首页 > 最新文献

Advanced Membranes最新文献

英文 中文
Industrial-scale 61-channel monolithic silicalite-1 membranes for butane isomer separation 用于丁烷异构体分离的工业规模 61 通道硅石-1 整体膜
Pub Date : 2024-01-01 DOI: 10.1016/j.advmem.2024.100096
Hongliang Hong , Kunlin Yu , Hongbin Liu, Rongfei Zhou, Weihong Xing

Developing energy-saving membrane and technology is important for the separation of hydrocarbon isomers to replace the energy-intensive distillation. Silicalite-1 membrane is a promising membrane material but difficult to be scaled up. In this work, separation performance of industrial-scale monolithic silicalite-1 membranes in term of actual butane mixtures has been reported for the first time. Each 61-channel monolithic membrane has effective area and surface-to-volume ratio of 0.2 ​m2 and 400 ​m2/m3, which are about 20 and 5.6 times higher than that of the common tubular one with the same length, respectively. Average n-butane/i-butane separation factor (34) of the industrial-scale membranes was even higher than or comparable to that of the reported small-area zeolite membranes. The influences of test parameters on permeances and separation factors of the membranes and the long-term stability were examined. Reynold numbers was used to correlate the concentration polarization (CP) with the reduction of separation performance. A solution was proposed to reduce the effect of CP. It suggests that the industrial-scale and high-performance monolithic silicalite-1 membranes are suitable for actual applications of butane separation.

开发节能膜和技术对于分离碳氢化合物异构体以取代高能耗的蒸馏非常重要。硅灰石-1 膜是一种前景广阔的膜材料,但很难实现规模化生产。在这项研究中,首次报道了工业规模的硅灰石-1 整体膜在实际丁烷混合物中的分离性能。每张 61 道整体膜的有效面积和表面体积比分别为 0.2 平方米和 400 平方米/立方米,分别是相同长度普通管状膜的 20 倍和 5.6 倍。工业规模膜的正丁烷/异丁烷平均分离因子(34)甚至高于或相当于已报道的小面积沸石膜。研究了测试参数对膜的渗透率和分离因数以及长期稳定性的影响。使用雷诺数将浓度极化(CP)与分离性能的降低联系起来。提出了减少 CP 影响的解决方案。这表明工业规模的高性能硅灰石-1 整体膜适用于丁烷分离的实际应用。
{"title":"Industrial-scale 61-channel monolithic silicalite-1 membranes for butane isomer separation","authors":"Hongliang Hong ,&nbsp;Kunlin Yu ,&nbsp;Hongbin Liu,&nbsp;Rongfei Zhou,&nbsp;Weihong Xing","doi":"10.1016/j.advmem.2024.100096","DOIUrl":"10.1016/j.advmem.2024.100096","url":null,"abstract":"<div><p>Developing energy-saving membrane and technology is important for the separation of hydrocarbon isomers to replace the energy-intensive distillation. Silicalite-1 membrane is a promising membrane material but difficult to be scaled up. In this work, separation performance of industrial-scale monolithic silicalite-1 membranes in term of actual butane mixtures has been reported for the first time. Each 61-channel monolithic membrane has effective area and surface-to-volume ratio of 0.2 ​m<sup>2</sup> and 400 ​m<sup>2</sup>/m<sup>3</sup>, which are about 20 and 5.6 times higher than that of the common tubular one with the same length, respectively. Average <em>n</em>-butane/<em>i</em>-butane separation factor (34) of the industrial-scale membranes was even higher than or comparable to that of the reported small-area zeolite membranes. The influences of test parameters on permeances and separation factors of the membranes and the long-term stability were examined. Reynold numbers was used to correlate the concentration polarization (CP) with the reduction of separation performance. A solution was proposed to reduce the effect of CP. It suggests that the industrial-scale and high-performance monolithic silicalite-1 membranes are suitable for actual applications of butane separation.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000071/pdfft?md5=327585d0f4e4bb733c34048ea446cd60&pid=1-s2.0-S2772823424000071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140277267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers
Pub Date : 2024-01-01 DOI: 10.1016/S2772-8234(24)00035-6
{"title":"Acknowledgment of Reviewers","authors":"","doi":"10.1016/S2772-8234(24)00035-6","DOIUrl":"10.1016/S2772-8234(24)00035-6","url":null,"abstract":"","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143099510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid preparation of extremely highly permeable covalent organic polymers nanofiltration membranes for alcohol recovery via interfacial polymerization 通过界面聚合快速制备用于酒精回收的极高渗透性共价有机聚合物纳滤膜
Pub Date : 2024-01-01 DOI: 10.1016/j.advmem.2024.100107
Yuhao Chen , Xun Zhou , Tengfang Zhang , Baosheng Ge , Q. Jason Niu , Haixiang Sun
Covalent organic polymers (COPs) membranes have been widely investigated in recent years for the application and preparation of composite nanofiltration (NF) membranes due to the abundant pore structure. However, there are still difficulties in the easy and reliable preparation of scalable and highly permeable COPs membranes. In this work, the polyaminophenylene (PAP) layer was constructed on polysulfone (PSF) ultrafiltration membranes by diazonium-induced anchoring process (DIAP), and then used as a substrate to prepare ultra-thin and highly permeable COPs NF membranes by interfacial polymerization (IP) in only 20 ​s. The presence of PAP layer increases the aqueous phase monomer storage to promote the forward progression and limits the reaction zone of IP, thus resulting in ultrathin and highly crosslinked COPs membranes. In addition, the PAP layer covalently grafted onto the PSF molecular chain also participates in the IP reaction, thus the separation layer is connected to the substrate as a whole for better stability and can operate for long periods of time in an alcohol-based organic solvent environment. The methanol permeance of optimal NF-PAP membrane prepared based on the above strategy can reach 362-398 ​L−1m−2h−1bar−1, which almost achieves an order of magnitude enhancement relative to other reported COPs organic solvent nanofiltration (OSN) membranes. The retention rate of the COPs composite membrane for naphthol green B (Mw ​= ​878) dye was about 98.5 ​%, demonstrating good alcohol recovery ability. In conclusion, this study offers a potential strategy for the development and application of COPs OSN membranes.
共价有机聚合物(COPs)膜因其丰富的孔隙结构,近年来在复合纳滤膜(NF)的应用和制备方面受到广泛关注。然而,要简单可靠地制备出可扩展的高渗透性 COPs 膜仍存在困难。在这项工作中,通过重氮诱导锚定工艺(DIAP)在聚砜(PSF)超滤膜上构建了聚氨基苯烯(PAP)层,并以此为基底通过界面聚合(IP)在短短 20 秒内制备了超薄高渗透 COPs NF 膜。PAP 层的存在增加了水相单体的储存量,促进了前向进展,并限制了 IP 的反应区,从而制备出超薄、高交联 COPs 膜。此外,共价接枝到 PSF 分子链上的 PAP 层也参与了 IP 反应,因此分离层与基底整体相连,稳定性更好,可在醇基有机溶剂环境中长期运行。基于上述策略制备的最佳 NF-PAP 膜的甲醇渗透率可达 362-398 L-1m-2h-1bar-1 ,与其他已报道的 COPs 有机溶剂纳滤膜相比,几乎提高了一个数量级。COPs 复合膜对萘酚绿 B(Mw = 878)染料的截留率约为 98.5%,显示了良好的酒精回收能力。总之,这项研究为 COPs OSN 膜的开发和应用提供了一种潜在的策略。
{"title":"Rapid preparation of extremely highly permeable covalent organic polymers nanofiltration membranes for alcohol recovery via interfacial polymerization","authors":"Yuhao Chen ,&nbsp;Xun Zhou ,&nbsp;Tengfang Zhang ,&nbsp;Baosheng Ge ,&nbsp;Q. Jason Niu ,&nbsp;Haixiang Sun","doi":"10.1016/j.advmem.2024.100107","DOIUrl":"10.1016/j.advmem.2024.100107","url":null,"abstract":"<div><div>Covalent organic polymers (COPs) membranes have been widely investigated in recent years for the application and preparation of composite nanofiltration (NF) membranes due to the abundant pore structure. However, there are still difficulties in the easy and reliable preparation of scalable and highly permeable COPs membranes. In this work, the polyaminophenylene (PAP) layer was constructed on polysulfone (PSF) ultrafiltration membranes by diazonium-induced anchoring process (DIAP), and then used as a substrate to prepare ultra-thin and highly permeable COPs NF membranes by interfacial polymerization (IP) in only 20 ​s. The presence of PAP layer increases the aqueous phase monomer storage to promote the forward progression and limits the reaction zone of IP, thus resulting in ultrathin and highly crosslinked COPs membranes. In addition, the PAP layer covalently grafted onto the PSF molecular chain also participates in the IP reaction, thus the separation layer is connected to the substrate as a whole for better stability and can operate for long periods of time in an alcohol-based organic solvent environment. The methanol permeance of optimal NF-PAP membrane prepared based on the above strategy can reach 362-398 ​L<sup>−1</sup>m<sup>−2</sup>h<sup>−1</sup>bar<sup>−1</sup>, which almost achieves an order of magnitude enhancement relative to other reported COPs organic solvent nanofiltration (OSN) membranes. The retention rate of the COPs composite membrane for naphthol green B (Mw ​= ​878) dye was about 98.5 ​%, demonstrating good alcohol recovery ability. In conclusion, this study offers a potential strategy for the development and application of COPs OSN membranes.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Back Cover
Pub Date : 2024-01-01 DOI: 10.1016/S2772-8234(24)00033-2
{"title":"Outside Back Cover","authors":"","doi":"10.1016/S2772-8234(24)00033-2","DOIUrl":"10.1016/S2772-8234(24)00033-2","url":null,"abstract":"","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100122"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143099511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal solution to the membrane selectivity challenge: Separation merit and efficiency 膜选择性挑战的通用解决方案:分离优势和效率
Pub Date : 2024-01-01 DOI: 10.1016/j.advmem.2024.100103
Aron K. Beke , Gergo Ignacz , Gyorgy Szekely

Membrane technology holds immense potential across multiple industries, offering sustainable solutions for challenging separations by reducing energy demand and transitioning from thermal to electrical energy. The inherent diversity of membrane technology results in various transport scenarios and phenomena, rendering robust process evaluation and optimization challenging. Addressing this problem, we formulate the cascading selectivity principle (CSP), a universal concept applicable across all membrane separation types, including gas, liquid, and particle filtration. Introducing a distinction between primary and secondary permselectivity, the CSP provides a theoretical basis for novel efficiency indices. We also present the first highly versatile selectivity merit descriptors for true membrane cross-comparison. We demonstrate the advantages of the novel descriptors through a series of real-life nanofiltration, ion separation, gas separation, membrane reactor, and ultrafiltration examples. Facilitated by an online calculator tool, this work offers a standardized framework for academic and industrial professionals to implement pioneering membrane separation systems efficiently across the multiple disciplines of membrane technology.

膜技术在多个行业拥有巨大的潜力,通过减少能源需求和从热能到电能的过渡,为具有挑战性的分离提供可持续的解决方案。膜技术固有的多样性导致了各种传输方案和现象,使稳健的过程评估和优化面临挑战。为了解决这个问题,我们提出了级联选择性原理(CSP),这是一个适用于所有膜分离类型的通用概念,包括气体、液体和颗粒过滤。CSP 对一级和二级选择性进行了区分,为新的效率指数提供了理论基础。我们还为真正的膜交叉比较提出了第一个高度通用的选择性优点描述符。我们通过一系列现实生活中的纳滤、离子分离、气体分离、膜反应器和超滤实例,展示了新型描述符的优势。在在线计算工具的帮助下,这项工作为学术界和工业界的专业人士提供了一个标准化的框架,以便在膜技术的多个学科中有效地实施开创性的膜分离系统。
{"title":"Universal solution to the membrane selectivity challenge: Separation merit and efficiency","authors":"Aron K. Beke ,&nbsp;Gergo Ignacz ,&nbsp;Gyorgy Szekely","doi":"10.1016/j.advmem.2024.100103","DOIUrl":"10.1016/j.advmem.2024.100103","url":null,"abstract":"<div><p>Membrane technology holds immense potential across multiple industries, offering sustainable solutions for challenging separations by reducing energy demand and transitioning from thermal to electrical energy. The inherent diversity of membrane technology results in various transport scenarios and phenomena, rendering robust process evaluation and optimization challenging. Addressing this problem, we formulate the cascading selectivity principle (CSP), a universal concept applicable across all membrane separation types, including gas, liquid, and particle filtration. Introducing a distinction between primary and secondary permselectivity, the CSP provides a theoretical basis for novel efficiency indices. We also present the first highly versatile selectivity merit descriptors for true membrane cross-comparison. We demonstrate the advantages of the novel descriptors through a series of real-life nanofiltration, ion separation, gas separation, membrane reactor, and ultrafiltration examples. Facilitated by an online calculator tool, this work offers a standardized framework for academic and industrial professionals to implement pioneering membrane separation systems efficiently across the multiple disciplines of membrane technology.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100103"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000149/pdfft?md5=4b70b73bbf8742b7f8f62012e2e16a90&pid=1-s2.0-S2772823424000149-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics 用于回收有机物的基于金属有机框架的混合基质渗透膜
Pub Date : 2024-01-01 DOI: 10.1016/j.advmem.2024.100092
Zehai Xu , Chao Liu , Lulu Xiao , Qin Meng , Guoliang Zhang

Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have attracted significant attentions for their distinguished characteristics in pervaporation such as enhanced selectivity, increased permeability and improved mechanical strength through the synergistic integration of polymeric matrices and inorganic fillers. Although many publications have emerged in recent years focusing on MOF-based MMMs, this review specifically emphasizes the improvement of MOF-based pervaporation membranes through the design of dimension of fillers and microstructure. The challenges encountered in MOF-based MMMs for pervaporation and the essential requirements for practical separation applications are addressed. A brief summary of strategies is provided for designing MOF-based MMMs with desired microstructure, macrostructure and multicomponent characteristics by using MOFs as fillers. The latest progresses in novel MOF-based MMMs with specific compositions, controllable pore structure and improved compatibility for recovery of organics are also displayed. The broad application prospects of MOF-based MMMs in pervaporation are introduced, including recovery of ethyl alcohol, butanol and other organics. Moreover, the challenges faced in the practical application of MOF-based MMMs for recovery of organics are presented and the promising future directions are outlined.

基于金属有机框架(MOF)的混合基质膜(MMMs)因其在渗透汽化方面的突出特点而备受关注,例如通过聚合物基质和无机填料的协同整合而提高选择性、增加渗透性和改善机械强度。尽管近年来出现了许多关注基于 MOF 的 MMM 的出版物,但本综述特别强调通过设计填料的尺寸和微结构来改进基于 MOF 的渗透膜。文中探讨了基于 MOF 的 MMM 在渗透蒸发方面遇到的挑战以及实际分离应用的基本要求。简要概述了利用 MOFs 作为填料设计具有所需微观结构、宏观结构和多组分特性的 MOF 基 MMM 的策略。此外,还介绍了具有特定成分、可控孔隙结构和更好的有机物回收兼容性的新型 MOF 基 MMM 的最新进展。介绍了基于 MOF 的 MMM 在过蒸发中的广阔应用前景,包括乙醇、丁醇和其他有机物的回收。此外,还介绍了基于 MOF 的 MMMs 在有机物回收的实际应用中所面临的挑战,并概述了未来的发展方向。
{"title":"Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics","authors":"Zehai Xu ,&nbsp;Chao Liu ,&nbsp;Lulu Xiao ,&nbsp;Qin Meng ,&nbsp;Guoliang Zhang","doi":"10.1016/j.advmem.2024.100092","DOIUrl":"10.1016/j.advmem.2024.100092","url":null,"abstract":"<div><p>Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have attracted significant attentions for their distinguished characteristics in pervaporation such as enhanced selectivity, increased permeability and improved mechanical strength through the synergistic integration of polymeric matrices and inorganic fillers. Although many publications have emerged in recent years focusing on MOF-based MMMs, this review specifically emphasizes the improvement of MOF-based pervaporation membranes through the design of dimension of fillers and microstructure. The challenges encountered in MOF-based MMMs for pervaporation and the essential requirements for practical separation applications are addressed. A brief summary of strategies is provided for designing MOF-based MMMs with desired microstructure, macrostructure and multicomponent characteristics by using MOFs as fillers. The latest progresses in novel MOF-based MMMs with specific compositions, controllable pore structure and improved compatibility for recovery of organics are also displayed. The broad application prospects of MOF-based MMMs in pervaporation are introduced, including recovery of ethyl alcohol, butanol and other organics. Moreover, the challenges faced in the practical application of MOF-based MMMs for recovery of organics are presented and the promising future directions are outlined.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100092"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000034/pdfft?md5=c12b7e142d89e0394603d14eb285bb13&pid=1-s2.0-S2772823424000034-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139816206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fouling during hemodialysis – Influence of module design and membrane surface chemistry 血液透析过程中的污垢--组件设计和膜表面化学性质的影响
Pub Date : 2024-01-01 DOI: 10.1016/j.advmem.2024.100100
Christine Jurene O. Bacal , Catherine J. Munro , Blaise Tardy , James W. Maina , Julie A. Sharp , Joselito M. Razal , George W. Greene , Harshal H. Nandurkar , Karen M. Dwyer , Ludovic F. Dumée

Hemodialysis acts as an artificial kidney that selectively removes specific toxins, bio-compounds, or fluid from the main blood stream in a patient with kidney failure. The current process uses ultrafiltration-based membrane technology, where a semi-permeable material selectively extracts chemicals, such as uremic retention products, or remove excess water from blood by retaining certain compounds based on their size. As sugars, fats, proteins, biomolecules, cells, and platelets move into and across the tubular membrane in the hemodialysis process, the surface of the membrane begins to foul, which leads to major operational challenges that include sharp pressure drops with increasing operation times. The design of membranes with enhanced biocompatibility and anti-fouling properties is one avenue to increase the lifespan of the membrane used while facilitating the device operation and limiting the stress and discomfort of patients. This review presents interfacial interactions between blood components and membrane materials used in hemodialysis. The discussion analyzes the impacts of the hemodialyzer module design, membrane material morphology and surface chemistry on the long-term operation and performance of the hemodialyzers. Avenues for the development of next-generation-membrane-materials as well as new strategies to enhance the selective removal of toxic compounds from blood are also discussed.

血液透析是一种人工肾脏,可选择性地清除肾衰竭患者主血流中的特定毒素、生物化合物或液体。目前的流程采用基于超滤的膜技术,半渗透材料可根据某些化合物的大小,有选择性地提取尿毒症潴留产物等化学物质,或清除血液中多余的水分。在血液透析过程中,当糖、脂肪、蛋白质、生物大分子、细胞和血小板进入并穿过管状膜时,膜的表面就会开始变脏,从而导致重大的操作挑战,包括随着操作时间的增加压力急剧下降。设计具有更强生物相容性和防污特性的膜是提高膜使用寿命的一个途径,同时还能促进设备运行,减轻患者的压力和不适感。本综述介绍了血液透析中使用的血液成分与膜材料之间的界面相互作用。讨论分析了血液透析器模块设计、膜材料形态和表面化学对血液透析器长期运行和性能的影响。此外,还讨论了开发下一代膜材料的途径以及加强选择性去除血液中有毒化合物的新策略。
{"title":"Fouling during hemodialysis – Influence of module design and membrane surface chemistry","authors":"Christine Jurene O. Bacal ,&nbsp;Catherine J. Munro ,&nbsp;Blaise Tardy ,&nbsp;James W. Maina ,&nbsp;Julie A. Sharp ,&nbsp;Joselito M. Razal ,&nbsp;George W. Greene ,&nbsp;Harshal H. Nandurkar ,&nbsp;Karen M. Dwyer ,&nbsp;Ludovic F. Dumée","doi":"10.1016/j.advmem.2024.100100","DOIUrl":"10.1016/j.advmem.2024.100100","url":null,"abstract":"<div><p>Hemodialysis acts as an artificial kidney that selectively removes specific toxins, bio-compounds, or fluid from the main blood stream in a patient with kidney failure. The current process uses ultrafiltration-based membrane technology, where a semi-permeable material selectively extracts chemicals, such as uremic retention products, or remove excess water from blood by retaining certain compounds based on their size. As sugars, fats, proteins, biomolecules, cells, and platelets move into and across the tubular membrane in the hemodialysis process, the surface of the membrane begins to foul, which leads to major operational challenges that include sharp pressure drops with increasing operation times. The design of membranes with enhanced biocompatibility and anti-fouling properties is one avenue to increase the lifespan of the membrane used while facilitating the device operation and limiting the stress and discomfort of patients. This review presents interfacial interactions between blood components and membrane materials used in hemodialysis. The discussion analyzes the impacts of the hemodialyzer module design, membrane material morphology and surface chemistry on the long-term operation and performance of the hemodialyzers. Avenues for the development of next-generation-membrane-materials as well as new strategies to enhance the selective removal of toxic compounds from blood are also discussed.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000113/pdfft?md5=66dad20103d9ae034429f76049013327&pid=1-s2.0-S2772823424000113-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spray-assisted assembly of thin-film composite membranes in one process 薄膜复合膜的喷涂辅助组装一次完成
Pub Date : 2024-01-01 DOI: 10.1016/j.advmem.2023.100080
Shiliang Lin , Yanqiu Zhang , Lu Shao , Cher Hon Lau

Spray coating has been exploited to fabricate and tailor the morphologies of various components in thin film composite membranes separately. For the first time, here we exploit this technology to construct and assemble both the selective layer and porous support of a thin-film composite membrane in a single process. In our approach, spray-assisted non-solvent induced phase inversion and interfacial polymerization reduced the time required to fabricate thin-film composite membranes from 3 – 4 days to 1 day and 40 ​min. Our approach did not sacrifice membrane separation performances during desalination of a mixture comprising 2000 ​ppm of NaCl in water at 4 ​bar and room temperature. At these conditions, compared to traditional thin film composite membranes, the water permeance of our spray coated membranes was higher by 35.7 %, reaching 2.32 ​L ​m−2 ​h−1 bar−1, while achieving a NaCl rejection rate of 94.7 %. This demonstrated the feasibility of fabricating thin film composites via spray coating in a single process, potentially reducing fabrication time during scale-up production.

喷涂技术已被用于分别制造和定制薄膜复合膜中各种成分的形态。在这里,我们首次利用这种技术在单一工艺中构建和组装薄膜复合膜的选择层和多孔支撑层。在我们的方法中,喷雾辅助非溶剂诱导相位反转和界面聚合将制造薄膜复合膜所需的时间从 3-4 天缩短到 1 天 40 分钟。在 4 巴和室温条件下对水中含有 2000 ppm NaCl 的混合物进行脱盐时,我们的方法并没有牺牲膜分离性能。在这些条件下,与传统的薄膜复合膜相比,我们的喷涂膜的透水性提高了 35.7%,达到了 2.32 L m-2 h-1 bar-1,同时实现了 94.7% 的氯化钠去除率。这证明了在单一工艺中通过喷涂制造薄膜复合材料的可行性,从而有可能缩短放大生产过程中的制造时间。
{"title":"Spray-assisted assembly of thin-film composite membranes in one process","authors":"Shiliang Lin ,&nbsp;Yanqiu Zhang ,&nbsp;Lu Shao ,&nbsp;Cher Hon Lau","doi":"10.1016/j.advmem.2023.100080","DOIUrl":"10.1016/j.advmem.2023.100080","url":null,"abstract":"<div><p>Spray coating has been exploited to fabricate and tailor the morphologies of various components in thin film composite membranes separately. For the first time, here we exploit this technology to construct and assemble both the selective layer and porous support of a thin-film composite membrane in a single process. In our approach, spray-assisted non-solvent induced phase inversion and interfacial polymerization reduced the time required to fabricate thin-film composite membranes from 3 – 4 days to 1 day and 40 ​min. Our approach did not sacrifice membrane separation performances during desalination of a mixture comprising 2000 ​ppm of NaCl in water at 4 ​bar and room temperature. At these conditions, compared to traditional thin film composite membranes, the water permeance of our spray coated membranes was higher by 35.7 %, reaching 2.32 ​L ​m<sup>−2</sup> ​h<sup>−1</sup> bar<sup>−1</sup>, while achieving a NaCl rejection rate of 94.7 %. This demonstrated the feasibility of fabricating thin film composites <em>via</em> spray coating in a single process, potentially reducing fabrication time during scale-up production.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100080"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823423000210/pdfft?md5=130328366904e35d2b38ade9104eef5d&pid=1-s2.0-S2772823423000210-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139015243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymers of intrinsic microporosity with internal dihedral lock for efficient gas separation 用于高效气体分离的具有内部二面锁链的固有微孔聚合物
Pub Date : 2024-01-01 DOI: 10.1016/j.advmem.2024.100097
Cong Yu , Yu Wang , Yanfang Xia , Shuangjiang Luo , Xiaohua Ma , Ben Hang Yin , Xinbo Wang

Polymers of intrinsic microporosity (PIMs) stand out as promising membrane materials with exceptional separation performance. In this study, we crafted a highly efficient gas separation membrane using an emerging material, called cyclohexyl-fused spirobiindane-based PIM (CCS-PIM). The CCS-PIM features a robust and rigid microporous structure with a high specific surface area (SBET ​= ​704.6 ​m2/g), exhibiting excellent CO2-selective adsorption capacity. The CO2 adsorption uptake is 0.78 ​mmol/g at 273 ​K and 0.15 ​bar, leading to IAST selectivity of 25.2 for CO2/N2 (15/85 v/v) and 16.7 for CO2/CH4 (50/50 v/v) at 298 ​K. The precisely tuned pore size of the CCS-PIM membrane leads to an enhanced molecular sieving effect, showcasing superior selectivity across various gas pair separations. It demonstrates an O2/N2 selectivity of 6.03 and a CO2/CH4 selectivity of 26.1, surpassing the 2008 Robeson upper bounds. This study suggests a strategic method to improve gas separation efficiency by customizing a locked PIM structure with precise molecular sieving through the insertion of variously sized rings.

具有固有微孔的聚合物(PIMs)是一种很有前途的膜材料,具有优异的分离性能。在本研究中,我们使用一种名为环己基熔融螺双茚满基 PIM(CCS-PIM)的新兴材料制作了一种高效气体分离膜。CCS-PIM 具有坚固刚性的微孔结构和高比表面积(SBET = 704.6 m2/g),表现出卓越的二氧化碳选择性吸附能力。在 273 K 和 0.15 bar 条件下,二氧化碳吸附量为 0.78 mmol/g,因此在 298 K 条件下,CO2/N2(15/85 v/v)的 IAST 选择性为 25.2,CO2/CH4(50/50 v/v)的 IAST 选择性为 16.7。CCS-PIM 膜的孔径经过精确调整,从而增强了分子筛分效果,在各种气对分离中显示出卓越的选择性。它的 O2/N2 选择性为 6.03,CO2/CH4 选择性为 26.1,超过了 2008 年 Robeson 规定的上限。这项研究提出了一种提高气体分离效率的战略方法,即通过插入不同大小的环,定制具有精确分子筛分功能的锁定 PIM 结构。
{"title":"Polymers of intrinsic microporosity with internal dihedral lock for efficient gas separation","authors":"Cong Yu ,&nbsp;Yu Wang ,&nbsp;Yanfang Xia ,&nbsp;Shuangjiang Luo ,&nbsp;Xiaohua Ma ,&nbsp;Ben Hang Yin ,&nbsp;Xinbo Wang","doi":"10.1016/j.advmem.2024.100097","DOIUrl":"10.1016/j.advmem.2024.100097","url":null,"abstract":"<div><p>Polymers of intrinsic microporosity (PIMs) stand out as promising membrane materials with exceptional separation performance. In this study, we crafted a highly efficient gas separation membrane using an emerging material, called cyclohexyl-fused spirobiindane-based PIM (CCS-PIM). The CCS-PIM features a robust and rigid microporous structure with a high specific surface area (S<sub>BET</sub> ​= ​704.6 ​m<sup>2</sup>/g), exhibiting excellent CO<sub>2</sub>-selective adsorption capacity. The CO<sub>2</sub> adsorption uptake is 0.78 ​mmol/g at 273 ​K and 0.15 ​bar, leading to IAST selectivity of 25.2 for CO<sub>2</sub>/N<sub>2</sub> (15/85 v/v) and 16.7 for CO<sub>2</sub>/CH<sub>4</sub> (50/50 v/v) at 298 ​K. The precisely tuned pore size of the CCS-PIM membrane leads to an enhanced molecular sieving effect, showcasing superior selectivity across various gas pair separations. It demonstrates an O<sub>2</sub>/N<sub>2</sub> selectivity of 6.03 and a CO<sub>2</sub>/CH<sub>4</sub> selectivity of 26.1, surpassing the 2008 Robeson upper bounds. This study suggests a strategic method to improve gas separation efficiency by customizing a locked PIM structure with precise molecular sieving through the insertion of variously sized rings.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000083/pdfft?md5=ba075832f8961665babd5e2a609b336e&pid=1-s2.0-S2772823424000083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular soldered COF membrane with crystalline-amorphous heterointerface for fast organic solvent nanofiltration 具有结晶-非结晶异质界面的分子焊接 COF 膜,用于快速有机溶剂纳滤
Pub Date : 2024-01-01 DOI: 10.1016/j.advmem.2024.100110
Meixia Shan , Chaoqun Niu , Decheng Liu , Dongyang Li , Xueling Wang , Junyong Zhu , Qun Xu , Jorge Gascon , Yatao Zhang
Covalent organic frameworks (COFs) featuring high porosity and well-defined pore structures are attractive candidates for organic solvent nanofiltration (OSN). However, preparing defect-free COF membrane and manipulating pore size for precise molecular separation in OSN remains a significant challenge. Herein, we address this challenge by developing composite membranes through molecular soldering a benzimidazole-linked polymer (BILP-101x) onto a continuous ACOF-1 membrane. The shared monomer of ACOF-1 and BILP-101x promotes good compatibility, allowing the amorphous BILP-101x chemically stitch the grain boundary defects of the crystalline ACOF-1 layer and create narrow, staggered pores at the interface, thereby enhancing the OSN performance. Non-equilibrium molecular dynamics simulations were employed to reproduce and explain the permeability order of the solvents and dyes, revealing a hydrogen-bond cluster permeation mode for alcohols. Furthermore, the optimized BILP-101x/ACOF-1 composite membrane exhibits excellent ethanol permeance (13.2 ​L ​m−2 ​h−1 bar−1) and outstanding rejection towards various dye molecules, together with desirable and stable OSN performance under continuous filtration operation. This work opens a new avenue for improving the separation performance of continuous COF membranes in OSN applications.
具有高孔隙率和明确孔隙结构的共价有机框架(COF)是有机溶剂纳滤(OSN)的理想候选材料。然而,在 OSN 中制备无缺陷 COF 膜并控制孔径以实现精确的分子分离仍然是一项重大挑战。在此,我们通过将苯并咪唑连接聚合物(BILP-101x)分子焊接到连续 ACOF-1 膜上来开发复合膜,从而解决了这一难题。ACOF-1 和 BILP-101x 的共用单体促进了良好的兼容性,使无定形的 BILP-101x 能够化学缝合结晶 ACOF-1 层的晶界缺陷,并在界面上形成狭窄、交错的孔隙,从而提高 OSN 的性能。非平衡分子动力学模拟再现并解释了溶剂和染料的渗透顺序,揭示了醇类的氢键簇渗透模式。此外,优化后的 BILP-101x/ACOF-1 复合膜具有出色的乙醇渗透率(13.2 L m-2 h-1 bar-1)和对各种染料分子的出色阻隔性,同时在连续过滤操作下具有理想而稳定的 OSN 性能。这项工作为提高连续 COF 膜在 OSN 应用中的分离性能开辟了一条新途径。
{"title":"Molecular soldered COF membrane with crystalline-amorphous heterointerface for fast organic solvent nanofiltration","authors":"Meixia Shan ,&nbsp;Chaoqun Niu ,&nbsp;Decheng Liu ,&nbsp;Dongyang Li ,&nbsp;Xueling Wang ,&nbsp;Junyong Zhu ,&nbsp;Qun Xu ,&nbsp;Jorge Gascon ,&nbsp;Yatao Zhang","doi":"10.1016/j.advmem.2024.100110","DOIUrl":"10.1016/j.advmem.2024.100110","url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) featuring high porosity and well-defined pore structures are attractive candidates for organic solvent nanofiltration (OSN). However, preparing defect-free COF membrane and manipulating pore size for precise molecular separation in OSN remains a significant challenge. Herein, we address this challenge by developing composite membranes through molecular soldering a benzimidazole-linked polymer (BILP-101x) onto a continuous ACOF-1 membrane. The shared monomer of ACOF-1 and BILP-101x promotes good compatibility, allowing the amorphous BILP-101x chemically stitch the grain boundary defects of the crystalline ACOF-1 layer and create narrow, staggered pores at the interface, thereby enhancing the OSN performance. Non-equilibrium molecular dynamics simulations were employed to reproduce and explain the permeability order of the solvents and dyes, revealing a hydrogen-bond cluster permeation mode for alcohols. Furthermore, the optimized BILP-101x/ACOF-1 composite membrane exhibits excellent ethanol permeance (13.2 ​L ​m<sup>−2</sup> ​h<sup>−1</sup> bar<sup>−1</sup>) and outstanding rejection towards various dye molecules, together with desirable and stable OSN performance under continuous filtration operation. This work opens a new avenue for improving the separation performance of continuous COF membranes in OSN applications.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Membranes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1