Pub Date : 2023-01-01DOI: 10.1016/j.advmem.2023.100064
Vinh Bui, Ameya Manoj Tandel, Varun Reddy Satti, Elizabeth Haddad, Haiqing Lin
Silica membranes have been successfully practiced for solvent dehydration and emerged as an exciting platform for gas separations (such as H2/CO2) due to their unique porous structures for molecular sieving, tunable chemistries, and excellent thermal and chemical stability. This review aims to provide a comprehensive update on the advancement of silica membranes for gas and liquid separations in the last decade. First, we summarize various techniques to fabricate membranes (particularly those at low temperatures) and describe the effect of processing parameters on the membrane structures. Second, penetrant transport mechanisms and molecular dynamic simulations are presented to elucidate the structure-properties relationship. Third, we highlight state-of-the-art silica membranes with promising separation properties for gases, vapors, and liquids and various engineering strategies to improve hydrothermal stability, production scalability, and separation performance. Finally, we provide perspectives on the future development of these membranes for practical applications.
{"title":"Engineering silica membranes for separation performance, hydrothermal stability, and production scalability","authors":"Vinh Bui, Ameya Manoj Tandel, Varun Reddy Satti, Elizabeth Haddad, Haiqing Lin","doi":"10.1016/j.advmem.2023.100064","DOIUrl":"https://doi.org/10.1016/j.advmem.2023.100064","url":null,"abstract":"<div><p>Silica membranes have been successfully practiced for solvent dehydration and emerged as an exciting platform for gas separations (such as H<sub>2</sub>/CO<sub>2</sub>) due to their unique porous structures for molecular sieving, tunable chemistries, and excellent thermal and chemical stability. This review aims to provide a comprehensive update on the advancement of silica membranes for gas and liquid separations in the last decade. First, we summarize various techniques to fabricate membranes (particularly those at low temperatures) and describe the effect of processing parameters on the membrane structures. Second, penetrant transport mechanisms and molecular dynamic simulations are presented to elucidate the structure-properties relationship. Third, we highlight state-of-the-art silica membranes with promising separation properties for gases, vapors, and liquids and various engineering strategies to improve hydrothermal stability, production scalability, and separation performance. Finally, we provide perspectives on the future development of these membranes for practical applications.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"3 ","pages":"Article 100064"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50199944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.advmem.2023.100070
Jiuxuan Zhang , Bo Liu , Lili Cai , Yanhong Li , Yan Zhang , Mengke Liu , Lujian Jia , Senqing Fan , Linfeng Lei , Minghui Zhu , Xuefeng Zhu , Xuebin Ke , Aisheng Huang , Heqing Jiang , Rizhi Chen
Catalytic membrane reactors have the advantages of allowing the selective removal of products, avoiding the separation procedure of powder catalysts from the reaction mixture, intensifying the diffusion of reactants in the catalytic region, and integrating different reactions in one unit. Catalytic membrane reactors have been widely applied in the fields related to carbon peaking and carbon neutrality, including the capture and utilization of carbon dioxide, hydrogen production, and hydrogenation reaction. This review summarizes the design and fabrication of catalytic membrane reactors, with the focus on the capture and efficient utilization of carbon dioxide, hydrogen production and efficient liquid-phase hydrogenation. The design of membrane materials, catalyst materials and catalytic membranes, and the operation of catalytic membrane reactors are discussed respectively. Finally, the perspectives and future challenges of catalytic membrane reactors for carbon peaking and carbon neutrality are forecasted.
{"title":"Catalytic membrane reactors for carbon peaking and carbon neutrality","authors":"Jiuxuan Zhang , Bo Liu , Lili Cai , Yanhong Li , Yan Zhang , Mengke Liu , Lujian Jia , Senqing Fan , Linfeng Lei , Minghui Zhu , Xuefeng Zhu , Xuebin Ke , Aisheng Huang , Heqing Jiang , Rizhi Chen","doi":"10.1016/j.advmem.2023.100070","DOIUrl":"https://doi.org/10.1016/j.advmem.2023.100070","url":null,"abstract":"<div><p>Catalytic membrane reactors have the advantages of allowing the selective removal of products, avoiding the separation procedure of powder catalysts from the reaction mixture, intensifying the diffusion of reactants in the catalytic region, and integrating different reactions in one unit. Catalytic membrane reactors have been widely applied in the fields related to carbon peaking and carbon neutrality, including the capture and utilization of carbon dioxide, hydrogen production, and hydrogenation reaction. This review summarizes the design and fabrication of catalytic membrane reactors, with the focus on the capture and efficient utilization of carbon dioxide, hydrogen production and efficient liquid-phase hydrogenation. The design of membrane materials, catalyst materials and catalytic membranes, and the operation of catalytic membrane reactors are discussed respectively. Finally, the perspectives and future challenges of catalytic membrane reactors for carbon peaking and carbon neutrality are forecasted.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"3 ","pages":"Article 100070"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50199941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.advmem.2023.100071
Meng-Chao Yu , Li-Ju Bai , Stefania Moioli , Paitoon Tontiwachwuthikul , Tatiana V. Plisko , Alexandr V. Bildyukevich , Ying-Nan Feng , Helei Liu
Because of the greenhouse effect, there is a pressing need to restrict and reduce CO2 emissions. Post-combustion capture technology is a type of widely used technologies for CO2 capture. Compared to the standalone CO2 capture processes such as absorption and cryogenic separation, hybrid CO2 capture processes demonstrate improved separation efficiency and capacity for the overall performance. Membrane separation is a great candidate for process hybridization with other CO2 capture processes. Three categories of hybrid processes consisting of membrane technology, i.e., in-series, parallel and integrated configurations, have been applied for CO2 capture. This paper mainly reviews the recent research progresses on the process development as well as the techno-economic analyses of the hybrid processes corresponding to these configurations. Furthermore, the perspectives on future directions of hybrid CO2 capture processes are discussed to facilitate its research and practical applications.
{"title":"Hybrid CO2 capture processes consisting of membranes: A technical and techno-economic review","authors":"Meng-Chao Yu , Li-Ju Bai , Stefania Moioli , Paitoon Tontiwachwuthikul , Tatiana V. Plisko , Alexandr V. Bildyukevich , Ying-Nan Feng , Helei Liu","doi":"10.1016/j.advmem.2023.100071","DOIUrl":"https://doi.org/10.1016/j.advmem.2023.100071","url":null,"abstract":"<div><p>Because of the greenhouse effect, there is a pressing need to restrict and reduce CO<sub>2</sub> emissions. Post-combustion capture technology is a type of widely used technologies for CO<sub>2</sub> capture. Compared to the standalone CO<sub>2</sub> capture processes such as absorption and cryogenic separation, hybrid CO<sub>2</sub> capture processes demonstrate improved separation efficiency and capacity for the overall performance. Membrane separation is a great candidate for process hybridization with other CO<sub>2</sub> capture processes. Three categories of hybrid processes consisting of membrane technology, i.e., in-series, parallel and integrated configurations, have been applied for CO<sub>2</sub> capture. This paper mainly reviews the recent research progresses on the process development as well as the techno-economic analyses of the hybrid processes corresponding to these configurations. Furthermore, the perspectives on future directions of hybrid CO<sub>2</sub> capture processes are discussed to facilitate its research and practical applications.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"3 ","pages":"Article 100071"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277282342300012X/pdfft?md5=71ff067141cba86c6a1244ab5aba0494&pid=1-s2.0-S277282342300012X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92122545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.advmem.2023.100076
Hongyu Chen , Zhiying Lu , Yangming Cheng , Enrico Drioli , Zhaohui Wang , Feng Zhang , Zhaoliang Cui
With the development of membrane separation technology, some traditional separation and purification methods have been replaced by membrane technology. Compared to traditional method, the membrane method has the advantages of small footprint, low energy consumption, safe operation and high removal rate. At present, membrane degassing has become a crucial step in ultra-pure water production for semiconductor industries, and it is also used in ink bubble removal and various wastewater treatment. This paper summarizes the advantages of membrane degassing compared with other gas-liquid separation methods, and introduces polymeric membrane materials used for degassing and their merits and drawbacks. The greatest challenge encountered in membrane degassing is the resistance to wetting phenomenon. This paper provides solutions to wetting phenomenon, which increases the possibility of widespread application of membrane degassing technology and the adaptability of membrane degassing technology to more demanding use scenarios. Finally, the application scenarios of membrane degassing technology are summarized and future prespectives are provided.
{"title":"Development and emerging application of membrane degassing technology","authors":"Hongyu Chen , Zhiying Lu , Yangming Cheng , Enrico Drioli , Zhaohui Wang , Feng Zhang , Zhaoliang Cui","doi":"10.1016/j.advmem.2023.100076","DOIUrl":"https://doi.org/10.1016/j.advmem.2023.100076","url":null,"abstract":"<div><p>With the development of membrane separation technology, some traditional separation and purification methods have been replaced by membrane technology. Compared to traditional method, the membrane method has the advantages of small footprint, low energy consumption, safe operation and high removal rate. At present, membrane degassing has become a crucial step in ultra-pure water production for semiconductor industries, and it is also used in ink bubble removal and various wastewater treatment. This paper summarizes the advantages of membrane degassing compared with other gas-liquid separation methods, and introduces polymeric membrane materials used for degassing and their merits and drawbacks. The greatest challenge encountered in membrane degassing is the resistance to wetting phenomenon. This paper provides solutions to wetting phenomenon, which increases the possibility of widespread application of membrane degassing technology and the adaptability of membrane degassing technology to more demanding use scenarios. Finally, the application scenarios of membrane degassing technology are summarized and future prespectives are provided.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"3 ","pages":"Article 100076"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823423000179/pdfft?md5=adcb94d276626d41f111fca182e28e7d&pid=1-s2.0-S2772823423000179-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138557984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.advmem.2023.100079
Aiman Arif, Nadhita Chanchaona, Cher Hon Lau
Sustainable production methods for polymer membrane fabrication are gaining attention due to concerns about the toxicity of conventional fossil-derived solvents in the production process. In addition, the promotion of using chemicals from renewable source for synthesis processes among industries and researches has increased to decelerate resource depletion. As such, more benign and bio-renewable solvents, dihydrolevoglucosenone (Cyrene™) and 2-methyltetrahydrofuran (2-MeTHF), have been proposed as replacements for traditional fossil-derived solvents, n-hexane and dimethylformamide (DMF). In this work, a life cycle assessment (LCA) was employed to quantitatively evaluate the environmental impacts of using the aforementioned bio-renewable solvents versus fossil-derived solvents for fabricating 1 g of polymer membrane. The analysis adopted a cradle-to-gate perspective and assessed three endpoint impact categories: Human health, Ecosystems and Resources. Despite lower environmental impacts for producing bio-renewable solvents, using such solvents to fabricate membranes displayed a higher environmental impact score in all endpoint categories. This discrepancy was attributed to the lower yield of the membrane fabrication process when using bio-based solvents. This indicated that further work is needed to optimise membrane fabrication so that the benefits of using bio-based solvents can be maximised.
{"title":"Comparing the environmental impacts of using bio-renewable and fossil-derived solvent in polymer membrane fabrications","authors":"Aiman Arif, Nadhita Chanchaona, Cher Hon Lau","doi":"10.1016/j.advmem.2023.100079","DOIUrl":"https://doi.org/10.1016/j.advmem.2023.100079","url":null,"abstract":"<div><p>Sustainable production methods for polymer membrane fabrication are gaining attention due to concerns about the toxicity of conventional fossil-derived solvents in the production process. In addition, the promotion of using chemicals from renewable source for synthesis processes among industries and researches has increased to decelerate resource depletion. As such, more benign and bio-renewable solvents, dihydrolevoglucosenone (Cyrene™) and 2-methyltetrahydrofuran (2-MeTHF), have been proposed as replacements for traditional fossil-derived solvents, n-hexane and dimethylformamide (DMF). In this work, a life cycle assessment (LCA) was employed to quantitatively evaluate the environmental impacts of using the aforementioned bio-renewable solvents versus fossil-derived solvents for fabricating 1 g of polymer membrane. The analysis adopted a cradle-to-gate perspective and assessed three endpoint impact categories: Human health, Ecosystems and Resources. Despite lower environmental impacts for producing bio-renewable solvents, using such solvents to fabricate membranes displayed a higher environmental impact score in all endpoint categories. This discrepancy was attributed to the lower yield of the membrane fabrication process when using bio-based solvents. This indicated that further work is needed to optimise membrane fabrication so that the benefits of using bio-based solvents can be maximised.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"3 ","pages":"Article 100079"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823423000209/pdfft?md5=7e83c3cbaf16e5560bc3b80e201f5489&pid=1-s2.0-S2772823423000209-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138570178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.advmem.2023.100074
Mohammed Kamal Hadi , Liru Su , Yuan Li , Abdalazeez Ismail , Sambasivam Sangaraju , Fen Ran
Polyethersulfone (PES) polymers are useful for a variety of membranes' bio-related applications. However, due to its failure to satisfy certain performance and biocompatibility standards, PES requires further surface modification. Herein, we report a facile and flexible method of PES membrane modification by combining the synthesis of silicon oxide nanoparticles grafted with polyvinylpyrrolidone (PVP) as hydrophilic macromolecules via reversible addition fragmentation chain-transfer polymerization (RAFT) and aminated polyethersulfone. The blending of polyethersulfone-modified membranes with SiO2@PVP and aminated polyethersulfone results in a robust, hydrophilic, and biocompatible surface. This research work uniquely uses this strategy to stabilize the existence of the hydrophilic modifiers (SiO2@PVP and aminated polyethersulfone) within the membrane matrix. Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) are used to analyze the prepared polymer brush and the modified membranes. The modified membranes demonstrate high pure water flux at 345 L m−2 h−1 and bovine serum albumin (BSA) rejection at 98 %. The prepared membranes also show favorable hydrophilicity with a contact angle of 46.8° compared with pristine polyethersulfone at 79°. Furthermore, the modified membranes demonstrate an acceptable degree of blood biocompatibility according to partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), and fibrinogen (FIB) concentration analysis. Based on inductively coupled plasma optical emission spectroscopy (ICP-OES), the silicon nanoparticle leaching in permeate is in a safe range. Accordingly, the modified polyethersulfone membrane is safe and suitable for hemodialysis and bio-related applications.
聚醚砜(PES)聚合物可用于各种膜的生物相关应用。然而,由于PES不能满足某些性能和生物相容性标准,它需要进一步的表面改性。本文报道了一种简单而灵活的PES膜改性方法,即通过可逆加成裂解链转移聚合(RAFT)和胺化聚醚砜合成接枝聚乙烯吡咯烷酮(PVP)作为亲水性大分子的氧化硅纳米颗粒。聚醚砜改性膜与SiO2@PVP和胺化聚醚砜的混合产生了坚固、亲水性和生物相容性的表面。这项研究工作独特地使用了这种策略来稳定膜基质内亲水性改性剂(SiO2@PVP和胺化聚醚砜)的存在。采用傅里叶变换红外光谱(FTIR)、x射线光电子能谱(XPS)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)对制备的聚合物刷和改性膜进行了分析。改性膜具有较高的纯水通量345 L m−2 h−1和牛血清白蛋白(BSA)排斥率98%。与原始聚醚砜的79°接触角相比,制备的膜具有良好的亲水性,接触角为46.8°。此外,根据部分凝血活素时间(APTT)、凝血酶原时间(PT)、凝血酶时间(TT)和纤维蛋白原(FIB)浓度分析,改性膜表现出可接受程度的血液生物相容性。电感耦合等离子体发射光谱(ICP-OES)分析表明,硅纳米颗粒在渗透液中的浸出处于安全范围内。因此,改性聚醚砜膜是安全的,适用于血液透析和生物相关应用。
{"title":"Tethering hydrophilic macromolecules onto inorganic nanoparticles via RAFT toward biocompatible polyethersulfone membrane","authors":"Mohammed Kamal Hadi , Liru Su , Yuan Li , Abdalazeez Ismail , Sambasivam Sangaraju , Fen Ran","doi":"10.1016/j.advmem.2023.100074","DOIUrl":"https://doi.org/10.1016/j.advmem.2023.100074","url":null,"abstract":"<div><p>Polyethersulfone (PES) polymers are useful for a variety of membranes' bio-related applications. However, due to its failure to satisfy certain performance and biocompatibility standards, PES requires further surface modification. Herein, we report a facile and flexible method of PES membrane modification by combining the synthesis of silicon oxide nanoparticles grafted with polyvinylpyrrolidone (PVP) as hydrophilic macromolecules via reversible addition fragmentation chain-transfer polymerization (RAFT) and aminated polyethersulfone. The blending of polyethersulfone-modified membranes with SiO<sub>2</sub>@PVP and aminated polyethersulfone results in a robust, hydrophilic, and biocompatible surface. This research work uniquely uses this strategy to stabilize the existence of the hydrophilic modifiers (SiO<sub>2</sub>@PVP and aminated polyethersulfone) within the membrane matrix. Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) are used to analyze the prepared polymer brush and the modified membranes. The modified membranes demonstrate high pure water flux at 345 L m<sup>−2</sup> h<sup>−1</sup> and bovine serum albumin (BSA) rejection at 98 %. The prepared membranes also show favorable hydrophilicity with a contact angle of 46.8° compared with pristine polyethersulfone at 79°. Furthermore, the modified membranes demonstrate an acceptable degree of blood biocompatibility according to partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), and fibrinogen (FIB) concentration analysis. Based on inductively coupled plasma optical emission spectroscopy (ICP-OES), the silicon nanoparticle leaching in permeate is in a safe range. Accordingly, the modified polyethersulfone membrane is safe and suitable for hemodialysis and bio-related applications.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"3 ","pages":"Article 100074"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823423000155/pdfft?md5=d36ca99563bea859169f373e0cdd5954&pid=1-s2.0-S2772823423000155-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134656570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.advmem.2022.100044
Xuemeng Jia , De Ao , Zibo Yang , Zhihua Qiao , Yuxiu Sun , Michael D. Guiver , Chongli Zhong
Refinery gas contains abundant H2 and a small amount of C1–C4 hydrocarbons. Here, we propose a condensability sieving strategy to realize preferential permeation of hydrocarbons over H2 by developing halogen-induced porous coordination polymer (PCP) mixed matrix membranes (MMMs) that display condensability sieving gas transport. The 4-Cl-PCP, 5-Cl-PCP and 5-Br-PCP are synthesized by using Zr4+ and X-isophthalic acid (where X = 4-Cl or 5-Cl or 5-Br) exhibit increased gas adsorption capacity with the increase in carbon number of the feed gas, but with almost no H2 adsorption. MMMs containing the PCPs with different charge distributions enhance condensability sieving selectivity and inhibit diffusion selectivity. The permeances of the MMMs originated from condensability sieving are consistent with the polarizability-dependent adsorption of the PCP. The selectivity of the obtained MMMs for n-C4H10/H2, C3H8/H2, C2H6/H2, and CH4/H2 achieve ∼40, ∼15, ∼5, and ∼2, respectively, exhibiting promising applications in refinery gas purification owing to their lower energy consumption compared with H2-preferential permeation membranes.
{"title":"Condensability sieving porous coordination polymer membranes for preferential permeation of C1–C4 alkanes over H2","authors":"Xuemeng Jia , De Ao , Zibo Yang , Zhihua Qiao , Yuxiu Sun , Michael D. Guiver , Chongli Zhong","doi":"10.1016/j.advmem.2022.100044","DOIUrl":"10.1016/j.advmem.2022.100044","url":null,"abstract":"<div><p>Refinery gas contains abundant H<sub>2</sub> and a small amount of C<sub>1</sub>–C<sub>4</sub> hydrocarbons. Here, we propose a condensability sieving strategy to realize preferential permeation of hydrocarbons over H<sub>2</sub> by developing halogen-induced porous coordination polymer (PCP) mixed matrix membranes (MMMs) that display condensability sieving gas transport. The 4-Cl-PCP, 5-Cl-PCP and 5-Br-PCP are synthesized by using Zr<sup>4+</sup> and X-isophthalic acid (where X = 4-Cl or 5-Cl or 5-Br) exhibit increased gas adsorption capacity with the increase in carbon number of the feed gas, but with almost no H<sub>2</sub> adsorption. MMMs containing the PCPs with different charge distributions enhance condensability sieving selectivity and inhibit diffusion selectivity. The permeances of the MMMs originated from condensability sieving are consistent with the polarizability-dependent adsorption of the PCP. The selectivity of the obtained MMMs for n-C<sub>4</sub>H<sub>10</sub>/H<sub>2</sub>, C<sub>3</sub>H<sub>8</sub>/H<sub>2</sub>, C<sub>2</sub>H<sub>6</sub>/H<sub>2</sub>, and CH<sub>4</sub>/H<sub>2</sub> achieve ∼40, ∼15, ∼5, and ∼2, respectively, exhibiting promising applications in refinery gas purification owing to their lower energy consumption compared with H<sub>2</sub>-preferential permeation membranes.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"2 ","pages":"Article 100044"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823422000203/pdfft?md5=4da6a1bd458d81f3dd1059fa77057066&pid=1-s2.0-S2772823422000203-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80370583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.advmem.2022.100035
Ruicong Wei , Xiaowei Liu , Zhiping Lai
In response to global efforts to combat climate change, many research efforts have contributed to upgrading cryogenic distillation, an energy-intensive petrochemical operation, especially for olefin/paraffin separation. Metal-organic framework (MOF) membranes can be a competitive candidate for this purpose. In this work, we reviewed the main progress of MOF membranes for olefin/paraffin separations, with the main focus on the potential of ZIF-8 for C3H6/C3H8 separation. Membranes of other potential materials, including covalent organic framework (COF) for olefin/paraffin separation, were also reviewed in detail. We then projected our views on searching for next-generation materials for high-performance olefin/paraffin separations. Finally, a guide of future research perspectives was provided to enable the first membrane of olefin/paraffin separation to be commercialized.
{"title":"MOF or COF membranes for olefin/paraffin separation: Current status and future research directions","authors":"Ruicong Wei , Xiaowei Liu , Zhiping Lai","doi":"10.1016/j.advmem.2022.100035","DOIUrl":"10.1016/j.advmem.2022.100035","url":null,"abstract":"<div><p>In response to global efforts to combat climate change, many research efforts have contributed to upgrading cryogenic distillation, an energy-intensive petrochemical operation, especially for olefin/paraffin separation. Metal-organic framework (MOF) membranes can be a competitive candidate for this purpose. In this work, we reviewed the main progress of MOF membranes for olefin/paraffin separations, with the main focus on the potential of ZIF-8 for C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> separation. Membranes of other potential materials, including covalent organic framework (COF) for olefin/paraffin separation, were also reviewed in detail. We then projected our views on searching for next-generation materials for high-performance olefin/paraffin separations. Finally, a guide of future research perspectives was provided to enable the first membrane of olefin/paraffin separation to be commercialized.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"2 ","pages":"Article 100035"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823422000112/pdfft?md5=01f0bb53103f6ec3debaf2ca31b0c11b&pid=1-s2.0-S2772823422000112-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82210062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.advmem.2022.100026
Lu Zhang , Fu Liu , Simin Yang , Shenghua Zhou , Jianqiang Wang , Haibo Lin , Qiu Han , Chuyang Y. Tang
The selective transport of water/ions through conventional forward osmosis (FO) membranes is largely impeded by solution-diffusion and internal concentration polarization (ICP). Herein, we report a novel air nanobubbles (ANBs) incorporated sandwich-structured carbon nanotube membrane (CNM) for highly permeable and stable FO desalination by taking advantage of the nanofluidic transport at the solid/liquid/vapor interface. Fluorinated multi-walled carbon nanotubes (F-MWCNTs) were assembled as the superhydrophobic interlayer between a hydrophilic cellulose acetate (CA) layer and a hydrophilic polyacrylonitrile (PAN) nanofibrous layer. The trapped ANBs in the superhydrophobic F-MWCNT layer crucially regulated the continuous water flow and effectively prevented salt diffusion. When tested with DI water as feed solution (FS) and 1 M NaCl as draw solution (DS), the ANBs incorporated sandwich-structured CNM achieved high water flux (158.0 L m−2 h−1) and ultralow reverse salt flux (0.4 g m−2 h−1) simultaneously, far beyond the state-of-the-art FO membranes. The PAN nanofibrous layer well protected the entrapped ANBs to allow a more durable FO performance. An ANBs-regulated nanofluidic flow model was proposed to elucidate selective water/salt transport mechanism. This work revealed the feasibility of ANBs incorporated membranes for osmosis-driven processes.
水/离子通过传统正向渗透(FO)膜的选择性运输在很大程度上受到溶液扩散和内部浓度极化(ICP)的阻碍。在此,我们报道了一种新型的空气纳米气泡(ANBs)结合三明治结构的碳纳米管膜(CNM),利用纳米流体在固/液/汽界面的传输,用于高渗透和稳定的FO脱盐。氟化多壁碳纳米管(F-MWCNTs)被组装成亲水性醋酸纤维素(CA)层和亲水性聚丙烯腈(PAN)纳米纤维层之间的超疏水中间层。超疏水F-MWCNT层中捕获的ANBs对水的连续流动起到关键调节作用,并有效地阻止了盐的扩散。在以去离子水作为进料溶液(FS)和1 M NaCl作为提取液(DS)进行测试时,采用三明治结构CNM的ANBs同时实现了高水通量(158.0 L M−2 h−1)和超低反盐通量(0.4 g M−2 h−1),远远超过了目前最先进的FO膜。PAN纳米纤维层很好地保护了被捕获的ANBs,使其具有更持久的FO性能。提出了一个anbs调控的纳米流体流动模型来阐明水盐选择性输运机制。这项工作揭示了ANBs掺入膜用于渗透驱动过程的可行性。
{"title":"Air nanobubbles (ANBs) incorporated sandwich-structured carbon nanotube membranes (CNM) for highly permeable and stable forward osmosis","authors":"Lu Zhang , Fu Liu , Simin Yang , Shenghua Zhou , Jianqiang Wang , Haibo Lin , Qiu Han , Chuyang Y. Tang","doi":"10.1016/j.advmem.2022.100026","DOIUrl":"10.1016/j.advmem.2022.100026","url":null,"abstract":"<div><p>The selective transport of water/ions through conventional forward osmosis (FO) membranes is largely impeded by solution-diffusion and internal concentration polarization (ICP). Herein, we report a novel air nanobubbles (ANBs) incorporated sandwich-structured carbon nanotube membrane (CNM) for highly permeable and stable FO desalination by taking advantage of the nanofluidic transport at the solid/liquid/vapor interface. Fluorinated multi-walled carbon nanotubes (F-MWCNTs) were assembled as the superhydrophobic interlayer between a hydrophilic cellulose acetate (CA) layer and a hydrophilic polyacrylonitrile (PAN) nanofibrous layer. The trapped ANBs in the superhydrophobic F-MWCNT layer crucially regulated the continuous water flow and effectively prevented salt diffusion. When tested with DI water as feed solution (FS) and 1 M NaCl as draw solution (DS), the ANBs incorporated sandwich-structured CNM achieved high water flux (158.0 L m<sup>−2</sup> h<sup>−1</sup>) and ultralow reverse salt flux (0.4 g m<sup>−2</sup> h<sup>−1</sup>) simultaneously, far beyond the state-of-the-art FO membranes. The PAN nanofibrous layer well protected the entrapped ANBs to allow a more durable FO performance. An ANBs-regulated nanofluidic flow model was proposed to elucidate selective water/salt transport mechanism. This work revealed the feasibility of ANBs incorporated membranes for osmosis-driven processes.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"2 ","pages":"Article 100026"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823422000021/pdfft?md5=06dfd38a628584ef97372e39fec20e40&pid=1-s2.0-S2772823422000021-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90922204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.advmem.2022.100037
Zhou Qu , Chenyu Lai , Guangjin Zhao , Alexander Knebel , Hongwei Fan , Hong Meng
Covalent Organic Frameworks (COFs) have attracted significant interest as promising separation membrane materials for their well-organized porous system and highly ordered crystalline structure. However, compared with the molecular and ionic separation in liquid phase, the advance of the COF membrane in gas separation has been relatively slow. To achieve desirable gas separation performance, the pore size of the COF membrane is expected to be regulated into the gas molecule-selective region, and also the tuning of pore enviroment is of importance. This review focuses on the key progress of the pore regulation strategies for the COF membrane towards gas separation. We highlight the different design concepts for selective gas transport channels, and introduce the specific applications to elucidate the structure-performance relationship of the COF membrane. We discuss the critical challenges and opportunities faced by the COF membranes in the field of gas separation, aiming at guiding the direction of the future efforts and promoting their development.
{"title":"Pore engineering in covalent organic framework membrane for gas separation","authors":"Zhou Qu , Chenyu Lai , Guangjin Zhao , Alexander Knebel , Hongwei Fan , Hong Meng","doi":"10.1016/j.advmem.2022.100037","DOIUrl":"10.1016/j.advmem.2022.100037","url":null,"abstract":"<div><p>Covalent Organic Frameworks (COFs) have attracted significant interest as promising separation membrane materials for their well-organized porous system and highly ordered crystalline structure. However, compared with the molecular and ionic separation in liquid phase, the advance of the COF membrane in gas separation has been relatively slow. To achieve desirable gas separation performance, the pore size of the COF membrane is expected to be regulated into the gas molecule-selective region, and also the tuning of pore enviroment is of importance. This review focuses on the key progress of the pore regulation strategies for the COF membrane towards gas separation. We highlight the different design concepts for selective gas transport channels, and introduce the specific applications to elucidate the structure-performance relationship of the COF membrane. We discuss the critical challenges and opportunities faced by the COF membranes in the field of gas separation, aiming at guiding the direction of the future efforts and promoting their development.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"2 ","pages":"Article 100037"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823422000136/pdfft?md5=17ea4ea7f0e9ae79d5b661b373c48d9c&pid=1-s2.0-S2772823422000136-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85155568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}