Tissue absorbance, light scattering, and autofluorescence are significantly lower in the near-infrared (NIR) range than in the visible range. Because of these advantages, NIR fluorescent proteins (FPs) are in high demand for in vivo imaging. Nevertheless, application of NIR FPs such as iRFP is still limited due to their dimness in mammalian cells. In contrast to GFP and its variants, iRFP requires biliverdin (BV) as a chromophore. The dimness of iRFP is at least partly due to rapid reduction of BV by biliverdin reductase-A (BLVRA). Here, we established biliverdin reductase-a knockout (Blvra-/-) mice to increase the intracellular BV concentration and, thereby, to enhance iRFP fluorescence intensity. As anticipated, iRFP fluorescence intensity was significantly increased in all examined tissues of Blvra-/- mice. Similarly, the genetically encoded calcium indicator NIR-GECO1, which is engineered based on another NIR FP, mIFP, exhibited a marked increase in fluorescence intensity in mouse embryonic fibroblasts derived from Blvra-/- mice. We expanded this approach to an NIR light-sensing optogenetic tool, the BphP1-PpsR2 system, which also requires BV as a chromophore. Again, deletion of the Blvra gene markedly enhanced the light response in HeLa cells. These results indicate that the Blvra-/- mouse is a versatile tool for the in vivo application of NIR FPs and NIR light-sensing optogenetic tools.Key words: in vivo imaging, near-infrared fluorescent protein, biliverdin, biliverdin reductase, optogenetic tool.
组织吸光度、光散射和自身荧光在近红外(NIR)范围内明显低于可见光范围。由于这些优点,近红外荧光蛋白(FPs)在体内成像中有很高的需求。然而,近红外荧光蛋白(如iRFP)的应用仍然受到限制,因为它们在哺乳动物细胞中较暗。与GFP及其变体不同,iRFP需要胆绿素(BV)作为发色团。iRFP的模糊至少部分是由于胆绿素还原酶- a (BLVRA)快速还原BV。在这里,我们建立了胆绿素还原酶-a敲除(Blvra-/-)小鼠,以增加细胞内BV浓度,从而增强iRFP荧光强度。正如预期的那样,iRFP荧光强度在Blvra-/-小鼠的所有检查组织中显著增加。同样,基因编码的钙指示剂NIR- geco1,基于另一种近红外FP, mIFP,在来源于Blvra-/-小鼠的小鼠胚胎成纤维细胞中显示出显著的荧光强度增加。我们将这种方法扩展到近红外光传感光遗传工具BphP1-PpsR2系统,该系统也需要BV作为发色团。再一次,Blvra基因的缺失显著增强了HeLa细胞的光反应。这些结果表明,Blvra-/-小鼠是近红外FPs和近红外光敏光遗传工具在体内应用的多功能工具。关键词:体内成像,近红外荧光蛋白,胆绿素,胆绿素还原酶,光遗传工具
{"title":"Biliverdin Reductase-A Deficiency Brighten and Sensitize Biliverdin-binding Chromoproteins.","authors":"Kenju Kobachi, Sota Kuno, Shinya Sato, Kenta Sumiyama, Michiyuki Matsuda, Kenta Terai","doi":"10.1247/csf.20010","DOIUrl":"10.1247/csf.20010","url":null,"abstract":"<p><p>Tissue absorbance, light scattering, and autofluorescence are significantly lower in the near-infrared (NIR) range than in the visible range. Because of these advantages, NIR fluorescent proteins (FPs) are in high demand for in vivo imaging. Nevertheless, application of NIR FPs such as iRFP is still limited due to their dimness in mammalian cells. In contrast to GFP and its variants, iRFP requires biliverdin (BV) as a chromophore. The dimness of iRFP is at least partly due to rapid reduction of BV by biliverdin reductase-A (BLVRA). Here, we established biliverdin reductase-a knockout (Blvra<sup>-/-</sup>) mice to increase the intracellular BV concentration and, thereby, to enhance iRFP fluorescence intensity. As anticipated, iRFP fluorescence intensity was significantly increased in all examined tissues of Blvra<sup>-/-</sup> mice. Similarly, the genetically encoded calcium indicator NIR-GECO1, which is engineered based on another NIR FP, mIFP, exhibited a marked increase in fluorescence intensity in mouse embryonic fibroblasts derived from Blvra<sup>-/-</sup> mice. We expanded this approach to an NIR light-sensing optogenetic tool, the BphP1-PpsR2 system, which also requires BV as a chromophore. Again, deletion of the Blvra gene markedly enhanced the light response in HeLa cells. These results indicate that the Blvra<sup>-/-</sup> mouse is a versatile tool for the in vivo application of NIR FPs and NIR light-sensing optogenetic tools.Key words: in vivo imaging, near-infrared fluorescent protein, biliverdin, biliverdin reductase, optogenetic tool.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 2","pages":"131-141"},"PeriodicalIF":1.5,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38086809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The activity of AMPA-type glutamate receptor is involved in insulin release from pancreatic β-cells. However, the mechanism and dynamics that underlie AMPA receptor-mediated insulin release in β-cells is largely unknown. Here, we show that AMPA induces internalization of glutamate receptor 2/3 (GluR2/3), AMPA receptor subtype, in the mouse β-cell line MIN6. Immunofluorescence experiments showed that GluR2/3 appeared as fine dots that were distributed throughout MIN6 cells. Intracellular GluR2/3 co-localized with AP2 and clathrin, markers for clathrin-coated pits and vesicles. Immunoelectron microscopy revealed that GluR2/3 was also localized at plasma membrane. Surface biotinylation and immunofluorescence measurements showed that addition of AMPA caused an approximate 1.8-fold increase in GluR2/3 internalization under low-glucose conditions. Furthermore, internalized GluR2 largely co-localized with EEA1, an early endosome marker. In addition, GluR2/3 co-immunoprecipitated with cortactin, a F-actin binding protein. Depletion of cortactin by RNAi in MIN6 cells altered the intracellular distribution of GluR2/3, suggesting that cortactin is involved in internalization of GluR2/3 in MIN6 cells. Taken together, our results suggest that pancreatic β-cells adjust the amount of AMPA-type GluR2/3 on the cell surface to regulate the receptive capability of the cell for glutamate.Key words: endocytosis, GluR2, AMPA, cortactin, MIN6.
{"title":"Internalization of AMPA-type Glutamate Receptor in the MIN6 Pancreatic β-cell Line.","authors":"The Mon La, Hiroshi Yamada, Sayaka Seiriki, Shun-Ai Li, Kenshiro Fujise, Natsuho Katsumi, Tadashi Abe, Masami Watanabe, Kohji Takei","doi":"10.1247/csf.20020","DOIUrl":"10.1247/csf.20020","url":null,"abstract":"<p><p>The activity of AMPA-type glutamate receptor is involved in insulin release from pancreatic β-cells. However, the mechanism and dynamics that underlie AMPA receptor-mediated insulin release in β-cells is largely unknown. Here, we show that AMPA induces internalization of glutamate receptor 2/3 (GluR2/3), AMPA receptor subtype, in the mouse β-cell line MIN6. Immunofluorescence experiments showed that GluR2/3 appeared as fine dots that were distributed throughout MIN6 cells. Intracellular GluR2/3 co-localized with AP2 and clathrin, markers for clathrin-coated pits and vesicles. Immunoelectron microscopy revealed that GluR2/3 was also localized at plasma membrane. Surface biotinylation and immunofluorescence measurements showed that addition of AMPA caused an approximate 1.8-fold increase in GluR2/3 internalization under low-glucose conditions. Furthermore, internalized GluR2 largely co-localized with EEA1, an early endosome marker. In addition, GluR2/3 co-immunoprecipitated with cortactin, a F-actin binding protein. Depletion of cortactin by RNAi in MIN6 cells altered the intracellular distribution of GluR2/3, suggesting that cortactin is involved in internalization of GluR2/3 in MIN6 cells. Taken together, our results suggest that pancreatic β-cells adjust the amount of AMPA-type GluR2/3 on the cell surface to regulate the receptive capability of the cell for glutamate.Key words: endocytosis, GluR2, AMPA, cortactin, MIN6.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 2","pages":"121-130"},"PeriodicalIF":1.5,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.20020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38086810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-07DOI: 10.15789/10.15789/2220-7619-csf-1161
A. V. Alimov, E. P. Igonina, I. V. Feldblyum, V. Chalapa, Y. Zakharova
Here we present the data on foreign research publications describing healthcare-associated enteroviral (nonpolio) infections (HAI) sought in the Worldwide Database for Nosocomial Outbreaks (Institut für Hygiene und Umweltmedizin, Universitȁtmedizincomplex “Charite”, Germany) as well as PubMed search engine (The United States National Library), covering 1936–2017 timeframe. The publications retrieved contained the data on 28 nosocomial outbreaks caused by Enterovirus A (EV-A71), В (Echoviruses 11, 17, 18, 30, 31, 33, Coxsackie viruses А9, В2, В5) and D (EV-D68). It was discovered that the majority of the nosocomial enteroviral (non-polio) outbreaks occurred in obstetric hospitals and neonatal units so that children were mainly maternally infected. In addition, a case associated with intrauterine infection was described. It was shown that outbreaks might be started by an infected child at the incubation period. Single publications reported nosocomial outbreaks in geriatric hospitals. Generally, nosocomial enteroviral (non-polio) outbreaks were characterized by polymorphic clinical picture caused by any certain pathogen serotype and within a single site of the infection. Few lethal outcomes were recorded. Enterovirus B species dominated among identified etiological agents. Violated hospital hygiene and infection control contributing to spread of infection were among those found in neonatal units: putting used diapers out on baby bed prior disposal, sharing bathtub, toys and household objects as well as poor hand hygiene in medical workers. One of the measures recommended to improve diagnostics of enteroviral (non-polio) infections was virology screening of children with suspected sepsis in case of unidentified etiology. It was established that etiological decoding of nosocomial outbreaks was impossible without applying pathogen-specific diagnostic tools, mainly nested RT-PCR and direct sequencing of followed by subsequent phylogenetic analysis.
在这里,我们提供了国外研究出版物的数据,这些研究出版物描述了医疗保健相关的肠道病毒(非脊髓灰质炎)感染(HAI),这些数据来自于全球医院暴发数据库(Institut f r Hygiene und Umweltmedizin, Universitȁtmedizincomplex“Charite”,德国)以及PubMed搜索引擎(美国国家图书馆),涵盖1936年至2017年的时间框架。检索到的出版物包括28例由肠道病毒A (EV-A71)、В (Echoviruses 11、17、18、30、31、33、柯萨奇病毒А9、В2、В5)和D (EV-D68)引起的医院暴发的数据。研究发现,大多数院内肠道病毒(非脊髓灰质炎)暴发发生在产科医院和新生儿病房,因此儿童主要是母亲感染的。此外,一个病例与宫内感染的描述。研究表明,疫情可能是由处于潜伏期的受感染儿童引起的。单一出版物报告了老年医院的院内暴发。一般来说,院内肠道病毒(非脊髓灰质炎)暴发的特点是由任何特定病原体血清型和单一感染部位引起的多态临床表现。几乎没有记录到致命的结果。在已确定的病原中,肠病毒B种占主导地位。在新生儿病房发现的违反医院卫生和感染控制的行为导致了感染的传播:将用过的尿布放在婴儿床上,在处理之前,共用浴缸、玩具和家庭用品,以及医务人员的手卫生不佳。建议提高肠病毒(非脊髓灰质炎)感染诊断的措施之一是在病因不明的情况下对疑似败血症的儿童进行病毒学筛查。结果表明,不使用病原体特异性诊断工具(主要是巢式RT-PCR和直接测序以及随后的系统发育分析),不可能对医院暴发进行病原学解码。
{"title":"Current status of healthcare-associated enteroviral (non-polio) infections","authors":"A. V. Alimov, E. P. Igonina, I. V. Feldblyum, V. Chalapa, Y. Zakharova","doi":"10.15789/10.15789/2220-7619-csf-1161","DOIUrl":"https://doi.org/10.15789/10.15789/2220-7619-csf-1161","url":null,"abstract":"Here we present the data on foreign research publications describing healthcare-associated enteroviral (nonpolio) infections (HAI) sought in the Worldwide Database for Nosocomial Outbreaks (Institut für Hygiene und Umweltmedizin, Universitȁtmedizincomplex “Charite”, Germany) as well as PubMed search engine (The United States National Library), covering 1936–2017 timeframe. The publications retrieved contained the data on 28 nosocomial outbreaks caused by Enterovirus A (EV-A71), В (Echoviruses 11, 17, 18, 30, 31, 33, Coxsackie viruses А9, В2, В5) and D (EV-D68). It was discovered that the majority of the nosocomial enteroviral (non-polio) outbreaks occurred in obstetric hospitals and neonatal units so that children were mainly maternally infected. In addition, a case associated with intrauterine infection was described. It was shown that outbreaks might be started by an infected child at the incubation period. Single publications reported nosocomial outbreaks in geriatric hospitals. Generally, nosocomial enteroviral (non-polio) outbreaks were characterized by polymorphic clinical picture caused by any certain pathogen serotype and within a single site of the infection. Few lethal outcomes were recorded. Enterovirus B species dominated among identified etiological agents. Violated hospital hygiene and infection control contributing to spread of infection were among those found in neonatal units: putting used diapers out on baby bed prior disposal, sharing bathtub, toys and household objects as well as poor hand hygiene in medical workers. One of the measures recommended to improve diagnostics of enteroviral (non-polio) infections was virology screening of children with suspected sepsis in case of unidentified etiology. It was established that etiological decoding of nosocomial outbreaks was impossible without applying pathogen-specific diagnostic tools, mainly nested RT-PCR and direct sequencing of followed by subsequent phylogenetic analysis.","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67098552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Collagen is the most abundant protein in animal tissues and is critical for their proper organization. Nascent procollagens in the endoplasmic reticulum (ER) are considered too large to be loaded into coat protein complex II (COPII) vesicles, which have a diameter of 60-80 nm, for exit from the ER and transport to the Golgi complex. To study the transport mechanism of procollagen IV, which generates basement membranes, we introduced a cysteine-free GFP tag at the N-terminus of the triple helical region of the α1(IV) chain (cfSGFP2-col4a1), and examined the dynamics of this protein in HT-1080 cells, which produce endogenous collagen IV. cfSGFP2-col4a1 was transported from the ER to the Golgi by vesicles, which were a similar size as small cargo carriers. However, mCherry-ERGIC53 was recruited to α1-antitrypsin-containing vesicles, but not to cfSGFP2-col4a1-containing vesicles. Knockdown analysis revealed that Sar1 and SLY1/SCFD1 were required for transport of cfSGFP2-col4a1. TANGO1, CUL3, and KLHL12 were not necessary for the ER-to-Golgi trafficking of procollagen IV. Our data suggest that procollagen IV is exported from the ER via an enlarged COPII coat carrier and is transported to the Golgi by unique transport vesicles without recruitment of ER-Golgi intermediate compartment membranes.Key words: collagen, procollagen IV, endoplasmic reticulum, ER-to-Golgi transport, ERGIC.
{"title":"Visualization of Procollagen IV Reveals ER-to-Golgi Transport by ERGIC-independent Carriers.","authors":"Yuto Matsui, Yukihiro Hirata, Ikuo Wada, Nobuko Hosokawa","doi":"10.1247/csf.20025","DOIUrl":"10.1247/csf.20025","url":null,"abstract":"<p><p>Collagen is the most abundant protein in animal tissues and is critical for their proper organization. Nascent procollagens in the endoplasmic reticulum (ER) are considered too large to be loaded into coat protein complex II (COPII) vesicles, which have a diameter of 60-80 nm, for exit from the ER and transport to the Golgi complex. To study the transport mechanism of procollagen IV, which generates basement membranes, we introduced a cysteine-free GFP tag at the N-terminus of the triple helical region of the α1(IV) chain (cfSGFP2-col4a1), and examined the dynamics of this protein in HT-1080 cells, which produce endogenous collagen IV. cfSGFP2-col4a1 was transported from the ER to the Golgi by vesicles, which were a similar size as small cargo carriers. However, mCherry-ERGIC53 was recruited to α<sub>1</sub>-antitrypsin-containing vesicles, but not to cfSGFP2-col4a1-containing vesicles. Knockdown analysis revealed that Sar1 and SLY1/SCFD1 were required for transport of cfSGFP2-col4a1. TANGO1, CUL3, and KLHL12 were not necessary for the ER-to-Golgi trafficking of procollagen IV. Our data suggest that procollagen IV is exported from the ER via an enlarged COPII coat carrier and is transported to the Golgi by unique transport vesicles without recruitment of ER-Golgi intermediate compartment membranes.Key words: collagen, procollagen IV, endoplasmic reticulum, ER-to-Golgi transport, ERGIC.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 2","pages":"107-119"},"PeriodicalIF":1.5,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.20025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38064000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Endocytic cargos are transported to recycling endosomes (RE) but how these sorting platforms are generated is not well understood. Here we describe our biochemical and live imaging studies of the conserved MON2-DOPEY complex in RE formation. MON2 mainly co-localized with RE marker RAB4B in peripheral dots and perinuclear region. The peripheral RE approached, interacted with, and separated from sorting nexin 3 (SNX3)-positive early endosomes (EE). Membrane-bound DOPEY2 was recruited to RE dependent upon MON2 expression, and showed binding abilities to kinesin and dynein/dynactin motor proteins. MON2-knockout impaired segregation of RE from EE and led to a decreased tubular recycling endosomal network, whereas RE was accumulated at perinuclear regions in DOPEY2-knockout cells. MON2 depletion also impaired intracellular transferrin receptor recycling, as well as retrograde transport of Wntless during its passage through RE before delivery from EE to the Golgi. Together, these data suggest that the MON2 drives separation of RE from EE and is required for efficient transport of endocytic cargo molecules.Key words: membrane trafficking, MON2, recycling endosomes, Wntless.
{"title":"MON2 Guides Wntless Transport to the Golgi through Recycling Endosomes.","authors":"Shen-Bao Zhao, Neta Dean, Xiao-Dong Gao, Morihisa Fujita","doi":"10.1247/csf.20012","DOIUrl":"10.1247/csf.20012","url":null,"abstract":"<p><p>Endocytic cargos are transported to recycling endosomes (RE) but how these sorting platforms are generated is not well understood. Here we describe our biochemical and live imaging studies of the conserved MON2-DOPEY complex in RE formation. MON2 mainly co-localized with RE marker RAB4B in peripheral dots and perinuclear region. The peripheral RE approached, interacted with, and separated from sorting nexin 3 (SNX3)-positive early endosomes (EE). Membrane-bound DOPEY2 was recruited to RE dependent upon MON2 expression, and showed binding abilities to kinesin and dynein/dynactin motor proteins. MON2-knockout impaired segregation of RE from EE and led to a decreased tubular recycling endosomal network, whereas RE was accumulated at perinuclear regions in DOPEY2-knockout cells. MON2 depletion also impaired intracellular transferrin receptor recycling, as well as retrograde transport of Wntless during its passage through RE before delivery from EE to the Golgi. Together, these data suggest that the MON2 drives separation of RE from EE and is required for efficient transport of endocytic cargo molecules.Key words: membrane trafficking, MON2, recycling endosomes, Wntless.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 1","pages":"77-92"},"PeriodicalIF":1.5,"publicationDate":"2020-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.20012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37933683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-04Epub Date: 2020-04-29DOI: 10.1247/csf.20013
Sung Hoon Back
It is often assumed that α-subunit phosphorylation of the eukaryotic translation initiation factor 2 (eIF2) complex is just a mechanism to control protein synthesis. However, eIF2α phosphorylation induced by multiple kinases can recognize various intracellular and extracellular stress conditions, and it is involved in various other cellular processes beyond protein synthesis. This review introduces the roles of eIF2α phosphorylation in translational regulation, the generation of reactive oxygen species, changes in mitochondria structure and shape, and mitochondrial retrograde signaling pathways in response to diverse stress conditions.Key words: eIF2α phosphorylation, Translation, Unfolded Protein Response, Reactive Oxygen Species, Mitochondria.
{"title":"Roles of the Translation Initiation Factor eIF2α Phosphorylation in Cell Structure and Function.","authors":"Sung Hoon Back","doi":"10.1247/csf.20013","DOIUrl":"10.1247/csf.20013","url":null,"abstract":"<p><p>It is often assumed that α-subunit phosphorylation of the eukaryotic translation initiation factor 2 (eIF2) complex is just a mechanism to control protein synthesis. However, eIF2α phosphorylation induced by multiple kinases can recognize various intracellular and extracellular stress conditions, and it is involved in various other cellular processes beyond protein synthesis. This review introduces the roles of eIF2α phosphorylation in translational regulation, the generation of reactive oxygen species, changes in mitochondria structure and shape, and mitochondrial retrograde signaling pathways in response to diverse stress conditions.Key words: eIF2α phosphorylation, Translation, Unfolded Protein Response, Reactive Oxygen Species, Mitochondria.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 1","pages":"65-76"},"PeriodicalIF":1.5,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.20013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37885120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Centrosomes are highly conserved organelles that act as the major microtubule-organizing center (MTOC) in animal somatic cells. Through their MTOC activity, centrosomes play various roles throughout the cell cycle, such as supporting cell migration in interphase and spindle organization and positioning in mitosis. Various approaches for removing centrosomes from somatic cells have been developed and applied over the past few decades to understand the precise roles of centrosomes. Centrinone, a reversible and selective PLK4 (polo-like kinase 4) inhibitor, has recently emerged as an efficient approach to eliminate centrosomes. In this review, we describe the latest findings on centrosome function that have been revealed using various centrosome-eliminating approaches. In addition, we discuss our recent findings on the mechanism of centrosome-independent spindle bipolarization, discovered through the use of centrinone.Key words: centrosome, centrinone, mitotic spindle, bipolarity, NuMA.
{"title":"Centrosomal and Non-centrosomal Functions Emerged through Eliminating Centrosomes.","authors":"Yutaka Takeda, Kanako Kuroki, Takumi Chinen, Daiju Kitagawa","doi":"10.1247/csf.20007","DOIUrl":"10.1247/csf.20007","url":null,"abstract":"<p><p>Centrosomes are highly conserved organelles that act as the major microtubule-organizing center (MTOC) in animal somatic cells. Through their MTOC activity, centrosomes play various roles throughout the cell cycle, such as supporting cell migration in interphase and spindle organization and positioning in mitosis. Various approaches for removing centrosomes from somatic cells have been developed and applied over the past few decades to understand the precise roles of centrosomes. Centrinone, a reversible and selective PLK4 (polo-like kinase 4) inhibitor, has recently emerged as an efficient approach to eliminate centrosomes. In this review, we describe the latest findings on centrosome function that have been revealed using various centrosome-eliminating approaches. In addition, we discuss our recent findings on the mechanism of centrosome-independent spindle bipolarization, discovered through the use of centrinone.Key words: centrosome, centrinone, mitotic spindle, bipolarity, NuMA.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 1","pages":"57-64"},"PeriodicalIF":1.5,"publicationDate":"2020-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.20007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37816624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-18Epub Date: 2020-02-07DOI: 10.1247/csf.19039
Soujiro Marubashi, Mitsunori Fukuda
Keratinocytes uptake melanosomes from melanocytes and retain them in the perinuclear region, where they form melanin caps. Although these processes are crucial to protecting nuclear DNA against ultraviolet injury, the molecular basis of melanosome uptake and decomposition in keratinocytes is poorly understood. One of the major reasons for its being poorly understood is the lack of a specific marker protein that can be used to visualize or monitor melanosomes (or melanosome-containing compartments) that have been incorporated into keratinocytes. In this study, we performed a comprehensive localization screening for mammalian Rab family small GTPases (Rab1-45) and succeeded in identifying 11 Rabs that were enriched around melanosomes that had been incorporated into keratinocytes. We also established a new assay by using a recently developed melanosome probe (called M-INK) as a means of quantitatively assessing the degradation of proteins on incorporated melanosomes in control and each of a series of Rab-knockdown keratinocytes. The results showed that knockdown or CRISPR/Cas9-mediated knockout of Rab7B (also identified as Rab42) in keratinocytes caused strong inhibition of protein degradation on melanosomes. Our findings indicated that Rab7B/42 is recruited to melanosome-containing compartments and that it promotes protein degradation on melanosomes in keratinocytes.Key words: degradation, keratinocytes, melanocytes, melanosome, Rab small GTPase.
角质形成细胞从黑色素细胞中摄取黑色素小体,并将其保留在核周区域,在那里形成黑色素帽。虽然这些过程对保护核 DNA 免受紫外线伤害至关重要,但人们对角质形成细胞摄取和分解黑色素体的分子基础知之甚少。人们对其了解甚少的主要原因之一是缺乏一种特异性标记蛋白,可用于观察或监测已被纳入角朊细胞的黑色素小体(或含黑色素小体的区室)。在这项研究中,我们对哺乳动物Rab家族小GTP酶(Rab1-45)进行了全面的定位筛选,并成功鉴定出11种Rabs,这些Rabs富集在被整合到角朊细胞中的黑色素体周围。我们还利用最近开发的黑色素体探针(称为 M-INK)建立了一种新的检测方法,用于定量评估对照组和一系列 Rab 敲除的角质形成细胞中每个黑色素体上蛋白质的降解情况。结果表明,在角朊细胞中敲除或CRISPR/Cas9介导的Rab7B(也称为Rab42)会强烈抑制黑色素体上的蛋白质降解。我们的研究结果表明,Rab7B/42被招募到含黑色素体的区室,并促进了角朊细胞中黑色素体上的蛋白质降解。
{"title":"Rab7B/42 Is Functionally Involved in Protein Degradation on Melanosomes in Keratinocytes.","authors":"Soujiro Marubashi, Mitsunori Fukuda","doi":"10.1247/csf.19039","DOIUrl":"10.1247/csf.19039","url":null,"abstract":"<p><p>Keratinocytes uptake melanosomes from melanocytes and retain them in the perinuclear region, where they form melanin caps. Although these processes are crucial to protecting nuclear DNA against ultraviolet injury, the molecular basis of melanosome uptake and decomposition in keratinocytes is poorly understood. One of the major reasons for its being poorly understood is the lack of a specific marker protein that can be used to visualize or monitor melanosomes (or melanosome-containing compartments) that have been incorporated into keratinocytes. In this study, we performed a comprehensive localization screening for mammalian Rab family small GTPases (Rab1-45) and succeeded in identifying 11 Rabs that were enriched around melanosomes that had been incorporated into keratinocytes. We also established a new assay by using a recently developed melanosome probe (called M-INK) as a means of quantitatively assessing the degradation of proteins on incorporated melanosomes in control and each of a series of Rab-knockdown keratinocytes. The results showed that knockdown or CRISPR/Cas9-mediated knockout of Rab7B (also identified as Rab42) in keratinocytes caused strong inhibition of protein degradation on melanosomes. Our findings indicated that Rab7B/42 is recruited to melanosome-containing compartments and that it promotes protein degradation on melanosomes in keratinocytes.Key words: degradation, keratinocytes, melanocytes, melanosome, Rab small GTPase.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 1","pages":"45-55"},"PeriodicalIF":1.5,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.19039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37625986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellular durotaxis has been extensively studied in the field of mechanobiology. In principle, asymmetric mechanical field of a stiffness gradient generates motile polarity in a cell, which is a driving factor of durotaxis. However, the actual process by which the motile polarity in durotaxis develops is still unclear. In this study, to clarify the details of the kinetics of the development of durotactic polarity, we investigated the dynamics of both cell-shaping and the microscopic turnover of focal adhesions (FAs) for Venus-paxillin-expressing fibroblasts just crossing an elasticity boundary prepared on microelastically patterned gels. The Fourier mode analysis of cell-shaping based on a persistent random deformation model revealed that motile polarity at a cell-body scale was established within the first few hours after the leading edges of a moving cell passed through the boundary from the soft to the stiff regions. A fluorescence recovery after photobleaching (FRAP) analysis showed that the mobile fractions of paxillin at FAs in the anterior part of the cells exhibited an asymmetric increase within several tens of minutes after cells entered the stiff region. The results demonstrated that motile polarity in durotactic cells is established through the hierarchical step-wise development of different types of asymmetricity in the kinetics of FAs activity and cell-shaping with a several-hour time lag.Key words: Microelasticity patterned gel, durotaxis, cell polarity, focal adhesions, paxillin.
{"title":"Hierarchical Development of Motile Polarity in Durotactic Cells Just Crossing an Elasticity Boundary.","authors":"Thasaneeya Kuboki, Hiroyuki Ebata, Tomoki Matsuda, Yoshiyuki Arai, Takeharu Nagai, Satoru Kidoaki","doi":"10.1247/csf.19040","DOIUrl":"10.1247/csf.19040","url":null,"abstract":"<p><p>Cellular durotaxis has been extensively studied in the field of mechanobiology. In principle, asymmetric mechanical field of a stiffness gradient generates motile polarity in a cell, which is a driving factor of durotaxis. However, the actual process by which the motile polarity in durotaxis develops is still unclear. In this study, to clarify the details of the kinetics of the development of durotactic polarity, we investigated the dynamics of both cell-shaping and the microscopic turnover of focal adhesions (FAs) for Venus-paxillin-expressing fibroblasts just crossing an elasticity boundary prepared on microelastically patterned gels. The Fourier mode analysis of cell-shaping based on a persistent random deformation model revealed that motile polarity at a cell-body scale was established within the first few hours after the leading edges of a moving cell passed through the boundary from the soft to the stiff regions. A fluorescence recovery after photobleaching (FRAP) analysis showed that the mobile fractions of paxillin at FAs in the anterior part of the cells exhibited an asymmetric increase within several tens of minutes after cells entered the stiff region. The results demonstrated that motile polarity in durotactic cells is established through the hierarchical step-wise development of different types of asymmetricity in the kinetics of FAs activity and cell-shaping with a several-hour time lag.Key words: Microelasticity patterned gel, durotaxis, cell polarity, focal adhesions, paxillin.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 1","pages":"33-43"},"PeriodicalIF":1.5,"publicationDate":"2020-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37513057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-07Epub Date: 2019-12-26DOI: 10.1247/csf.19032
Byungseok Jin, Tokiro Ishikawa, Mai Taniguchi, Satoshi Ninagawa, Tetsuya Okada, Shigehide Kagaya, Kazutoshi Mori
Three types of transmembrane protein, IRE1α/IRE1β, PERK, and ATF6α/ATF6β, are expressed ubiquitously in vertebrates as transducers of the unfolded protein response (UPR), which maintains the homeostasis of the endoplasmic reticulum. IRE1 is highly conserved from yeast to mammals, and transmits a signal by a unique mechanism, namely splicing of mRNA encoding XBP1, the transcription factor downstream of IRE1 in metazoans. IRE1 contains a ribonuclease domain in its cytoplasmic region which initiates splicing reaction by direct cleavage of XBP1 mRNA at the two stem loop structures. As the UPR is considered to be involved in the development and progression of various diseases, as well as in the survival and growth of tumor cells, UPR inhibitors have been sought. To date, IRE1 inhibitors have been screened using cell-based reporter assays and fluorescent-based in vitro cleavage assays. Here, we used medaka fish to develop an in vivo assay for IRE1α inhibitors. IRE1α, IRE1β, ATF6α and ATF6β are ubiquitously expressed in medaka. We found that IRE1α/ATF6α-double knockout is lethal, similarly to IRE1α/IRE1β- and ATF6α/ATF6β-double knockout. Therefore, IRE1 inhibitors are expected to confer lethality to ATF6α-knockout medaka but not to wild-type medaka. One compound named K114 was obtained from 1,280 compounds using this phenotypic screening. K114 inhibited ER stress-induced splicing of XBP1 mRNA as well as reporter luciferase expression in HCT116 cells derived from human colorectal carcinoma, and inhibited ribonuclease activity of human IRE1α in vitro. Thus, this phenotypic assay can be used as a quick test for the efficacy of IRE1α inhibitors in vivo.Key words: endoplasmic reticulum, inhibitor screening, mRNA splicing, phenotypic assay, unfolded protein response.
{"title":"Development of a Rapid in vivo Assay to Evaluate the Efficacy of IRE1-specific Inhibitors of the Unfolded Protein Response Using Medaka Fish.","authors":"Byungseok Jin, Tokiro Ishikawa, Mai Taniguchi, Satoshi Ninagawa, Tetsuya Okada, Shigehide Kagaya, Kazutoshi Mori","doi":"10.1247/csf.19032","DOIUrl":"10.1247/csf.19032","url":null,"abstract":"<p><p>Three types of transmembrane protein, IRE1α/IRE1β, PERK, and ATF6α/ATF6β, are expressed ubiquitously in vertebrates as transducers of the unfolded protein response (UPR), which maintains the homeostasis of the endoplasmic reticulum. IRE1 is highly conserved from yeast to mammals, and transmits a signal by a unique mechanism, namely splicing of mRNA encoding XBP1, the transcription factor downstream of IRE1 in metazoans. IRE1 contains a ribonuclease domain in its cytoplasmic region which initiates splicing reaction by direct cleavage of XBP1 mRNA at the two stem loop structures. As the UPR is considered to be involved in the development and progression of various diseases, as well as in the survival and growth of tumor cells, UPR inhibitors have been sought. To date, IRE1 inhibitors have been screened using cell-based reporter assays and fluorescent-based in vitro cleavage assays. Here, we used medaka fish to develop an in vivo assay for IRE1α inhibitors. IRE1α, IRE1β, ATF6α and ATF6β are ubiquitously expressed in medaka. We found that IRE1α/ATF6α-double knockout is lethal, similarly to IRE1α/IRE1β- and ATF6α/ATF6β-double knockout. Therefore, IRE1 inhibitors are expected to confer lethality to ATF6α-knockout medaka but not to wild-type medaka. One compound named K114 was obtained from 1,280 compounds using this phenotypic screening. K114 inhibited ER stress-induced splicing of XBP1 mRNA as well as reporter luciferase expression in HCT116 cells derived from human colorectal carcinoma, and inhibited ribonuclease activity of human IRE1α in vitro. Thus, this phenotypic assay can be used as a quick test for the efficacy of IRE1α inhibitors in vivo.Key words: endoplasmic reticulum, inhibitor screening, mRNA splicing, phenotypic assay, unfolded protein response.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 1","pages":"23-31"},"PeriodicalIF":1.5,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.19032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37489908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}