Pub Date : 2022-11-18DOI: 10.15826/chimtech.2022.9.4.21
A. Biryukov, D. Zakharyevich, T. Batmanova, R. Galin, Maksim N. Ulyanov, V. Zhivulin
Diffusion galvanizing is widely used in the pipe industry for coating the threaded surface of pipe couplings, protecting water and gas pipelines, and other metal products. Diffusion coatings have a number of advantages over other types of zinc coatings. In this work, electrochemical and gravimetric methods are used to study the corrosion behavior of diffusion zinc coatings in sodium chloride solutions. The corrosion rate depends non-linearly on the thickness of the coating. At the initial stages, the corrosion rate of coatings depends on the structure of the phases on the surface, and with an increase in the holding time, the corrosion rate depends to a greater extent on the properties of the products formed during the corrosion process. Films of corrosion products of diffusion zinc coatings consist of zinc oxide/hydroxide and basic zinc salts, while the composition of the film changes with increasing coating thickness.
{"title":"Corrosion of diffusion zinc coatings in sodium chloride solutions","authors":"A. Biryukov, D. Zakharyevich, T. Batmanova, R. Galin, Maksim N. Ulyanov, V. Zhivulin","doi":"10.15826/chimtech.2022.9.4.21","DOIUrl":"https://doi.org/10.15826/chimtech.2022.9.4.21","url":null,"abstract":"Diffusion galvanizing is widely used in the pipe industry for coating the threaded surface of pipe couplings, protecting water and gas pipelines, and other metal products. Diffusion coatings have a number of advantages over other types of zinc coatings. In this work, electrochemical and gravimetric methods are used to study the corrosion behavior of diffusion zinc coatings in sodium chloride solutions. The corrosion rate depends non-linearly on the thickness of the coating. At the initial stages, the corrosion rate of coatings depends on the structure of the phases on the surface, and with an increase in the holding time, the corrosion rate depends to a greater extent on the properties of the products formed during the corrosion process. Films of corrosion products of diffusion zinc coatings consist of zinc oxide/hydroxide and basic zinc salts, while the composition of the film changes with increasing coating thickness.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46800571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-17DOI: 10.15826/chimtech.2022.9.4.20
A. Rabadanova, M. Abdurakhmanov, R. Gulakhmedov, A. Shuaibov, D. Selimov, D. Sobola, K. Částková, Shikhgasan Ramazanov, F. Orudzhev
A composite material based on polyvinylidene fluoride (PVDF) nanofibers modified with cetyltrimethylammonium bromide (CTAB) was synthesized by coaxial electrospinning. The morphology and structure of the material were studied by SEM, FTIR spectroscopy, X-ray diffraction analysis, XPS, and the piezo-photo- and piezo-photocatalytic activity during the decomposition of the organic dye Methylene blue (MB) was studied. It is shown that the addition of CTAB promotes additional polarization of the PVDF structure due to ion-dipole interaction. It has been shown for the first time that the addition of CTAB promotes the photosensitivity of the wide-gap dielectric polymer PVDF (the band gap is more than 6 eV). It was demonstrated that the photocatalytic decomposition efficiency was 91% in 60 minutes. The material exhibits piezocatalytic activity – 73% in 60 minutes. Experiments on trapping active oxidizing forms have established that OH hydroxyl radicals play the main role in the photocatalytic process.
{"title":"Piezo-, photo- and piezophotocatalytic activity of electrospun fibrous PVDF/CTAB membrane","authors":"A. Rabadanova, M. Abdurakhmanov, R. Gulakhmedov, A. Shuaibov, D. Selimov, D. Sobola, K. Částková, Shikhgasan Ramazanov, F. Orudzhev","doi":"10.15826/chimtech.2022.9.4.20","DOIUrl":"https://doi.org/10.15826/chimtech.2022.9.4.20","url":null,"abstract":"A composite material based on polyvinylidene fluoride (PVDF) nanofibers modified with cetyltrimethylammonium bromide (CTAB) was synthesized by coaxial electrospinning. The morphology and structure of the material were studied by SEM, FTIR spectroscopy, X-ray diffraction analysis, XPS, and the piezo-photo- and piezo-photocatalytic activity during the decomposition of the organic dye Methylene blue (MB) was studied. It is shown that the addition of CTAB promotes additional polarization of the PVDF structure due to ion-dipole interaction. It has been shown for the first time that the addition of CTAB promotes the photosensitivity of the wide-gap dielectric polymer PVDF (the band gap is more than 6 eV). It was demonstrated that the photocatalytic decomposition efficiency was 91% in 60 minutes. The material exhibits piezocatalytic activity – 73% in 60 minutes. Experiments on trapping active oxidizing forms have established that OH hydroxyl radicals play the main role in the photocatalytic process.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42063370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-16DOI: 10.15826/chimtech.2022.9.4.19
Megha G.V., Y. Bodke, S. H., M. N. Joy
Herein, an efficient and convenient method for the synthesis of 4-(substitutedphenyl)-1,2-dihydro-2-oxo-6-(2-oxo-2H-benzo[g]chromen-3-yl)pyridine-3-carbonitrile derivatives have been reported using ammonium acetate as catalyst. The structures of synthesized compounds were confirmed using FT-IR, 1H, 13C-NMR and LC-MS spectroscopic techniques. The synthesized compounds have been evaluated for antibacterial activity against bacterial strains by agar diffusion method at different concentrations. Further, all the targeted compounds were screened for anti-oxidant and anti-cancer studies by DPPH and MTT assay methods at different concentrations. Compound 4b displayed good antioxidant and anticancer (against MCF-7 cell line) activity. Further, the binding capability for the synthesized compounds (4a–j) was analyzed by molecular docking studies using human peroxiredoxin 5 (PDB ID: 1HD2) and P38 MAP kinase (PDB ID: 1OUK) protein. Further, the physicochemical properties were analysed from ADME studies respectively.
{"title":"Substituted benzocoumarin derivatives: synthesis, characterization, biological activities and molecular docking with ADME studies","authors":"Megha G.V., Y. Bodke, S. H., M. N. Joy","doi":"10.15826/chimtech.2022.9.4.19","DOIUrl":"https://doi.org/10.15826/chimtech.2022.9.4.19","url":null,"abstract":"Herein, an efficient and convenient method for the synthesis of 4-(substitutedphenyl)-1,2-dihydro-2-oxo-6-(2-oxo-2H-benzo[g]chromen-3-yl)pyridine-3-carbonitrile derivatives have been reported using ammonium acetate as catalyst. The structures of synthesized compounds were confirmed using FT-IR, 1H, 13C-NMR and LC-MS spectroscopic techniques. The synthesized compounds have been evaluated for antibacterial activity against bacterial strains by agar diffusion method at different concentrations. Further, all the targeted compounds were screened for anti-oxidant and anti-cancer studies by DPPH and MTT assay methods at different concentrations. Compound 4b displayed good antioxidant and anticancer (against MCF-7 cell line) activity. Further, the binding capability for the synthesized compounds (4a–j) was analyzed by molecular docking studies using human peroxiredoxin 5 (PDB ID: 1HD2) and P38 MAP kinase (PDB ID: 1OUK) protein. Further, the physicochemical properties were analysed from ADME studies respectively.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41764767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-10DOI: 10.15826/chimtech.2022.9.4.18
T. Vereshchagina, E. Kutikhina, O. Buyko, A. Anshits
The paper is concerned with (i) the hydrothermal synthesis of hydrous zirconium dioxide (HZD) bearing analcime (HZD-ANA, zirconia-analcime) and (ii) its sorption properties with respect to Cs+ and Sr2+. The HZD-ANA particles were synthesized from coal fly ash cenospheres composed of aluminosilicate glass with (SiO2/Al2O3)wt.=3.1 and characterized by PXRD, SEM-EDS, STA, and low-temperature N2 adsorption. The non-radioactive simulant solutions of different acidity (pH=2–10) and Cs+/Sr2+ content (0.5–50.0 mg/L) were used in the work. The effect of synthesis conditions on the HZD-ANA particle size, zirconia content and localization as well as the sorption behavior with respect to Cs+ and Sr2+ (capacity, KD) were clarified. It was found that the small-sized HZD-ANA composites surpasses the Zr free analcime and large-sized HZD-ANA material in the Cs+ and Sr2+ sorption parameters (KD ~104–106 mL/g). The conditions to synthesize the zirconia-analcime composite of the highly enhanced sorption ability with respect to Sr2+ (KD ~106 mL/g) were determined. The high-temperature solid-phase re-crystallization of Cs+/Sr2+-exchanged HZD-ANA composites was shown to occur at 1000 °C resulting in a polyphase system based on nepheline, tetragonal ZrO2, and glass phase.
{"title":"Hydrothermal synthesis and sorption performance to Cs(I) and Sr(II) of zirconia-analcime composites derived from coal fly ash cenospheres","authors":"T. Vereshchagina, E. Kutikhina, O. Buyko, A. Anshits","doi":"10.15826/chimtech.2022.9.4.18","DOIUrl":"https://doi.org/10.15826/chimtech.2022.9.4.18","url":null,"abstract":"The paper is concerned with (i) the hydrothermal synthesis of hydrous zirconium dioxide (HZD) bearing analcime (HZD-ANA, zirconia-analcime) and (ii) its sorption properties with respect to Cs+ and Sr2+. The HZD-ANA particles were synthesized from coal fly ash cenospheres composed of aluminosilicate glass with (SiO2/Al2O3)wt.=3.1 and characterized by PXRD, SEM-EDS, STA, and low-temperature N2 adsorption. The non-radioactive simulant solutions of different acidity (pH=2–10) and Cs+/Sr2+ content (0.5–50.0 mg/L) were used in the work. The effect of synthesis conditions on the HZD-ANA particle size, zirconia content and localization as well as the sorption behavior with respect to Cs+ and Sr2+ (capacity, KD) were clarified. It was found that the small-sized HZD-ANA composites surpasses the Zr free analcime and large-sized HZD-ANA material in the Cs+ and Sr2+ sorption parameters (KD ~104–106 mL/g). The conditions to synthesize the zirconia-analcime composite of the highly enhanced sorption ability with respect to Sr2+ (KD ~106 mL/g) were determined. The high-temperature solid-phase re-crystallization of Cs+/Sr2+-exchanged HZD-ANA composites was shown to occur at 1000 °C resulting in a polyphase system based on nepheline, tetragonal ZrO2, and glass phase.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47065361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-07DOI: 10.15826/chimtech.2022.9.4.17
I. S. Shchemelev, Danil S. Khasanov, M. Smirnova, A. Ivanov, N. B. Ferapontov, M. Tokmachev
The present article deals with the determination of the total amount of glucose and fructose in natural honey samples by the optical micrometry (OM) method. (Poly)vinyl alcohol spherical granules impregnated with a 0.05 mol/l borax solution were chosen as a sensitive element. It was shown that the formation of chelate esters of boron with polymer and carbohydrates is a pH-dependent process, and that the pH range 8.5–10.0 is the most appropriate for quantifying the total amount of reducing carbohydrates because glucose and fructose are undiscriminated. The impregnated polymer is not sensitive to the sucrose presence in the solution due to the absence of cis-diol fragments in it. Subsequently, the OM method was tested in the analysis of natural honey samples. The relative standart deviation in the case of OM method is less than 6%, and the results are similar to those obtained by the iodometric titration method. This makes the OM method suitable for laboratory-scale applications.
{"title":"Determination of reducing carbohydrates in natural honey samples by optical micrometry method","authors":"I. S. Shchemelev, Danil S. Khasanov, M. Smirnova, A. Ivanov, N. B. Ferapontov, M. Tokmachev","doi":"10.15826/chimtech.2022.9.4.17","DOIUrl":"https://doi.org/10.15826/chimtech.2022.9.4.17","url":null,"abstract":"The present article deals with the determination of the total amount of glucose and fructose in natural honey samples by the optical micrometry (OM) method. (Poly)vinyl alcohol spherical granules impregnated with a 0.05 mol/l borax solution were chosen as a sensitive element. It was shown that the formation of chelate esters of boron with polymer and carbohydrates is a pH-dependent process, and that the pH range 8.5–10.0 is the most appropriate for quantifying the total amount of reducing carbohydrates because glucose and fructose are undiscriminated. The impregnated polymer is not sensitive to the sucrose presence in the solution due to the absence of cis-diol fragments in it. Subsequently, the OM method was tested in the analysis of natural honey samples. The relative standart deviation in the case of OM method is less than 6%, and the results are similar to those obtained by the iodometric titration method. This makes the OM method suitable for laboratory-scale applications.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49664017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-25DOI: 10.15826/chimtech.2022.9.4.16
L. H. Q. Anh, Uyen P. N. Tran, P. V. G. Nghi, H. T. Le, N. T. B. Khuyen, T. Hai
In this study, titanium dioxide (TiO2) and titanium dioxide – activated carbon composite (TiO2–AC) were prepared by sol-gel method for photoelectrochemical (PEC) applications. Characterization of the materials was performed by scanning electron microscope, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and diffuse reflectance spectroscopy. The results show that TiO2 was successfully loaded on activated carbon (AC), producing TiO2–AC with 2.61 eV of bandgap energy, lower than that of TiO2 (3.15 eV). Photoanodes based on TiO2 and TiO2–AC were fabricated and applied to PEC experiments for phenol degradation. In comparison with the TiO2 photoanode, the TiO2–AC one exhibited superior photocatalytic activity, which was indicated by a high current density and effective phenol removal. A mechanism of phenol PEC degradation on the TiO2–AC photoanode was proposed, which includes interaction between protonated phenol and active sites bearing oxygen on the photoanode surface. A kinetic model according to this mechanism was also established and fitted to experimental findings, resulting in rate constants of elementary reactions.
{"title":"Titanium dioxide - activated carbon composite for photoelectrochemical degradation of phenol","authors":"L. H. Q. Anh, Uyen P. N. Tran, P. V. G. Nghi, H. T. Le, N. T. B. Khuyen, T. Hai","doi":"10.15826/chimtech.2022.9.4.16","DOIUrl":"https://doi.org/10.15826/chimtech.2022.9.4.16","url":null,"abstract":"In this study, titanium dioxide (TiO2) and titanium dioxide – activated carbon composite (TiO2–AC) were prepared by sol-gel method for photoelectrochemical (PEC) applications. Characterization of the materials was performed by scanning electron microscope, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and diffuse reflectance spectroscopy. The results show that TiO2 was successfully loaded on activated carbon (AC), producing TiO2–AC with 2.61 eV of bandgap energy, lower than that of TiO2 (3.15 eV). Photoanodes based on TiO2 and TiO2–AC were fabricated and applied to PEC experiments for phenol degradation. In comparison with the TiO2 photoanode, the TiO2–AC one exhibited superior photocatalytic activity, which was indicated by a high current density and effective phenol removal. A mechanism of phenol PEC degradation on the TiO2–AC photoanode was proposed, which includes interaction between protonated phenol and active sites bearing oxygen on the photoanode surface. A kinetic model according to this mechanism was also established and fitted to experimental findings, resulting in rate constants of elementary reactions.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46912170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-19DOI: 10.15826/chimtech.2022.9.4.15
N. Tarasova
Materials with perovskite or perovskite-related structure have many applications because of theirs different physical and chemical properties. These applications are extremely diverse and cover different fields including hydrogen energy. Layered perovskites with Ruddlesden-Popper structure constitute a novel class of ionic conductors. In this paper, the effect of acceptor doping on the local structure and its relationship with transport properties were shown for layered perovskites based on BaLa2In2O7 for the first time. The geometric factor (the increase in the unit cell volume due to the increase in the ionic radii of cations) plays major role in the area of small dopant concentration (x 0.15). The concentration factor (the increase in the oxygen vacancy concentration) is more significant in the area of big dopant concentration (x 0.15). The acceptor doping is a promising way of improving the oxygen-ionic conductivity of layered perovskite BaLa2In2O7.
{"title":"Local structure and ionic transport in acceptor-doped layered perovskite BaLa2In2O7","authors":"N. Tarasova","doi":"10.15826/chimtech.2022.9.4.15","DOIUrl":"https://doi.org/10.15826/chimtech.2022.9.4.15","url":null,"abstract":"Materials with perovskite or perovskite-related structure have many applications because of theirs different physical and chemical properties. These applications are extremely diverse and cover different fields including hydrogen energy. Layered perovskites with Ruddlesden-Popper structure constitute a novel class of ionic conductors. In this paper, the effect of acceptor doping on the local structure and its relationship with transport properties were shown for layered perovskites based on BaLa2In2O7 for the first time. The geometric factor (the increase in the unit cell volume due to the increase in the ionic radii of cations) plays major role in the area of small dopant concentration (x 0.15). The concentration factor (the increase in the oxygen vacancy concentration) is more significant in the area of big dopant concentration (x 0.15). The acceptor doping is a promising way of improving the oxygen-ionic conductivity of layered perovskite BaLa2In2O7.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49156457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-10DOI: 10.15826/chimtech.2022.9.4.14
R. Andreev, D. Korona, I. Anokhina, I. Animitsa
The new phase Ba5In2Al2Zr0.9Nb0.1O13.05 with hexagonal perovskite structure was obtained. The substitution of Zr4+ by smaller Nb5+ was accompanied by the incorporation of the oxygen interstitials and did not lead to a significant change in the lattice parameters. It was established that the investigated sample was capable for water incorporation from the gas phase, the hydration degree value was 0.24 mol H2O. IR-spectroscopy analysis defined the presence of OH−-groups with different thermal stability, which participate in different hydrogen bonds. The new phase Ba5In2Al2Zr0.9Nb0.1O13.05 demonstrates the predominant protonic conductivity at pH2O = 2·10−2 atm and Т600 °C.
{"title":"Novel Nb5+-doped hexagonal perovskite Ba5In2Al2ZrO13 (structure, hydration, electrical conductivity)","authors":"R. Andreev, D. Korona, I. Anokhina, I. Animitsa","doi":"10.15826/chimtech.2022.9.4.14","DOIUrl":"https://doi.org/10.15826/chimtech.2022.9.4.14","url":null,"abstract":"The new phase Ba5In2Al2Zr0.9Nb0.1O13.05 with hexagonal perovskite structure was obtained. The substitution of Zr4+ by smaller Nb5+ was accompanied by the incorporation of the oxygen interstitials and did not lead to a significant change in the lattice parameters. It was established that the investigated sample was capable for water incorporation from the gas phase, the hydration degree value was 0.24 mol H2O. IR-spectroscopy analysis defined the presence of OH−-groups with different thermal stability, which participate in different hydrogen bonds. The new phase Ba5In2Al2Zr0.9Nb0.1O13.05 demonstrates the predominant protonic conductivity at pH2O = 2·10−2 atm and Т600 °C.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46521385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-13DOI: 10.15826/chimtech.2022.9.4.13
P. Shcherban, Yakov Masyutin, Anna Vatagina, M. Belova, Alexander Stolyarenko
The article analyzes the factors that determine the necessity of oil refinery construction in the Kaliningrad region of the Russian Federation. The assessment of the existing and prospective raw material base is performed. The data for the development of the feasibility study for an oil refinery construction are formed and analyzed. Taking into account the outdated data on the parameters of hydrocarbon raw materials produced in the region, as well as significant changes in the raw material base due to the tendency to develop offshore, rather than continental, fields the physical and chemical parameters of the oil fields of the Kaliningrad region are investigated for the possibility of their further use in oil refining in order to obtain high-quality gasoline and diesel fuel. The laboratory studies of oil samples on viscosity, density, fractional composition, content of sulfur, chloride salts, mechanical impurities, water, and flash point determination are carried out on the basis of the Russian state standards. The different variants of the refinery layouts are analyzed, considering the available raw material base. Taking into account the initial data obtained, a preliminary pre-design study of the technological scheme and the refinery mass balance is carried out and presented in the article.
{"title":"Investigation of physical and chemical parameters of the raw hydrocarbon material base of Kaliningrad region for the concept development of an oil refinery","authors":"P. Shcherban, Yakov Masyutin, Anna Vatagina, M. Belova, Alexander Stolyarenko","doi":"10.15826/chimtech.2022.9.4.13","DOIUrl":"https://doi.org/10.15826/chimtech.2022.9.4.13","url":null,"abstract":"The article analyzes the factors that determine the necessity of oil refinery construction in the Kaliningrad region of the Russian Federation. The assessment of the existing and prospective raw material base is performed. The data for the development of the feasibility study for an oil refinery construction are formed and analyzed. Taking into account the outdated data on the parameters of hydrocarbon raw materials produced in the region, as well as significant changes in the raw material base due to the tendency to develop offshore, rather than continental, fields the physical and chemical parameters of the oil fields of the Kaliningrad region are investigated for the possibility of their further use in oil refining in order to obtain high-quality gasoline and diesel fuel. The laboratory studies of oil samples on viscosity, density, fractional composition, content of sulfur, chloride salts, mechanical impurities, water, and flash point determination are carried out on the basis of the Russian state standards. The different variants of the refinery layouts are analyzed, considering the available raw material base. Taking into account the initial data obtained, a preliminary pre-design study of the technological scheme and the refinery mass balance is carried out and presented in the article.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45027428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-13DOI: 10.15826/chimtech.2022.9.4.12
Yury I. Komolikov, L. Ermakova, V. Khrustov, V. Zhuravlev
Thermal expansion of refractory ceramics CaZrO3, MgAl2O4, La2Zr2O7 and YSZ-12 was studied. The samples of the complex oxides were synthesized by solution combustion synthesis with glycine; the fuel:oxidant ratio was varied depending on the character of redox reaction. The linear thermal expansion coefficient (LTEC) of ceramics was measured on the samples with an initial density 23–52%. The maximal sinterability of 89–92% after 6 h annealing at 1550 °С was demonstrated by La2Zr2O7 and YSZ-12, and the minimal values (78–82%) – by CaZrO3 and MgAl2O4. All materials have close LTEC values, from 9.0 to 9.6·10–6 K–1.
{"title":"Dilatometric characteristics of weakly sintered ceramics","authors":"Yury I. Komolikov, L. Ermakova, V. Khrustov, V. Zhuravlev","doi":"10.15826/chimtech.2022.9.4.12","DOIUrl":"https://doi.org/10.15826/chimtech.2022.9.4.12","url":null,"abstract":"Thermal expansion of refractory ceramics CaZrO3, MgAl2O4, La2Zr2O7 and YSZ-12 was studied. The samples of the complex oxides were synthesized by solution combustion synthesis with glycine; the fuel:oxidant ratio was varied depending on the character of redox reaction. The linear thermal expansion coefficient (LTEC) of ceramics was measured on the samples with an initial density 23–52%. The maximal sinterability of 89–92% after 6 h annealing at 1550 °С was demonstrated by La2Zr2O7 and YSZ-12, and the minimal values (78–82%) – by CaZrO3 and MgAl2O4. All materials have close LTEC values, from 9.0 to 9.6·10–6 K–1.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41904401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}