supported focus on natural PSs establishes this article as a key resource for advancing natural compounds in PDT and their therapeutic applications.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"191-214"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-30DOI: 10.1007/s43630-024-00670-y
Niklas Diepold, Friederike Reese, Tina Prior, Christian Schnepel, Norbert Sewald, Tilman Kottke
Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH-) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH-. In vitro, FADH- can be regenerated by photoreduction of the oxidized FAD inside the protein using blue light, turning the halogenase into an inefficient artificial photoenzyme. We aimed to improve the photochemical properties of the tryptophan 5-halogenase PyrH from Streptomyces rugosporus by structure-guided mutagenesis. W279 and W281 of the conserved WxWxIP-motif close to FAD were exchanged against phenylalanine. Time-resolved UV-vis spectroscopy showed that the W281F exchange indeed increased the quantum yield of the one- and two-electron reduction, respectively. The cofactor binding affinity decreased slightly with dissociation constants rising from 31 to 74 μM, as examined by fluorescence anisotropy. FTIR difference spectroscopy demonstrated that the allosteric coupling between the FAD and substrate binding sites was mostly preserved. In contrast, the double mutant did not improve the yield further, while negatively affecting binding affinity and structural coupling. The distal W279F exchange was less effective in all parameters. Photoreductions were additionally delayed by a reversible inactive conformation. We conclude that there is a delicate balance to be considered for screening of FDHs for biocatalysis. Variant PyrH-W281F was found to be the most promising candidate for the application as artificial photoenzyme.
{"title":"Balance between photoreduction efficiency, cofactor affinity, and allosteric coupling of halogenase flavoenzymes.","authors":"Niklas Diepold, Friederike Reese, Tina Prior, Christian Schnepel, Norbert Sewald, Tilman Kottke","doi":"10.1007/s43630-024-00670-y","DOIUrl":"10.1007/s43630-024-00670-y","url":null,"abstract":"<p><p>Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH<sup>-</sup>) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH<sup>-</sup>. In vitro, FADH<sup>-</sup> can be regenerated by photoreduction of the oxidized FAD inside the protein using blue light, turning the halogenase into an inefficient artificial photoenzyme. We aimed to improve the photochemical properties of the tryptophan 5-halogenase PyrH from Streptomyces rugosporus by structure-guided mutagenesis. W279 and W281 of the conserved WxWxIP-motif close to FAD were exchanged against phenylalanine. Time-resolved UV-vis spectroscopy showed that the W281F exchange indeed increased the quantum yield of the one- and two-electron reduction, respectively. The cofactor binding affinity decreased slightly with dissociation constants rising from 31 to 74 μM, as examined by fluorescence anisotropy. FTIR difference spectroscopy demonstrated that the allosteric coupling between the FAD and substrate binding sites was mostly preserved. In contrast, the double mutant did not improve the yield further, while negatively affecting binding affinity and structural coupling. The distal W279F exchange was less effective in all parameters. Photoreductions were additionally delayed by a reversible inactive conformation. We conclude that there is a delicate balance to be considered for screening of FDHs for biocatalysis. Variant PyrH-W281F was found to be the most promising candidate for the application as artificial photoenzyme.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"37-51"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1007/s43630-025-00685-z
A Chatzopoulou, K Tourpali, A F Bais, P Braesicke
{"title":"Correction: Twenty-first century surface UV radiation changes deduced from CMIP6 models. Part I: evolution of major influencing factors.","authors":"A Chatzopoulou, K Tourpali, A F Bais, P Braesicke","doi":"10.1007/s43630-025-00685-z","DOIUrl":"10.1007/s43630-025-00685-z","url":null,"abstract":"","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"111"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-19DOI: 10.1007/s43630-024-00663-x
Paloma Lizondo-Aranda, Gemma M Rodríguez-Muñiz, Miguel A Miranda, Belinda Heyne, Virginie Lhiaubet-Vallet
Photophysical and photochemical studies were carried out to examine the photoreactivity of etheno adducts, 1,N6-ethenoadenine (εdA) and 1,N2-ethenoguanine (εdG), in the presence of two well-known photosensitizers acting by Type I and/or Type II mechanisms such as 4-carboxybenzophenone (CBP) and rose Bengal (RB), respectively. Steady-state photolysis experiments combined with HPLC and mass spectroscopy measurements lead to photoproducts that correspond to the repaired nucleosides. To determine the mechanism of this photooxidation processes, phosphorescence spectroscopy, direct detection of singlet oxygen luminescence and laser flash photolysis were carried out. This work establishes that εdG and εdA are sensitive to both types of processes (Type I and II).
研究人员进行了光物理和光化学研究,以检验 1,N6-乙烯腺嘌呤(εdA)和 1,N2-乙烯鸟嘌呤(εdG)这两种乙烯加合物在两种著名的光敏剂(分别为 4-羧基二苯甲酮(CBP)和玫瑰红(RB))作用下的光反应活性。稳态光解实验结合高效液相色谱法(HPLC)和质谱测量法得出了与修复的核苷相对应的光反应产物。为了确定这种光氧化过程的机理,研究人员进行了磷光光谱分析、直接检测单线态氧发光和激光闪烁光解。这项工作证实,εdG 和 εdA 对两种类型的过程(I 型和 II 型)都很敏感。
{"title":"Type I and Type II photosensitization of DNA etheno adducts.","authors":"Paloma Lizondo-Aranda, Gemma M Rodríguez-Muñiz, Miguel A Miranda, Belinda Heyne, Virginie Lhiaubet-Vallet","doi":"10.1007/s43630-024-00663-x","DOIUrl":"10.1007/s43630-024-00663-x","url":null,"abstract":"<p><p>Photophysical and photochemical studies were carried out to examine the photoreactivity of etheno adducts, 1,N<sup>6</sup>-ethenoadenine (εdA) and 1,N<sup>2</sup>-ethenoguanine (εdG), in the presence of two well-known photosensitizers acting by Type I and/or Type II mechanisms such as 4-carboxybenzophenone (CBP) and rose Bengal (RB), respectively. Steady-state photolysis experiments combined with HPLC and mass spectroscopy measurements lead to photoproducts that correspond to the repaired nucleosides. To determine the mechanism of this photooxidation processes, phosphorescence spectroscopy, direct detection of singlet oxygen luminescence and laser flash photolysis were carried out. This work establishes that εdG and εdA are sensitive to both types of processes (Type I and II).</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"1-12"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions. PDT with CIPp-18 (2.0 µM, 3 h) and NIR light (700 ± 25 nm, 0.36-1.4 J /cm2) induced potent phototoxicity in both the cell lines. Under hypoxic conditions, PDT induced ~ 32% and 42% phototoxicity at LD50 and LD70 light dose, respectively, which corresponds to phototoxic dose under normoxia. CIPp-18 in neat buffer (pH 7.4) showed generation of singlet oxygen (1O2) as well as superoxide (O2·-) radicals. Studies on ROS generation in cells using fluorescence probes and the effect of mechanistic probes of 1O2 (Sodium Azide, Histidine, D2O) and free radicals (DMSO, Mannitol, Cyanocobalamin, SOD-PEG) on phototoxicity show that 1O2 plays major role in phototoxicity under normoxia. Whereas, under hypoxic conditions, PDT led to no significant generation of ROS and phototoxicity remained unaffected by cyanocobalamin, a quencher of O2·-. Moreover, CIPp-18 showed localization in cell membrane and PDT led to more pronounced loss of membrane permeability in cells under hypoxia than for normoxia. These results demonstrate that CIPp-18 is suitable for PDT of cancer cells under hypoxia and also suggest that phototoxicity under hypoxia is mediated via ROS-independent contact-dependent mechanism.
{"title":"Unravelling the modes of phototoxicity of NIR absorbing chlorophyll derivative in cancer cells under normoxic and hypoxic conditions.","authors":"Sucharita Chatterjee, Alok Dube, Shovan Kumar Majumder","doi":"10.1007/s43630-024-00680-w","DOIUrl":"10.1007/s43630-024-00680-w","url":null,"abstract":"<p><p>The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions. PDT with CIPp-18 (2.0 µM, 3 h) and NIR light (700 ± 25 nm, 0.36-1.4 J /cm<sup>2</sup>) induced potent phototoxicity in both the cell lines. Under hypoxic conditions, PDT induced ~ 32% and 42% phototoxicity at LD<sub>50</sub> and LD<sub>70</sub> light dose, respectively, which corresponds to phototoxic dose under normoxia. CIPp-18 in neat buffer (pH 7.4) showed generation of singlet oxygen (<sup>1</sup>O<sub>2</sub>) as well as superoxide (O<sub>2</sub><sup>·-</sup>) radicals. Studies on ROS generation in cells using fluorescence probes and the effect of mechanistic probes of <sup>1</sup>O<sub>2 </sub>(Sodium Azide, Histidine, D<sub>2</sub>O) and free radicals (DMSO, Mannitol, Cyanocobalamin, SOD-PEG) on phototoxicity show that <sup>1</sup>O<sub>2</sub> plays major role in phototoxicity under normoxia. Whereas, under hypoxic conditions, PDT led to no significant generation of ROS and phototoxicity remained unaffected by cyanocobalamin, a quencher of O<sub>2</sub><sup>·-</sup>. Moreover, CIPp-18 showed localization in cell membrane and PDT led to more pronounced loss of membrane permeability in cells under hypoxia than for normoxia. These results demonstrate that CIPp-18 is suitable for PDT of cancer cells under hypoxia and also suggest that phototoxicity under hypoxia is mediated via ROS-independent contact-dependent mechanism.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"149-164"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}