Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other but non-superimposable. Even though enantiomers share most chemical and physical properties, they may differ greatly in their (bio-)chemical activities, which turns chirality into a key design feature for (bio-)chemical function. In this spirit, the incorporation of chiral structures into photochemical systems has emerged as a powerful strategy to control their functions. For example, uni-directional molecular motors, chiral photocatalysts, and chiral metal nanostructures permit new levels of stereocontrol over mechanical motion, energy transfer, and electric charge-carriers on the nanoscale. However, the direct characterization of the underlying chiral photoexcited states remains a formidable experimental challenge - especially in the native solution phase of many photochemical processes. Crucially, this requires analytical techniques that combine a high chiral sensitivity in solution with ultrafast time resolution to capture the excited state dynamics. This brief perspective article presents recent progress in the development of ultrafast chiral spectroscopy techniques that address this challenge.
{"title":"Capturing the Chirality of Photoexcited States with Ultrafast Circular Dichroism.","authors":"Malte Oppermann","doi":"10.2533/chimia.2024.45","DOIUrl":"https://doi.org/10.2533/chimia.2024.45","url":null,"abstract":"<p><p>Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other but non-superimposable. Even though enantiomers share most chemical and physical properties, they may differ greatly in their (bio-)chemical activities, which turns chirality into a key design feature for (bio-)chemical function. In this spirit, the incorporation of chiral structures into photochemical systems has emerged as a powerful strategy to control their functions. For example, uni-directional molecular motors, chiral photocatalysts, and chiral metal nanostructures permit new levels of stereocontrol over mechanical motion, energy transfer, and electric charge-carriers on the nanoscale. However, the direct characterization of the underlying chiral photoexcited states remains a formidable experimental challenge - especially in the native solution phase of many photochemical processes. Crucially, this requires analytical techniques that combine a high chiral sensitivity in solution with ultrafast time resolution to capture the excited state dynamics. This brief perspective article presents recent progress in the development of ultrafast chiral spectroscopy techniques that address this challenge.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"45-49"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modern societies rely heavily on centralized industrial processes to generate a multitude of products ranging from electrical energy to synthetic chemical building blocks to construction materials. To date, these processes have relied extensively on energy produced from fossil fuels, which has led to dramatically increased quantities of greenhouse gases (including carbon dioxide) being released into the atmosphere; the effects of the ensuing change to our climate are easily observed in day-to-day life. Some of the reactions catalyzed by these industrial processes can be catalyzed in nature by metal-containing enzymes (metalloenzymes) that have evolved over the course of up to 3.8 billion years to do so under mild physiological conditions using Earth-abundant metals. While such metalloenzymes could in principle facilitate the implementation of carbon-neutral processes around the globe, either in "bio-inspired" catalyst design or even by direct exploitation, many remaining questions surrounding their mechanisms often preclude both options. Here, our recent efforts in understanding and applying metalloenzymes that catalyze reactions such as dinitrogen reduction to ammonia or proton reduction to molecular hydrogen are discussed. In closing, an opinion on the question: "Can these types of enzymes really be used in new biotechnologies?" is offered.
{"title":"Electron-Transferring Metalloenzymes and their Potential Biotechnological Applications.","authors":"Ross D Milton","doi":"10.2533/chimia.2024.13","DOIUrl":"10.2533/chimia.2024.13","url":null,"abstract":"<p><p>Modern societies rely heavily on centralized industrial processes to generate a multitude of products ranging from electrical energy to synthetic chemical building blocks to construction materials. To date, these processes have relied extensively on energy produced from fossil fuels, which has led to dramatically increased quantities of greenhouse gases (including carbon dioxide) being released into the atmosphere; the effects of the ensuing change to our climate are easily observed in day-to-day life. Some of the reactions catalyzed by these industrial processes can be catalyzed in nature by metal-containing enzymes (metalloenzymes) that have evolved over the course of up to 3.8 billion years to do so under mild physiological conditions using Earth-abundant metals. While such metalloenzymes could in principle facilitate the implementation of carbon-neutral processes around the globe, either in \"bio-inspired\" catalyst design or even by direct exploitation, many remaining questions surrounding their mechanisms often preclude both options. Here, our recent efforts in understanding and applying metalloenzymes that catalyze reactions such as dinitrogen reduction to ammonia or proton reduction to molecular hydrogen are discussed. In closing, an opinion on the question: \"Can these types of enzymes really be used in new biotechnologies?\" is offered.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"13-21"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetic code expansion (GCE) can enable the site-selective incorporation of non-canonical amino acids (ncAAs) into proteins. GCE has advanced tremendously in the last decade and can be used to create biorthogonal handles, monitor and control proteins inside cells, study post-translational modifications, and engineer new protein functions. Since establishing our laboratory, our research has focused on applications of GCE in protein and enzyme engineering using aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. This topic has been reviewed extensively, leaving little doubt that GCE is a powerful tool for engineering proteins and enzymes. Therefore, for this young faculty issue, we wanted to provide a more technical look into the methods we use and the challenges we think about in our laboratory. Since starting the laboratory, we have successfully engineered over a dozen novel aaRS/tRNA pairs tailored for various GCE applications. However, we acknowledge that the field can pose challenges even for experts. Thus, herein, we provide a review of methodologies in ncAA incorporation with some practical commentary and a focus on challenges, emerging solutions, and exciting developments.
{"title":"Practical Approaches to Genetic Code Expansion with Aminoacyl-tRNA Synthetase/tRNA Pairs.","authors":"Anton Natter Perdiguero, Alexandria Deliz Liang","doi":"10.2533/chimia.2024.22","DOIUrl":"10.2533/chimia.2024.22","url":null,"abstract":"<p><p>Genetic code expansion (GCE) can enable the site-selective incorporation of non-canonical amino acids (ncAAs) into proteins. GCE has advanced tremendously in the last decade and can be used to create biorthogonal handles, monitor and control proteins inside cells, study post-translational modifications, and engineer new protein functions. Since establishing our laboratory, our research has focused on applications of GCE in protein and enzyme engineering using aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. This topic has been reviewed extensively, leaving little doubt that GCE is a powerful tool for engineering proteins and enzymes. Therefore, for this young faculty issue, we wanted to provide a more technical look into the methods we use and the challenges we think about in our laboratory. Since starting the laboratory, we have successfully engineered over a dozen novel aaRS/tRNA pairs tailored for various GCE applications. However, we acknowledge that the field can pose challenges even for experts. Thus, herein, we provide a review of methodologies in ncAA incorporation with some practical commentary and a focus on challenges, emerging solutions, and exciting developments.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"22-31"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The addition of individual quanta of rotational excitation to a molecule has been shown to markedly change its reactivity by significantly modifying the intermolecular interactions. So far, it has only been possible to observe these rotational effects in a very limited number of systems due to lack of rotational selectivity in chemical reaction experiments. The recent development of rotationally controlled molecular beams now makes such investigations possible for a wide range of systems. This is particularly crucial in order to understand the chemistry occurring in the interstellar medium, such as exploring the formation of carbon-based astrochemical molecules and the emergence of molecular complexity in interstellar space from the reaction of small atomic and molecular fragments.
{"title":"Rotational-state-selected Carbon Astrochemistry.","authors":"Jutta Toscano","doi":"10.2533/chimia.2024.40","DOIUrl":"https://doi.org/10.2533/chimia.2024.40","url":null,"abstract":"<p><p>The addition of individual quanta of rotational excitation to a molecule has been shown to markedly change its reactivity by significantly modifying the intermolecular interactions. So far, it has only been possible to observe these rotational effects in a very limited number of systems due to lack of rotational selectivity in chemical reaction experiments. The recent development of rotationally controlled molecular beams now makes such investigations possible for a wide range of systems. This is particularly crucial in order to understand the chemistry occurring in the interstellar medium, such as exploring the formation of carbon-based astrochemical molecules and the emergence of molecular complexity in interstellar space from the reaction of small atomic and molecular fragments.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"40-44"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitro compounds play a crucial role in academia and industries, serving as building blocks for the synthesis of drugs, agrochemicals, and materials. Nitration, a fundamental process in organic synthesis, has undergone significant evolution since the 19th century. While electrophilic nitration dominates historically, recent decades have seen a focus on new reagents and their reactivity modes for achieving mild and robust synthesis of nitro compounds. Our group has a longstanding interest in developing cost-effective, readily available, recyclable nitrating reagents derived from organic scaffolds. These reagents serve as a controllable source of nitryl radical and nitronium ion species, enabling mild and practical nitration of hydrocarbons with exceptional functional group tolerance. This account details the development of nitrating reagents and their diverse applications in catalytic nitration across various classes of organic molecules.
{"title":"Simplifying Nitration Chemistry with Bench-stable Organic Nitrating Reagents.","authors":"Subrata Patra, Vasiliki Valsamidou, Dmitry Katayev","doi":"10.2533/chimia.2024.32","DOIUrl":"https://doi.org/10.2533/chimia.2024.32","url":null,"abstract":"<p><p>Nitro compounds play a crucial role in academia and industries, serving as building blocks for the synthesis of drugs, agrochemicals, and materials. Nitration, a fundamental process in organic synthesis, has undergone significant evolution since the 19th century. While electrophilic nitration dominates historically, recent decades have seen a focus on new reagents and their reactivity modes for achieving mild and robust synthesis of nitro compounds. Our group has a longstanding interest in developing cost-effective, readily available, recyclable nitrating reagents derived from organic scaffolds. These reagents serve as a controllable source of nitryl radical and nitronium ion species, enabling mild and practical nitration of hydrocarbons with exceptional functional group tolerance. This account details the development of nitrating reagents and their diverse applications in catalytic nitration across various classes of organic molecules.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"32-39"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natercia Barbosa, Oscar Urquidi, Johanna Brazard, Takuji B M Adachi
Morphology governs function. Yet, understanding and controlling the emergence of morphology at the molecular level remains challenging. The difficulty in studying the early stage of morphology formation is due to its stochastic nature both spatially and temporally occurring at the nanoscale. This nature has been particularly detrimental for the application of optical spectroscopy. To overcome this problem, we have been developing new in situ/in vivo optical spectroscopy tools, which are label-free and non-invasive. This account highlights several examples of how optical spectroscopy can become an important tool in studying the birth of morphology.
{"title":"In situ/In vivo Optical Microspectroscopy to Probe the Emergence of Morphology.","authors":"Natercia Barbosa, Oscar Urquidi, Johanna Brazard, Takuji B M Adachi","doi":"10.2533/chimia.2024.50","DOIUrl":"10.2533/chimia.2024.50","url":null,"abstract":"<p><p>Morphology governs function. Yet, understanding and controlling the emergence of morphology at the molecular level remains challenging. The difficulty in studying the early stage of morphology formation is due to its stochastic nature both spatially and temporally occurring at the nanoscale. This nature has been particularly detrimental for the application of optical spectroscopy. To overcome this problem, we have been developing new in situ/in vivo optical spectroscopy tools, which are label-free and non-invasive. This account highlights several examples of how optical spectroscopy can become an important tool in studying the birth of morphology.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 1-2","pages":"50-58"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arpa Ghosh, Remy Buser, Florent Héroguel, Jeremy Luterbacher
All three natural polymers of biomass and the monomer platforms derived from them present multiple avenues to develop products from specialty to bulk markets, which could serve as entry points into the industry for bio based sustainable materials. However, several roadblocks still exist in the pathway of technology development of these materials due to challenges related to cost-competitiveness, scalability, performance and sustainability. This review outlines these major technical challenges as four key checkpoints (cost-competitive, scalability, sustainability, performance) to be addressed for successful market entry of a new sustainable material.
{"title":"Sustainable Materials: Production Methods and End-of-life Strategies.","authors":"Arpa Ghosh, Remy Buser, Florent Héroguel, Jeremy Luterbacher","doi":"10.2533/chimia.2023.848","DOIUrl":"https://doi.org/10.2533/chimia.2023.848","url":null,"abstract":"<p><p>All three natural polymers of biomass and the monomer platforms derived from them present multiple avenues to develop products from specialty to bulk markets, which could serve as entry points into the industry for bio based sustainable materials. However, several roadblocks still exist in the pathway of technology development of these materials due to challenges related to cost-competitiveness, scalability, performance and sustainability. This review outlines these major technical challenges as four key checkpoints (cost-competitive, scalability, sustainability, performance) to be addressed for successful market entry of a new sustainable material.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"77 12","pages":"848-857"},"PeriodicalIF":1.2,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saurabh Awasthi, Liviana Mummolo, Yuanjie Li, Louise Bryan, P. Nirmalraj, Sandor Balog, Jerry Yang, Michael Mayer
{"title":"Fluorescently Labelled Tau Protein","authors":"Saurabh Awasthi, Liviana Mummolo, Yuanjie Li, Louise Bryan, P. Nirmalraj, Sandor Balog, Jerry Yang, Michael Mayer","doi":"10.2533/chimia.2023.","DOIUrl":"https://doi.org/10.2533/chimia.2023.","url":null,"abstract":"","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"27 6","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138955807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Ethics Series is a workshop tour on the wide-ranging topic of ethics in chemistry organized on a regular basis by the Platform Chemistry of the Swiss Academy of Sciences (SCNAT). The Ethics Series addresses all researchers in chemistry and has the aim to sensitize the audience for timely topics on issues such as the previously addressed topics of scientific integrity, social responsibility or overselling in publications. Internationally renowned speakers are invited to give a series of lectures at Swiss universities and federal institutes of technology, jointly with local speakers. The format is similar to the "world café" style: short introductory lectures, break-out sessions to discuss specific topics, reports to the plenary followed by a discussion with audience participation. This year’s topic was on Recognizing and Overcoming Bias and took place from June 7 – June 9, 2023. Prof. Lee Penn and local panellists discussed a variety of questions arising around bias.
{"title":"SCNAT Ethics Series on Recognizing and Overcoming Bias","authors":"Sandra Hofmann","doi":"10.2533/chimia.2023.883","DOIUrl":"https://doi.org/10.2533/chimia.2023.883","url":null,"abstract":"The Ethics Series is a workshop tour on the wide-ranging topic of ethics in chemistry organized on a regular basis by the Platform Chemistry of the Swiss Academy of Sciences (SCNAT). The Ethics Series addresses all researchers in chemistry and has the aim to sensitize the audience for timely topics on issues such as the previously addressed topics of scientific integrity, social responsibility or overselling in publications. Internationally renowned speakers are invited to give a series of lectures at Swiss universities and federal institutes of technology, jointly with local speakers.\u0000The format is similar to the \"world café\" style: short introductory lectures, break-out sessions to discuss specific topics, reports to the plenary followed by a discussion with audience participation. This year’s topic was on Recognizing and Overcoming Bias and took place from June 7 – June 9, 2023. Prof. Lee Penn and local panellists discussed a variety of questions arising around bias.","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"3 17","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138956497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}