Pub Date : 2019-12-29DOI: 10.2298/hemind190822033d
Dusica Djokic-Stojanovic, Z. Todorović, Dragan Z. Troter, Olivera S. Stamenković, Ljiljana Veselinović, M. Zdujić, D. Manojlović, V. Veljković
Triethanolamine was applied as an efficient ?green? cosolvent for biodiesel production by CaO-catalyzed ethanolysis of sunflower oil. The reaction was conducted in a batch stirred reactor and optimized with respect to the reaction temperature (61.6-78.4?C), the ethanol-to-oil molar ratio (7:1-17:1) and the cosolvent loading (3-36 % of the oil weight) by using a rotatable central composite design (RCCD) combined with the response surface methodology (RSM). The optimal reaction conditions were found to be: the ethanol-to-oil molar ratio of 9:1, the reaction temperature of 75?C and the cosolvent loading of 30 % to oil weight, which resulted in the predicted and actual fatty acid ethyl ester (FAEE) contents of 98.8 % and 97.9?1.3 %, respectively, achieved within only 20 min of the reaction. Also, high FAEE contents were obtained with expired sunflower oil, hempseed oil and waste lard. X-ray diffraction analysis (XRD) was used to understand the changes in the CaO phase. The CaO catalyst can be used without any treatment in two consecutive cycles. Due to the calcium leaching into the product, an additional purification stage must be included in the overall process.
{"title":"Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study","authors":"Dusica Djokic-Stojanovic, Z. Todorović, Dragan Z. Troter, Olivera S. Stamenković, Ljiljana Veselinović, M. Zdujić, D. Manojlović, V. Veljković","doi":"10.2298/hemind190822033d","DOIUrl":"https://doi.org/10.2298/hemind190822033d","url":null,"abstract":"Triethanolamine was applied as an efficient ?green? cosolvent for biodiesel production by CaO-catalyzed ethanolysis of sunflower oil. The reaction was conducted in a batch stirred reactor and optimized with respect to the reaction temperature (61.6-78.4?C), the ethanol-to-oil molar ratio (7:1-17:1) and the cosolvent loading (3-36 % of the oil weight) by using a rotatable central composite design (RCCD) combined with the response surface methodology (RSM). The optimal reaction conditions were found to be: the ethanol-to-oil molar ratio of 9:1, the reaction temperature of 75?C and the cosolvent loading of 30 % to oil weight, which resulted in the predicted and actual fatty acid ethyl ester (FAEE) contents of 98.8 % and 97.9?1.3 %, respectively, achieved within only 20 min of the reaction. Also, high FAEE contents were obtained with expired sunflower oil, hempseed oil and waste lard. X-ray diffraction analysis (XRD) was used to understand the changes in the CaO phase. The CaO catalyst can be used without any treatment in two consecutive cycles. Due to the calcium leaching into the product, an additional purification stage must be included in the overall process.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"304 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76437179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-29DOI: 10.2298/hemind191003035p
Gholamhossein Parmoon, A. M. Nafchi, M. Pirdashti
Phase diagrams and liquid ? liquid equilibrium (LLE) data for aqueous two-phase systems (ATPSs) containing zinc sulfate, magnesium sulfate or aluminium sulfate and polyethylene glycols PEG 300, 400 and 600 have been determined at 298.15 K. It was attempted to show how the PEG molecular weight and the type of cation influence the binodal curve, tie line length (TLL) and slope of the tie line (STL). The results have shown that as the PEG molecular weight increases, the two-phase region becomes extended and the binodal curve shifts to the origin. The refractive index and density of ternary (PEG 300,400 and 600 + zinc sulfate/magnesium sulfate/aluminium sulfate + water) systems have been measured to achieve the phase composition and the tie lines. Finally, the effective excluded volume (EEV) model was applied to describe the salting-out ability of the systems. The LLE data from this research may be potentially used for recovering biological molecules like proteins.
{"title":"Effects of the polymer molecular weight and type of cation on phase diagrams of polythylene glycol + sulfate salts aqueous two-phase systems","authors":"Gholamhossein Parmoon, A. M. Nafchi, M. Pirdashti","doi":"10.2298/hemind191003035p","DOIUrl":"https://doi.org/10.2298/hemind191003035p","url":null,"abstract":"Phase diagrams and liquid ? liquid equilibrium (LLE) data for aqueous two-phase systems (ATPSs) containing zinc sulfate, magnesium sulfate or aluminium sulfate and polyethylene glycols PEG 300, 400 and 600 have been determined at 298.15 K. It was attempted to show how the PEG molecular weight and the type of cation influence the binodal curve, tie line length (TLL) and slope of the tie line (STL). The results have shown that as the PEG molecular weight increases, the two-phase region becomes extended and the binodal curve shifts to the origin. The refractive index and density of ternary (PEG 300,400 and 600 + zinc sulfate/magnesium sulfate/aluminium sulfate + water) systems have been measured to achieve the phase composition and the tie lines. Finally, the effective excluded volume (EEV) model was applied to describe the salting-out ability of the systems. The LLE data from this research may be potentially used for recovering biological molecules like proteins.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78122672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-14DOI: 10.2298/hemind190614027i
D. Ilić, Djordje Antonijević, V. Biočanin, B. Čolović, V. Danilovic, V. Komlev, A. Teterina, V. Jokanović
Dental cement materials have been developed with the aim to replace hard dental tissues. The first material used for pulp capping, root canal obturation, bifurcation perforation and apexification is calcium hydroxide (in 1920). A half century later, glass-ionomer cements began to suppress it as dentine substitutes. Finally, in the 1990s, calcium silicate (CS) material appeared in the dental research community as the most promising dentine substitute capable to adequately meet all clinical requirements. The aim of this paper is to present an overview of literature related to studies about CS materials taking into account their physical, chemical and biological properties and clinical applications. This review aims to discuss beneficial and adverse characteristics of CSs concerning interactions to the hard dentine and soft pulp/periodontal tissues. This review article deals with the literature data about currently commercially available CS concerning laboratory and clinical findings. 109 scientific articles were analyzed of which 62 references reported in vitro and 26 in vivo investigations while 21 references comprised reports, reviews and books dealing with both, in vitro and in vivo investigations. Although further data collection is necessary, CSs are promising materials that represent a gold standard for numerous dental clinical procedures.
{"title":"Physico-chemical and biological properties of dental calcium silicate cements - literature review","authors":"D. Ilić, Djordje Antonijević, V. Biočanin, B. Čolović, V. Danilovic, V. Komlev, A. Teterina, V. Jokanović","doi":"10.2298/hemind190614027i","DOIUrl":"https://doi.org/10.2298/hemind190614027i","url":null,"abstract":"Dental cement materials have been developed with the aim to replace hard\u0000 dental tissues. The first material used for pulp capping, root canal\u0000 obturation, bifurcation perforation and apexification is calcium hydroxide\u0000 (in 1920). A half century later, glass-ionomer cements began to suppress it\u0000 as dentine substitutes. Finally, in the 1990s, calcium silicate (CS)\u0000 material appeared in the dental research community as the most promising\u0000 dentine substitute capable to adequately meet all clinical requirements. The\u0000 aim of this paper is to present an overview of literature related to studies\u0000 about CS materials taking into account their physical, chemical and\u0000 biological properties and clinical applications. This review aims to discuss\u0000 beneficial and adverse characteristics of CSs concerning interactions to the\u0000 hard dentine and soft pulp/periodontal tissues. This review article deals\u0000 with the literature data about currently commercially available CS\u0000 concerning laboratory and clinical findings. 109 scientific articles were\u0000 analyzed of which 62 references reported in vitro and 26 in vivo\u0000 investigations while 21 references comprised reports, reviews and books\u0000 dealing with both, in vitro and in vivo investigations. Although further\u0000 data collection is necessary, CSs are promising materials that represent a\u0000 gold standard for numerous dental clinical procedures.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89910202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-14DOI: 10.2298/hemind181010026a
A. Atasoy
The wet high intensity magnetic separation of magnesite ore waste stocked in an open pit of a magnesite mine was investigated in this paper. The received sample was subjected to physical, chemical, thermal and phase characterizations. The magnesite ore waste sample contained 77.69 % MgCO3 and a considerable amount of Fe2O3 (3.14 %). The unwanted silica and iron impurities were removed and a high-grade magnesite was experimentally obtained. Results have shown that a high-grade magnesite was obtained after subjecting the non-magnetic portion of the processed sample twice at 1.8 T. It was possible to increase the magnesite content up to 91.03 % while reducing the iron content to 0.32 % by using magnetic separation. After the calcination process at 1000?C, the sample showed mass loss on ignition of 52 % and contained 85.39 % MgO with 0.32 % Fe2O3. The final product can be used in chemical and metallurgical applications where high magnesia contents are required. The experimental results provide useful information on wet magnetic separation of magnesite wastes.
{"title":"The wet high intensity magnetic separation of magnesite ore waste","authors":"A. Atasoy","doi":"10.2298/hemind181010026a","DOIUrl":"https://doi.org/10.2298/hemind181010026a","url":null,"abstract":"The wet high intensity magnetic separation of magnesite ore waste stocked in an open pit of a magnesite mine was investigated in this paper. The received sample was subjected to physical, chemical, thermal and phase characterizations. The magnesite ore waste sample contained 77.69 % MgCO3 and a considerable amount of Fe2O3 (3.14 %). The unwanted silica and iron impurities were removed and a high-grade magnesite was experimentally obtained. Results have shown that a high-grade magnesite was obtained after subjecting the non-magnetic portion of the processed sample twice at 1.8 T. It was possible to increase the magnesite content up to 91.03 % while reducing the iron content to 0.32 % by using magnetic separation. After the calcination process at 1000?C, the sample showed mass loss on ignition of 52 % and contained 85.39 % MgO with 0.32 % Fe2O3. The final product can be used in chemical and metallurgical applications where high magnesia contents are required. The experimental results provide useful information on wet magnetic separation of magnesite wastes.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87885730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-14DOI: 10.2298/hemind191020029d
Ivana T. Drvenica, A. Dekanski, Nevena Budjevac, Ivan Umeljic, O. Nedić
nema
{"title":"Is there a need for systematic education on peer-reviewing in Serbia?","authors":"Ivana T. Drvenica, A. Dekanski, Nevena Budjevac, Ivan Umeljic, O. Nedić","doi":"10.2298/hemind191020029d","DOIUrl":"https://doi.org/10.2298/hemind191020029d","url":null,"abstract":"<jats:p>nema</jats:p>","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"212 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77677196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-14DOI: 10.2298/hemind190819028p
P. Petrović, K. Ivanović, Charly Octrue, M. Tumara, A. Jovanović, Jovana Vunduk, M. Nikšić, R. Pjanovic, B. Bugarski, A. Klaus
Chaga (Inonotus obliquus) is a parasitic fungus, which has been used in traditional medicine in Russia and other northern European countries in the treatment of cancer, gastrointestinal andliver diseases. It has been a subject of intensive researchrecently, confirming many of its health-beneficial effects. In order to obtain a product that would allow modified and prolonged release of the Chaga?s active metabolites, hot water Chaga extract was immobilized using calcium - alginate. The extract, which was predominantly composed of carbohydrates (57 %), also contained a relatively high amount of antioxidants/phenolic compounds (130 mg gallic acid equivalents per g of dry extract) and exhibited pronounced radical scavenging activity. It showed significant antibacterial activity as well, inhibiting growth of tested bacterial strains at concentrations of 1.25-20 mg/mL. Entrapment efficiency was about 80 %, and the extract-alginate system showed pH-dependant extract release; there was negligible release at pH 1.75 (gastric pH), and the release gradually increased with the increase in pH, reaching ~43 % of immobilized extract at pH 8.5 after 90 min. Such a product could be used as a dietary supplement, adjuvant in therapy of gastrointestinal diseases or as a food additive.
{"title":"Immobilization of Chaga extract in alginate beads for modified release: Simplicity meets efficiency","authors":"P. Petrović, K. Ivanović, Charly Octrue, M. Tumara, A. Jovanović, Jovana Vunduk, M. Nikšić, R. Pjanovic, B. Bugarski, A. Klaus","doi":"10.2298/hemind190819028p","DOIUrl":"https://doi.org/10.2298/hemind190819028p","url":null,"abstract":"Chaga (Inonotus obliquus) is a parasitic fungus, which has been used in traditional medicine in Russia and other northern European countries in the treatment of cancer, gastrointestinal andliver diseases. It has been a subject of intensive researchrecently, confirming many of its health-beneficial effects. In order to obtain a product that would allow modified and prolonged release of the Chaga?s active metabolites, hot water Chaga extract was immobilized using calcium - alginate. The extract, which was predominantly composed of carbohydrates (57 %), also contained a relatively high amount of antioxidants/phenolic compounds (130 mg gallic acid equivalents per g of dry extract) and exhibited pronounced radical scavenging activity. It showed significant antibacterial activity as well, inhibiting growth of tested bacterial strains at concentrations of 1.25-20 mg/mL. Entrapment efficiency was about 80 %, and the extract-alginate system showed pH-dependant extract release; there was negligible release at pH 1.75 (gastric pH), and the release gradually increased with the increase in pH, reaching ~43 % of immobilized extract at pH 8.5 after 90 min. Such a product could be used as a dietary supplement, adjuvant in therapy of gastrointestinal diseases or as a food additive.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85451623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-14DOI: 10.2298/hemind190422025s
V. Sklabinskiy, A. Artyukhov, M. Kononenko, J. Krmela
The aim of the article is a theoretical description and experimental study of the melt jet expiration process from a perforated shell of a vibrating granulator. Mathematical modeling of hydrodynamic flows was carried out based on the points of classical fluid and gas mechanics and technical hydromechanics. Reliability of the obtained experimental results is based on the application of time-tested in practice methods. Hydrodynamic properties of the liquid jet outflow were obtained. The presented mathematical model allows calculation of the radial component of the jet outflow velocity, as well as determination of the influences of physical and chemical properties of the liquid and the outflow hole diameter on the jet length and flow velocity along the axis to its disintegration into separated drops. The developed mathematical model extended with the theoretical description of the melt dispersion process from rotating perforated shells allowed us to improve design of the granulator to stabilize hydrodynamic parameters of the melt movement. The nitrogen fertilizers melt disperser was investigated regarding industrial-scale production and operating parameters of the process of jet decay into drops, drop size and monodispersity level were optimized.
{"title":"Decay of the melt stream during dispersion in granulation devices","authors":"V. Sklabinskiy, A. Artyukhov, M. Kononenko, J. Krmela","doi":"10.2298/hemind190422025s","DOIUrl":"https://doi.org/10.2298/hemind190422025s","url":null,"abstract":"The aim of the article is a theoretical description and experimental study of the melt jet expiration process from a perforated shell of a vibrating granulator. Mathematical modeling of hydrodynamic flows was carried out based on the points of classical fluid and gas mechanics and technical hydromechanics. Reliability of the obtained experimental results is based on the application of time-tested in practice methods. Hydrodynamic properties of the liquid jet outflow were obtained. The presented mathematical model allows calculation of the radial component of the jet outflow velocity, as well as determination of the influences of physical and chemical properties of the liquid and the outflow hole diameter on the jet length and flow velocity along the axis to its disintegration into separated drops. The developed mathematical model extended with the theoretical description of the melt dispersion process from rotating perforated shells allowed us to improve design of the granulator to stabilize hydrodynamic parameters of the melt movement. The nitrogen fertilizers melt disperser was investigated regarding industrial-scale production and operating parameters of the process of jet decay into drops, drop size and monodispersity level were optimized.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"159 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86339123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-02DOI: 10.2298/hemind190626021d
M. Djuris, T. Kaludjerovic-Radoicic, Darko Jacimovski, Z. Arsenijević
In this paper, an innovative fluidized bed dryer with inert particles is presented. The system can be used for drying of solutions, suspensions and pastes in order to obtain a powdered product. The experiments were performed in a pilot-scale dryer with a cylindrical column 0.215 m in diameter and 1.2 mm height, with glass spheres as inert particles. The material used for drying was CuSO4 solution. The effects of operating conditions on the dryer throughput and product quality were investigated. Main performance criteria, i.e. specific water evaporation rate, specific heat consumption and specific air consumption, were quantified. Nearly isothermal conditions were found due to thorough mixing of the particles. The energy efficiency of the dryer was also assessed. Simple heat and mass balances predicted the dryer performance quite well.
{"title":"High efficiency disperse dryer - an innovative process for drying of solutions, suspensions and pastes in a fluidized bed of inert particles","authors":"M. Djuris, T. Kaludjerovic-Radoicic, Darko Jacimovski, Z. Arsenijević","doi":"10.2298/hemind190626021d","DOIUrl":"https://doi.org/10.2298/hemind190626021d","url":null,"abstract":"In this paper, an innovative fluidized bed dryer with inert particles is\u0000 presented. The system can be used for drying of solutions, suspensions and\u0000 pastes in order to obtain a powdered product. The experiments were performed\u0000 in a pilot-scale dryer with a cylindrical column 0.215 m in diameter and 1.2\u0000 mm height, with glass spheres as inert particles. The material used for\u0000 drying was CuSO4 solution. The effects of operating conditions on the dryer\u0000 throughput and product quality were investigated. Main performance criteria,\u0000 i.e. specific water evaporation rate, specific heat consumption and specific\u0000 air consumption, were quantified. Nearly isothermal conditions were found\u0000 due to thorough mixing of the particles. The energy efficiency of the dryer\u0000 was also assessed. Simple heat and mass balances predicted the dryer\u0000 performance quite well.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84559632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-02DOI: 10.2298/HEMIND190504020P
Violeta Petrovic, Jovana N Stašić, Vojislav Komlenic, Tatjana Savić-Stanković, M. Latkovic, V. Miletic
The objective of this study was to measure temperature changes in the pulp chamber induced by polymerization of resin-based dental restoratives following a simulated procedure of direct pulp capping. Class I cavities with a microperforation at the pulp horn were prepared in extracted human molar teeth. The complete procedure of direct pulp capping and cavity restoration was performed with the root part of extracted teeth fixed in a water bath at 37 ?C. Mineral trioxide aggregate, bioactive dentin substitute or calcium-hydroxide paste were used as pulp capping materials. Cavities were restored with a light-cured or chemically-cured resin-modified glass ionomer, universal adhesive and a bulk-fill composite, cured with a high-intensity LED unit. Pulp capping materials caused a slight temperature decrease. Lower temperature increase was recorded during light-curing of the glass ionomer liner after direct capping with mineral trioxide aggregate and calcium-hydroxide than that recorded for the bioactive dentin substitute. Adhesive light-curing increased temperature in all groups with higher mean temperatures in groups with chemically-cured as compared to those for the light-cured glass ionomer liner. Direct pulp capping with mineral trioxide aggregate or calcium-hydroxide followed by the light-cured resin-modified glass ionomer liner and a bonded bulk-fill composite restoration induced temperature changes below the potentially adverse threshold of 42.5?C.
{"title":"Temperature changes in the pulp chamber induced by polymerization of resin-based dental restoratives following simulated direct pulp capping","authors":"Violeta Petrovic, Jovana N Stašić, Vojislav Komlenic, Tatjana Savić-Stanković, M. Latkovic, V. Miletic","doi":"10.2298/HEMIND190504020P","DOIUrl":"https://doi.org/10.2298/HEMIND190504020P","url":null,"abstract":"The objective of this study was to measure temperature changes in the pulp chamber induced by polymerization of resin-based dental restoratives following a simulated procedure of direct pulp capping. Class I cavities with a microperforation at the pulp horn were prepared in extracted human molar teeth. The complete procedure of direct pulp capping and cavity restoration was performed with the root part of extracted teeth fixed in a water bath at 37 ?C. Mineral trioxide aggregate, bioactive dentin substitute or calcium-hydroxide paste were used as pulp capping materials. Cavities were restored with a light-cured or chemically-cured resin-modified glass ionomer, universal adhesive and a bulk-fill composite, cured with a high-intensity LED unit. Pulp capping materials caused a slight temperature decrease. Lower temperature increase was recorded during light-curing of the glass ionomer liner after direct capping with mineral trioxide aggregate and calcium-hydroxide than that recorded for the bioactive dentin substitute. Adhesive light-curing increased temperature in all groups with higher mean temperatures in groups with chemically-cured as compared to those for the light-cured glass ionomer liner. Direct pulp capping with mineral trioxide aggregate or calcium-hydroxide followed by the light-cured resin-modified glass ionomer liner and a bonded bulk-fill composite restoration induced temperature changes below the potentially adverse threshold of 42.5?C.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82258175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-02DOI: 10.2298/hemind190824024o
B. Obradovic
nema
{"title":"Innovation competitions - means to generate valuable ideas, advance products and technologies, and enhance entrepreneurial skills","authors":"B. Obradovic","doi":"10.2298/hemind190824024o","DOIUrl":"https://doi.org/10.2298/hemind190824024o","url":null,"abstract":"<jats:p>nema</jats:p>","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74391218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}