首页 > 最新文献

Advanced Membranes最新文献

英文 中文
A novel homogeneous amphipathic PTFE/β-FeOOH nanofiber membrane for emulsion separation and photocatalytic degradation in harsh environments 一种新型均相两亲性PTFE/β-FeOOH纳米纤维膜,用于恶劣环境下的乳液分离和光催化降解
IF 9.5 Pub Date : 2025-11-05 DOI: 10.1016/j.advmem.2025.100187
Fan Liu , Xin Wang , Jun Wu , Hongbo Yang , Baolong Li , Zihui Dong , Xutong Han , Xiaolei Li , Qinglin Huang
The efficient separation of emulsion and the simultaneous degradation of organic pollutants remain critical challenges in wastewater treatment, particularly under harsh environments. In this work, a multifunctional Polytetrafluoroethylene (PTFE)/β-FeOOH (beta-iron oxyhydroxide) nanofiber membrane was successfully fabricated via electrospinning combined with in situ mineralization. The membrane exhibited superamphiphilicity in air, underwater superoleophobicity, and superhydrophobicity in oil, with tunable surface wettability. Uniformly anchored β-FeOOH nanorods increased surface roughness and hydrophilicity while providing abundant catalytic sites, enabling synergistic oil–water emulsion separation and photo-Fenton degradation. At a low operating pressure of 0.2 ​bar, high permeation fluxes of 2713.29 and 2108.37 ​L·m⁻²·h⁻¹ were achieved for O/W (oil in water) and W/O(water in oil) emulsions, with separation efficiencies up to 99.90 ​%. The membrane maintained excellent chemical stability after 10 separation–regeneration cycles under pH 1 and 30 ​wt% NaOH conditions, retaining fluxes of 1948.47 and 2150.53 ​L·m⁻²·h⁻¹ with efficiencies of 99.38 ​% and 99.62 ​%, respectively. Additionally, methylene blue (MB) and rhodamine B (Rh B) removal rates remained above 98 ​% after five photo-Fenton cycles, and the flux recovery rate reached 97.88 ​%. These results demonstrate superior chemical resistance, antifouling properties, and long-term durability. Therefore, the proposed PTFE/β-FeOOH nanofiber membrane offers a promising strategy for efficient emulsion separation and organic pollutant purification in harsh environments.
乳化液的有效分离和有机污染物的同时降解仍然是废水处理的关键挑战,特别是在恶劣环境下。本文采用静电纺丝与原位矿化相结合的方法制备了多功能聚四氟乙烯(PTFE)/β-羟基氧化铁(β-FeOOH)纳米纤维膜。该膜在空气中表现出超两亲性,在水中表现出超疏油性,在油中表现出超疏水性,表面润湿性可调。均匀锚定的β-FeOOH纳米棒提高了表面粗糙度和亲水性,同时提供了丰富的催化位点,实现了油水乳液的协同分离和光- fenton降解。在0.2 bar的低操作压力下,O/W(油中油)和W/O(油中水)乳剂的渗透通量分别为2713.29和2108.37 L·m⁻²·h⁻¹,分离效率高达99.90%。在pH值为1和NaOH浓度为30 wt%的条件下,经过10次分离-再生循环后,膜保持了良好的化学稳定性,其通量为1948.47和2150.53 L·m⁻²·h⁻¹,效率分别为99.38%和99.62%。经过5次光- fenton循环后,亚甲基蓝(MB)和罗丹明B (Rh B)的去除率保持在98%以上,通量回收率达到97.88%。这些结果显示出优异的耐化学性,防污性能和长期耐久性。因此,所提出的PTFE/β-FeOOH纳米纤维膜为在恶劣环境下高效分离乳液和净化有机污染物提供了一种很有前景的策略。
{"title":"A novel homogeneous amphipathic PTFE/β-FeOOH nanofiber membrane for emulsion separation and photocatalytic degradation in harsh environments","authors":"Fan Liu ,&nbsp;Xin Wang ,&nbsp;Jun Wu ,&nbsp;Hongbo Yang ,&nbsp;Baolong Li ,&nbsp;Zihui Dong ,&nbsp;Xutong Han ,&nbsp;Xiaolei Li ,&nbsp;Qinglin Huang","doi":"10.1016/j.advmem.2025.100187","DOIUrl":"10.1016/j.advmem.2025.100187","url":null,"abstract":"<div><div>The efficient separation of emulsion and the simultaneous degradation of organic pollutants remain critical challenges in wastewater treatment, particularly under harsh environments. In this work, a multifunctional Polytetrafluoroethylene (PTFE)/β-FeOOH (beta-iron oxyhydroxide) nanofiber membrane was successfully fabricated via electrospinning combined with in situ mineralization. The membrane exhibited superamphiphilicity in air, underwater superoleophobicity, and superhydrophobicity in oil, with tunable surface wettability. Uniformly anchored β-FeOOH nanorods increased surface roughness and hydrophilicity while providing abundant catalytic sites, enabling synergistic oil–water emulsion separation and photo-Fenton degradation. At a low operating pressure of 0.2 ​bar, high permeation fluxes of 2713.29 and 2108.37 ​L·m⁻²·h⁻¹ were achieved for O/W (oil in water) and W/O(water in oil) emulsions, with separation efficiencies up to 99.90 ​%. The membrane maintained excellent chemical stability after 10 separation–regeneration cycles under pH 1 and 30 ​wt% NaOH conditions, retaining fluxes of 1948.47 and 2150.53 ​L·m⁻²·h⁻¹ with efficiencies of 99.38 ​% and 99.62 ​%, respectively. Additionally, methylene blue (MB) and rhodamine B (Rh B) removal rates remained above 98 ​% after five photo-Fenton cycles, and the flux recovery rate reached 97.88 ​%. These results demonstrate superior chemical resistance, antifouling properties, and long-term durability. Therefore, the proposed PTFE/β-FeOOH nanofiber membrane offers a promising strategy for efficient emulsion separation and organic pollutant purification in harsh environments.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"6 ","pages":"Article 100187"},"PeriodicalIF":9.5,"publicationDate":"2025-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145529066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-stable Ni-overdoped yttria-stabilized zirconia oxygen separation membranes for methane partial oxidation 甲烷部分氧化用超稳定镍掺杂钇稳定氧化锆氧分离膜
IF 9.5 Pub Date : 2025-11-03 DOI: 10.1016/j.advmem.2025.100186
Yi Gao , Tengpeng Wang , Fangsheng Liu , Dongjie Fan , Xiaoyu Xie , Zhengmao Ye , Dehua Dong , Huanting Wang , Zongping Shao
Ceramic oxygen separation membranes have advantages over cryogenic distillation and pressure swing adsorption in terms of oxygen production. However, the application of ceramic membranes is restricted by membrane stability issues at high operation temperatures. This study develops ultra-stable oxygen separation membranes through the over-doping of Ni into yttrium-doped zirconia (NYSZ). The Ni doping amount reaches 18.1 ​mol%, and Ni dissolution substantially increases the electronic conductivity of the yttrium-doped zirconia membranes under both oxidizing and reducing atmospheres, which is as high as 0.96 ​S ​cm−1. Accordingly, high oxygen permeation rates of up to 1.68 ​mL ​min−1 cm−2 at 800 ​°C were achieved, which are comparable with those of conventional perovskite membranes (3.53 ​mL ​min−1 cm−2). The ultra-stable NYSZ membranes were confirmed with stable electrochemical reforming of methane for 310 ​h. Therefore, the robust NYSZ membranes demonstrate great potential in practical applications.
在制氧方面,陶瓷氧分离膜具有低温蒸馏和变压吸附的优点。然而,陶瓷膜的应用受到高温下膜稳定性问题的限制。本研究通过在掺钇氧化锆(NYSZ)中过量掺杂Ni来制备超稳定的氧分离膜。Ni掺杂量达到18.1 mol%,在氧化和还原气氛下,Ni的溶解均显著提高了钇掺杂氧化锆膜的电导率,最高可达0.96 S cm−1。因此,在800°C下实现了高达1.68 mL min - 1 cm - 2的高氧渗透率,这与传统钙钛矿膜(3.53 mL min - 1 cm - 2)相当。通过稳定的甲烷电化学重整310 h,证实了NYSZ膜的超稳定性。因此,坚固耐用的NYSZ膜在实际应用中显示出巨大的潜力。
{"title":"Ultra-stable Ni-overdoped yttria-stabilized zirconia oxygen separation membranes for methane partial oxidation","authors":"Yi Gao ,&nbsp;Tengpeng Wang ,&nbsp;Fangsheng Liu ,&nbsp;Dongjie Fan ,&nbsp;Xiaoyu Xie ,&nbsp;Zhengmao Ye ,&nbsp;Dehua Dong ,&nbsp;Huanting Wang ,&nbsp;Zongping Shao","doi":"10.1016/j.advmem.2025.100186","DOIUrl":"10.1016/j.advmem.2025.100186","url":null,"abstract":"<div><div>Ceramic oxygen separation membranes have advantages over cryogenic distillation and pressure swing adsorption in terms of oxygen production. However, the application of ceramic membranes is restricted by membrane stability issues at high operation temperatures. This study develops ultra-stable oxygen separation membranes through the over-doping of Ni into yttrium-doped zirconia (NYSZ). The Ni doping amount reaches 18.1 ​mol%, and Ni dissolution substantially increases the electronic conductivity of the yttrium-doped zirconia membranes under both oxidizing and reducing atmospheres, which is as high as 0.96 ​S ​cm<sup>−1</sup>. Accordingly, high oxygen permeation rates of up to 1.68 ​mL ​min<sup>−1</sup> cm<sup>−2</sup> at 800 ​°C were achieved, which are comparable with those of conventional perovskite membranes (3.53 ​mL ​min<sup>−1</sup> cm<sup>−2</sup>). The ultra-stable NYSZ membranes were confirmed with stable electrochemical reforming of methane for 310 ​h. Therefore, the robust NYSZ membranes demonstrate great potential in practical applications.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"6 ","pages":"Article 100186"},"PeriodicalIF":9.5,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145529064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osmotic energy harvesting from produced water and boiler blowdown water by sulfonated Poly(ether ether ketone)-based mixed matrix membranes 磺化聚醚醚酮基混合基质膜从采出水和锅炉排污水中收集渗透能
IF 9.5 Pub Date : 2025-11-01 DOI: 10.1016/j.advmem.2025.100180
Li Cao , I-Chun Chen , Cailing Chen , Xiaowei Liu , Kai Qu , Zhen Li , Khalid Hazazi , Zhiping Lai
The salinity gradient between produced water and boiler blowdown water – both significant waste streams in the petroleum industry – represents an emerging, clean, and sustainable energy source. This energy can be directly converted to electricity through reverse electrodialysis. In this study, we developed a series of sulfonated polyether ether ketone (SPEEK)/UiO-66-SO3H mixed matrix membranes specifically tailored for osmotic energy harvesting from these industrial effluents. The incorporation of UiO-66-SO3H nanoparticles into the SPEEK matrix significantly enhanced ion permeance, which can be attributed to the well-defined and appropriately sized pore structure of UiO-66-SO3H. When exploiting the salinity gradient between actual samples of produced water and boiler blowdown water, the membranes containing 20 ​wt% UiO-66-SO3H achieved a maximum power density of 5.3 ​W ​m−2 at an operational temperature of 60 ​°C. More importantly, these membranes demonstrated high stability during prolonged operational testing, highlighting their potential for sustainable and efficient energy generation from waste streams in the petroleum industry.
采出水和锅炉排污水之间的盐度梯度是石油工业中重要的废物流,代表着一种新兴的、清洁的和可持续的能源。这种能量可以通过反向电渗析直接转化为电能。在这项研究中,我们开发了一系列磺化聚醚醚酮(SPEEK)/UiO-66-SO3H混合基质膜,专门用于从这些工业废水中渗透能量收集。将UiO-66-SO3H纳米颗粒掺入SPEEK基质后,离子渗透性显著增强,这可归因于UiO-66-SO3H孔隙结构清晰且大小合适。当利用实际产出水和锅炉排污水样品之间的盐度梯度时,在60℃的工作温度下,含20wt % uuo -66- so3h的膜的最大功率密度为5.3 W m−2。更重要的是,这些膜在长时间的运行测试中表现出了高稳定性,突出了它们在石油工业废水中可持续高效发电的潜力。
{"title":"Osmotic energy harvesting from produced water and boiler blowdown water by sulfonated Poly(ether ether ketone)-based mixed matrix membranes","authors":"Li Cao ,&nbsp;I-Chun Chen ,&nbsp;Cailing Chen ,&nbsp;Xiaowei Liu ,&nbsp;Kai Qu ,&nbsp;Zhen Li ,&nbsp;Khalid Hazazi ,&nbsp;Zhiping Lai","doi":"10.1016/j.advmem.2025.100180","DOIUrl":"10.1016/j.advmem.2025.100180","url":null,"abstract":"<div><div>The salinity gradient between produced water and boiler blowdown water – both significant waste streams in the petroleum industry – represents an emerging, clean, and sustainable energy source. This energy can be directly converted to electricity through reverse electrodialysis. In this study, we developed a series of sulfonated polyether ether ketone (SPEEK)/UiO-66-SO<sub>3</sub>H mixed matrix membranes specifically tailored for osmotic energy harvesting from these industrial effluents. The incorporation of UiO-66-SO<sub>3</sub>H nanoparticles into the SPEEK matrix significantly enhanced ion permeance, which can be attributed to the well-defined and appropriately sized pore structure of UiO-66-SO<sub>3</sub>H. When exploiting the salinity gradient between actual samples of produced water and boiler blowdown water, the membranes containing 20 ​wt% UiO-66-SO<sub>3</sub>H achieved a maximum power density of 5.3 ​W ​m<sup>−2</sup> at an operational temperature of 60 ​°C. More importantly, these membranes demonstrated high stability during prolonged operational testing, highlighting their potential for sustainable and efficient energy generation from waste streams in the petroleum industry.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"6 ","pages":"Article 100180"},"PeriodicalIF":9.5,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145475970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High temperature resistant thin film composite polyamide membrane constructed via 3,3′-diamine-Tröger base COFs for enhancing reverse osmosis separation performances 通过3,3 ' -diamine-Tröger基COFs构建耐高温薄膜复合聚酰胺膜,提高反渗透分离性能
IF 9.5 Pub Date : 2025-10-31 DOI: 10.1016/j.advmem.2025.100183
Chen-Jie Wei , Xun Li , Xing-Yu Chen , Ya-Wei Lin , Dong Yu , He-Lin Zhu , Xue-Li Cao , Bai-Long Xu , Li-Fen Liu
High temperature resistant thin-film composite polyamide (TFC PA) membranes are notable across various applications. However, the pursuit of efficient separation at elevated temperatures was hindered by the thick and unstable active layer. In this work, based on covalent organic frameworks (COFs) decorated with exceptional porosity, remarkably large specific surface areas, and outstanding thermal stability, a TFC PA reverse osmosis (RO) membrane featuring a slimmer selective layer and enhanced thermal stability was achieved through interfacial polymerization mediated by COF nanoparticles as aqueous-phase modifier. Firstly, a novel COFTpDATB nanoparticles with high free volume and rigidity were designed and synthesized based on 3,3′-diamine-Trögers base (DATB) with V-shaped rigid structure and 1,3,5-Triformylphloroglucinol (Tp). The introduction of COFTpDATB nanoparticles retards the penetration of the aqueous phase into the organic phase, facilitating the formation of a thinner and more uniform PA selective layer. The resultant COFTpDATB modified TFC RO membrane exhibited a water permeance of 35.8 ​L/(m2·h) and high salt rejection rate of 99.6 ​%. Notably, the hydrogen bond crosslinking density might be increased owing to hydrogen bond formation between carboxyl groups of PA separation layer and a tertiary amine group of COFTpDATB, which further guarantee the high salt rejection under high temperature. The membrane showed a high water permeance of 83.7 ​L/(m2·h) and rejection rate of 99.1 ​% even at 70 ​°C. Overall, enhanced by incorporation of COFTpDATB nanoparticles, TFC PA RO membrane exhibited excellent thermal stability and separation efficiency. The current work is envisaged to supply direction for the high-performance TFC PA RO membrane for high temperature resistance.
耐高温薄膜复合聚酰胺(TFC PA)膜在各种应用中都是值得注意的。然而,在高温下追求有效的分离受到厚厚的和不稳定的活性层的阻碍。在这项工作中,基于共价有机框架(COFs)具有优异的孔隙率,显着的大比表面积和出色的热稳定性,通过COF纳米颗粒作为水相改性剂介导的界面聚合,获得了具有更薄选择层和增强热稳定性的TFC PA反渗透(RO)膜。首先,以具有v型刚性结构的3,3 ' -diamine-Trögers碱(DATB)和1,3,5-三甲酰间苯三酚(Tp)为基材,设计并合成了具有高自由体积和高刚性的新型COFTpDATB纳米颗粒。COFTpDATB纳米颗粒的引入延缓了水相向有机相的渗透,有利于形成更薄、更均匀的PA选择层。所得COFTpDATB改性TFC反渗透膜的渗透率为35.8 L/(m2·h),盐去除率高达99.6%。值得注意的是,由于PA分离层的羧基与COFTpDATB的叔胺基之间形成氢键,可能会增加氢键交联密度,从而进一步保证了高温下的高阻盐性。在70℃条件下,膜的透水率为83.7 L/(m2·h),截留率为99.1%。总的来说,COFTpDATB纳米颗粒的加入增强了TFC PA RO膜的热稳定性和分离效率。本研究为高性能TFC PA RO耐高温膜的研究提供了方向。
{"title":"High temperature resistant thin film composite polyamide membrane constructed via 3,3′-diamine-Tröger base COFs for enhancing reverse osmosis separation performances","authors":"Chen-Jie Wei ,&nbsp;Xun Li ,&nbsp;Xing-Yu Chen ,&nbsp;Ya-Wei Lin ,&nbsp;Dong Yu ,&nbsp;He-Lin Zhu ,&nbsp;Xue-Li Cao ,&nbsp;Bai-Long Xu ,&nbsp;Li-Fen Liu","doi":"10.1016/j.advmem.2025.100183","DOIUrl":"10.1016/j.advmem.2025.100183","url":null,"abstract":"<div><div>High temperature resistant thin-film composite polyamide (TFC PA) membranes are notable across various applications. However, the pursuit of efficient separation at elevated temperatures was hindered by the thick and unstable active layer. In this work, based on covalent organic frameworks (COFs) decorated with exceptional porosity, remarkably large specific surface areas, and outstanding thermal stability, a TFC PA reverse osmosis (RO) membrane featuring a slimmer selective layer and enhanced thermal stability was achieved through interfacial polymerization mediated by COF nanoparticles as aqueous-phase modifier. Firstly, a novel COF<sub>TpDATB</sub> nanoparticles with high free volume and rigidity were designed and synthesized based on 3,3′-diamine-Trögers base (DATB) with V-shaped rigid structure and 1,3,5-Triformylphloroglucinol (Tp). The introduction of COF<sub>TpDATB</sub> nanoparticles retards the penetration of the aqueous phase into the organic phase, facilitating the formation of a thinner and more uniform PA selective layer. The resultant COF<sub>TpDATB</sub> modified TFC RO membrane exhibited a water permeance of 35.8 ​L/(m<sup>2</sup>·h) and high salt rejection rate of 99.6 ​%. Notably, the hydrogen bond crosslinking density might be increased owing to hydrogen bond formation between carboxyl groups of PA separation layer and a tertiary amine group of COF<sub>TpDATB</sub>, which further guarantee the high salt rejection under high temperature. The membrane showed a high water permeance of 83.7 ​L/(m<sup>2</sup>·h) and rejection rate of 99.1 ​% even at 70 ​°C. Overall, enhanced by incorporation of COF<sub>TpDATB</sub> nanoparticles, TFC PA RO membrane exhibited excellent thermal stability and separation efficiency. The current work is envisaged to supply direction for the high-performance TFC PA RO membrane for high temperature resistance.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"6 ","pages":"Article 100183"},"PeriodicalIF":9.5,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145623779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gas separation performance of soluble PMDA-polyimides controlled by diamine isomerism and copolymerization 二胺异构和共聚控制可溶pmda -聚酰亚胺气体分离性能
IF 9.5 Pub Date : 2025-10-30 DOI: 10.1016/j.advmem.2025.100174
Jing Wang , Guoke Zhao , Bo Chen , Gongqing Tang , Yiqun Liu , Pei Li
Two series of soluble polyimides based on pyromellitic dianhydride (PMDA) were synthesized and investigated for gas separation applications. The first series was prepared by reacting PMDA with 5(6)-1-(4-aminophenyl)-1,3,3′-trimethylindane (5(6)-DAPI). Two commercially available DAPI mixtures, designated as DAPI-1 and DAPI-2, containing 5-DAPI to 6-DAPI isomer ratios of 36:64 and 44:56, respectively, were employed. The results indicated that the higher structural distortion associated with 6-DAPI in PMDA-DAPI-1 demonstrated greater gas permeability but lower selectivity compared to PMDA-DAPI-2. The second series of polyimides utilized diethyl toluene diamine (DETDA). Particular emphasis was placed on polyimides obtained through the copolymerization of DETDA with either 2,4,6-trimethyl-1,3-diaminobenzene (DAM) or 1,5-diaminonaphthalene (NDA), at a diamino monomer ratio of 3:1. The PMDA-DETDA polyimide exhibited higher gas permeability but lower selectivity compared to copolyimide counterparts. Notably, DETDA-based polyimides exhibited CO2/CH4 separation performances approaching the 1991 Robeson upper bound under mixed gas conditions. Furthermore, two series of polyimides showed high glass transition temperatures (Tg) ranging from 461 ​°C to 534 ​°C, suggesting their suitability for high-temperature gas separation applications.
合成了两种以焦二甲基二酐(PMDA)为基料的可溶聚酰亚胺,并对其气体分离应用进行了研究。第一个系列是由PMDA与5(6)-1-(4-氨基苯基)-1,3,3 ' -三甲基林丹(5(6)- dapi)反应制备的。采用两种市售DAPI混合物,分别命名为DAPI-1和DAPI-2,其中5-DAPI与6-DAPI异构体的比例分别为36:64和44:56。结果表明,与PMDA-DAPI-2相比,PMDA-DAPI-1中6-DAPI的结构畸变率较高,透气性较好,但选择性较低。第二系列聚酰亚胺采用二乙基甲苯二胺(DETDA)。重点研究了DETDA与2,4,6-三甲基-1,3-二氨基苯(DAM)或1,5-二氨基萘(NDA)以3:1的二氨基单体比例共聚得到的聚酰亚胺。PMDA-DETDA聚酰亚胺具有较高的透气性,但选择性较低。值得注意的是,在混合气体条件下,detda基聚酰亚胺的CO2/CH4分离性能接近1991 Robeson上界。此外,两个系列的聚酰亚胺显示出高玻璃化转变温度(Tg),范围为461°C至534°C,表明它们适合高温气体分离应用。
{"title":"Gas separation performance of soluble PMDA-polyimides controlled by diamine isomerism and copolymerization","authors":"Jing Wang ,&nbsp;Guoke Zhao ,&nbsp;Bo Chen ,&nbsp;Gongqing Tang ,&nbsp;Yiqun Liu ,&nbsp;Pei Li","doi":"10.1016/j.advmem.2025.100174","DOIUrl":"10.1016/j.advmem.2025.100174","url":null,"abstract":"<div><div>Two series of soluble polyimides based on pyromellitic dianhydride (PMDA) were synthesized and investigated for gas separation applications. The first series was prepared by reacting PMDA with 5(6)-1-(4-aminophenyl)-1,3,3′-trimethylindane (5(6)-DAPI). Two commercially available DAPI mixtures, designated as DAPI-1 and DAPI-2, containing 5-DAPI to 6-DAPI isomer ratios of 36:64 and 44:56, respectively, were employed. The results indicated that the higher structural distortion associated with 6-DAPI in PMDA-DAPI-1 demonstrated greater gas permeability but lower selectivity compared to PMDA-DAPI-2. The second series of polyimides utilized diethyl toluene diamine (DETDA). Particular emphasis was placed on polyimides obtained through the copolymerization of DETDA with either 2,4,6-trimethyl-1,3-diaminobenzene (DAM) or 1,5-diaminonaphthalene (NDA), at a diamino monomer ratio of 3:1. The PMDA-DETDA polyimide exhibited higher gas permeability but lower selectivity compared to copolyimide counterparts. Notably, DETDA-based polyimides exhibited CO<sub>2</sub>/CH<sub>4</sub> separation performances approaching the 1991 Robeson upper bound under mixed gas conditions. Furthermore, two series of polyimides showed high glass transition temperatures (Tg) ranging from 461 ​°C to 534 ​°C, suggesting their suitability for high-temperature gas separation applications.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"6 ","pages":"Article 100174"},"PeriodicalIF":9.5,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145475891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic chiral microporous polymer membranes by interfacial polymerization for precise enantioseparation 界面聚合用于对映体精确分离的本征性微孔聚合物膜
IF 9.5 Pub Date : 2025-10-28 DOI: 10.1016/j.advmem.2025.100185
Zichen Li , Yumei Wang , Runhao Li , Yi Liu , Yue Sun
Enantiomers of chiral drugs frequently exhibit distinct pharmacological activities, metabolic pathways, rates of metabolism, and toxicological profiles. Consequently, the large-scale production of single enantiomers holds significant scientific and economic value. Membrane-based chiral separation presents considerable potential advantages, including low operational costs and high productivity, which have driven substantial research interest. In this study, we employed the chiral spirocyclic compound 1,1′-spirobiindane-7,7′-diol (SPINOL) as the aqueous-phase monomer to fabricate chiral polymers of intrinsic microporosity (CPIMs) membranes via interfacial polymerization (IP). The S-CPIMs/PAN composite membrane, synthesized on a polyacrylonitrile (PAN) substrate, demonstrated high enantioselectivity towards ibuprofen (PRF), achieving an enantiomeric excess (ee) of 95.4 ​%. Mechanistically, this selectivity originates from transition-state energy differentials within transmembrane free-energy landscapes. Importantly, large-area, defect-free chiral membranes were successfully fabricated and engineered into functional membrane modules, which demonstrated exceptional homogeneity and stable performance.
手性药物的对映体经常表现出不同的药理活性、代谢途径、代谢速率和毒理学特征。因此,单对映体的大规模生产具有重要的科学和经济价值。基于膜的手性分离具有相当大的潜在优势,包括低操作成本和高生产率,已经引起了大量的研究兴趣。本研究以手性螺环化合物1,1′-螺比烷-7,7′-二醇(SPINOL)为水相单体,通过界面聚合(IP)制备了本征微孔(CPIMs)膜的手性聚合物。在聚丙烯腈(PAN)底物上合成的S-CPIMs/PAN复合膜对布洛芬(PRF)具有较高的对映选择性,对映体过量(ee)达到95.4%。从机制上讲,这种选择性源于跨膜自由能景观中的过渡态能量差。重要的是,大面积、无缺陷的手性膜被成功地制造并工程化成功能膜模块,表现出优异的均匀性和稳定的性能。
{"title":"Intrinsic chiral microporous polymer membranes by interfacial polymerization for precise enantioseparation","authors":"Zichen Li ,&nbsp;Yumei Wang ,&nbsp;Runhao Li ,&nbsp;Yi Liu ,&nbsp;Yue Sun","doi":"10.1016/j.advmem.2025.100185","DOIUrl":"10.1016/j.advmem.2025.100185","url":null,"abstract":"<div><div>Enantiomers of chiral drugs frequently exhibit distinct pharmacological activities, metabolic pathways, rates of metabolism, and toxicological profiles. Consequently, the large-scale production of single enantiomers holds significant scientific and economic value. Membrane-based chiral separation presents considerable potential advantages, including low operational costs and high productivity, which have driven substantial research interest. In this study, we employed the chiral spirocyclic compound 1,1′-spirobiindane-7,7′-diol (SPINOL) as the aqueous-phase monomer to fabricate chiral polymers of intrinsic microporosity (CPIMs) membranes via interfacial polymerization (IP). The S-CPIMs/PAN composite membrane, synthesized on a polyacrylonitrile (PAN) substrate, demonstrated high enantioselectivity towards ibuprofen (PRF), achieving an enantiomeric excess (<em>ee</em>) of 95.4 ​%. Mechanistically, this selectivity originates from transition-state energy differentials within transmembrane free-energy landscapes. Importantly, large-area, defect-free chiral membranes were successfully fabricated and engineered into functional membrane modules, which demonstrated exceptional homogeneity and stable performance.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"6 ","pages":"Article 100185"},"PeriodicalIF":9.5,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145529065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly (ether block amide) membranes with hyper-crosslinked polymer fillers for enhanced pervaporation of phenol aqueous solutions 具有超交联聚合物填料的聚醚嵌段酰胺膜,用于增强苯酚水溶液的渗透蒸发
IF 9.5 Pub Date : 2025-10-28 DOI: 10.1016/j.advmem.2025.100184
Zhihao Huang , Chuanlong Li , Yuanyuan Sheng , Liqiu Yang , Haoli Zhou , Wanqin Jin
Pervaporation (PV) is considered one of the most industrially potential phenol wastewater treatment technologies because of its advantages such as high efficiency and without regeneration. PV membrane performance is a key factor that determines its industrial applicability. Here, polymer-filler-based mixed matrix membranes (MMMs) are proposed to enhance the membrane performance for pervaporation of phenol aqueous solutions. First, three hyper-crosslinked polymer (HCP) fillers were synthesized via the Friedel–Crafts reaction between benzyl alcohol (BA) and a penta-heterocyclic compound, such as furan (Fu), and analyzed by different characterizations. All the fillers exhibited desirable properties such as high phenol adsorption capacity and excellent hydrophobicity. Subsequently, different MMMs were fabricated by incorporating the HCP fillers into poly (ether block amide) (PEBA-2533) for the separation of phenol aqueous solutions. The Fu/BA-HCP@PEBA-2533 MMM was selected for further investigation as it afforded the highest separation factor of 72.2 and a flux of 2.07 ​kg/(m2·h) at 70 ​°C for the separation of a 1.5 ​wt% phenol aqueous solution. The diffusion and solubility coefficients were measured. The effects of different operating conditions on the membrane performance and long-term stability were studied, and the results for the pervaporation of phenol aqueous solutions were compared with previously reported data. Investigating the effects of diverse polymer fillers and their compatibility with polymers on the fabrication and performance of MMMs will be a prospective future research direction.
渗透蒸发(PV)因其效率高、无需再生等优点,被认为是最有工业潜力的苯酚废水处理技术之一。光伏膜的性能是决定其工业适用性的关键因素。本文提出了基于聚合物填料的混合基质膜(MMMs),以提高苯酚水溶液渗透蒸发的膜性能。首先,通过苯甲醇(BA)与呋喃(Fu)等五杂环化合物的Friedel-Crafts反应合成了三种超交联聚合物(HCP)填料,并对其进行了不同的表征分析。所有填料均具有较高的苯酚吸附能力和良好的疏水性。随后,将HCP填料掺入聚醚嵌段酰胺(PEBA-2533)中制备不同的MMMs,用于苯酚水溶液的分离。选择Fu/BA-HCP@PEBA-2533 MMM进行进一步的研究,因为它在70°C下对1.5 wt%苯酚水溶液的分离系数最高,为72.2,通量为2.07 kg/(m2·h)。测定了扩散系数和溶解度系数。研究了不同操作条件对膜性能和长期稳定性的影响,并将苯酚水溶液的渗透蒸发结果与已有报道的数据进行了比较。研究不同聚合物填料及其与聚合物的相容性对mm - mm材料的制备和性能的影响是未来的研究方向。
{"title":"Poly (ether block amide) membranes with hyper-crosslinked polymer fillers for enhanced pervaporation of phenol aqueous solutions","authors":"Zhihao Huang ,&nbsp;Chuanlong Li ,&nbsp;Yuanyuan Sheng ,&nbsp;Liqiu Yang ,&nbsp;Haoli Zhou ,&nbsp;Wanqin Jin","doi":"10.1016/j.advmem.2025.100184","DOIUrl":"10.1016/j.advmem.2025.100184","url":null,"abstract":"<div><div>Pervaporation (PV) is considered one of the most industrially potential phenol wastewater treatment technologies because of its advantages such as high efficiency and without regeneration. PV membrane performance is a key factor that determines its industrial applicability. Here, polymer-filler-based mixed matrix membranes (MMMs) are proposed to enhance the membrane performance for pervaporation of phenol aqueous solutions. First, three hyper-crosslinked polymer (HCP) fillers were synthesized via the Friedel–Crafts reaction between benzyl alcohol (BA) and a penta-heterocyclic compound, such as furan (Fu), and analyzed by different characterizations. All the fillers exhibited desirable properties such as high phenol adsorption capacity and excellent hydrophobicity. Subsequently, different MMMs were fabricated by incorporating the HCP fillers into poly (ether block amide) (PEBA-2533) for the separation of phenol aqueous solutions. The Fu/BA-HCP@PEBA-2533 MMM was selected for further investigation as it afforded the highest separation factor of 72.2 and a flux of 2.07 ​kg/(m<sup>2</sup>·h) at 70 ​°C for the separation of a 1.5 ​wt% phenol aqueous solution. The diffusion and solubility coefficients were measured. The effects of different operating conditions on the membrane performance and long-term stability were studied, and the results for the pervaporation of phenol aqueous solutions were compared with previously reported data. Investigating the effects of diverse polymer fillers and their compatibility with polymers on the fabrication and performance of MMMs will be a prospective future research direction.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"6 ","pages":"Article 100184"},"PeriodicalIF":9.5,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145475892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flux melting of UiO-67 family metal-organic frameworks: the thin film processing and nanofiltration property UiO-67族金属有机骨架的熔炼:薄膜加工及纳滤性能
IF 9.5 Pub Date : 2025-10-24 DOI: 10.1016/j.advmem.2025.100182
Wei-Long Li , Jiao-Rong Li , Guo-Qiang Li , Xiang Kun Cui , Wen-Long Xue , Ming Hao Li , Zhongfeng Li , Hongliang Dong , Chong-Qing Wan
Metal-Organic Frameworks (MOFs) have been demonstrated to be the perfect candidates of function materials for special specie separation. Although numerous MOFs, nearly 100,000 unique ones, have been explored, only several MOF-based membranes are reported because their lack of processability and grain boundary effects seriously limit their fabrication into thin film. This work discusses a strategy of flux melting, ‘borrowed from inorganic domain’, to prepare a MOF thin film via a simple heat-pressing process by using one meltable MOF and a non-meltable MOF. We observed the flux melting of the non-meltable Zr-MOFs and its meltable derivative modified by the binary ionic liquids, the proportion effect of each part on the melting, processability and film nanofiltration for dye molecules. The melt-quenched glass thin film possesses the network inherited from the pristine MOF via the melt, linker exchange and vitrification mechanism. The interesting pore recovery of MOF upon a solvent stimulation endows the film with pore size control (∼1.2 ​nm) on the dye molecule separation. A 99.88 ​% rejection rate and a permeability of 27.7 ​L/m2·h·bar for Congo red dye solution is observed, which is much better than that of analogous MOF membranes generally obtained through complicate processes.
金属-有机骨架(MOFs)已被证明是用于特殊物种分离的功能材料的理想候选者。尽管已经发现了许多mof,近10万种独特的mof,但由于缺乏可加工性和晶界效应严重限制了它们的薄膜制造,因此仅报道了几种mof基膜。本工作讨论了一种“借鉴无机领域”的熔剂熔炼策略,通过简单的热压工艺,利用一个可熔化的MOF和一个不可熔化的MOF制备MOF薄膜。观察了二元离子液体修饰的不可熔性zr - mof及其可熔性衍生物的熔剂熔炼过程,以及各组分对染料分子熔炼、加工性和膜纳滤的比例效应。熔融淬火玻璃薄膜通过熔体、连接剂交换和玻璃化机制继承了原始MOF的网络。在溶剂刺激下,MOF具有有趣的孔隙恢复特性,使膜在染料分子分离时具有孔径控制(~ 1.2 nm)。对刚果红溶液的截留率为99.88%,渗透率为27.7 L/m2·h·bar,远远优于一般通过复杂工艺制备的类似MOF膜。
{"title":"Flux melting of UiO-67 family metal-organic frameworks: the thin film processing and nanofiltration property","authors":"Wei-Long Li ,&nbsp;Jiao-Rong Li ,&nbsp;Guo-Qiang Li ,&nbsp;Xiang Kun Cui ,&nbsp;Wen-Long Xue ,&nbsp;Ming Hao Li ,&nbsp;Zhongfeng Li ,&nbsp;Hongliang Dong ,&nbsp;Chong-Qing Wan","doi":"10.1016/j.advmem.2025.100182","DOIUrl":"10.1016/j.advmem.2025.100182","url":null,"abstract":"<div><div>Metal-Organic Frameworks (MOFs) have been demonstrated to be the perfect candidates of function materials for special specie separation. Although numerous MOFs, nearly 100,000 unique ones, have been explored, only several MOF-based membranes are reported because their lack of processability and grain boundary effects seriously limit their fabrication into thin film. This work discusses a strategy of flux melting, ‘borrowed from inorganic domain’, to prepare a MOF thin film via a simple heat-pressing process by using one meltable MOF and a non-meltable MOF. We observed the flux melting of the non-meltable Zr-MOFs and its meltable derivative modified by the binary ionic liquids, the proportion effect of each part on the melting, processability and film nanofiltration for dye molecules. The melt-quenched glass thin film possesses the network inherited from the pristine MOF via the melt, linker exchange and vitrification mechanism. The interesting pore recovery of MOF upon a solvent stimulation endows the film with pore size control (∼1.2 ​nm) on the dye molecule separation. A 99.88 ​% rejection rate and a permeability of 27.7 ​L/m<sup>2</sup>·h·bar for Congo red dye solution is observed, which is much better than that of analogous MOF membranes generally obtained through complicate processes.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"6 ","pages":"Article 100182"},"PeriodicalIF":9.5,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145420549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced stability of pyridine-containing poly(arylene ether) membranes for vanadium redox flow battery: influence of backbone structure 钒氧化还原液流电池用含吡啶聚芳醚膜稳定性的提高:骨架结构的影响
IF 9.5 Pub Date : 2025-10-23 DOI: 10.1016/j.advmem.2025.100181
Yuchao Yang , Bengui Zhang , Qian Liu , Zhenfeng Sun , Chao Yang , Tao Li , Songwei Zhang , Jingjun He , Feixiang Zhai , Zhihan Song , Enlei Zhang , Kangjun Wang
Vanadium redox flow batteries (VRFBs) are emerging as large-scale energy storage devices to solve volatility in the utilization of renewable energy. As key components of VRFBs, membranes still suffer from problems such as high cost, low conductivity, or insufficient stability. Pyridine-containing poly (aryl ether)s have the advantages of low monomer cost, simple synthesis process, and easy processing into membranes. In this work, a series of pyridine-containing poly (aryl ether) (PyPEK, PyPES, and PyPEF) based on different backbones (4,4′-difluorobenzophenone, 4,4′-dichlorodiphenyl sulfone, and perfluorobiphenyl) were synthesized. The effects of the backbones on the membrane swelling behavior, basic membrane properties, battery performance, and stability of the membranes were studied. The PyPEF membrane exhibited excellent battery performance (EE ​= ​93.78 ​% at 80 ​mAcm−2, EE ​= ​86.24 ​% at 200 ​mAcm−2, and EE ​= ​80.25 ​% at 300 ​mAcm−2) and excellent cycling stability (3000 cycles) in VRFB, which is highly attractive for application in VRFB.
钒氧化还原液流电池(VRFBs)正在成为解决可再生能源利用中的波动性的大型储能装置。作为vrfb的关键部件,膜仍然存在成本高、电导率低、稳定性不足等问题。含吡啶聚芳醚具有单体成本低、合成工艺简单、易加工成膜等优点。本文以4,4′-二氟苯甲酮、4,4′-二氯二苯基砜和全氟联苯为骨架合成了一系列含吡啶的聚芳基醚(PyPEK、PyPES和PyPEF)。研究了骨架对膜膨胀行为、膜基本性能、电池性能和膜稳定性的影响。PyPEF膜在VRFB中表现出优异的电池性能(80 mAcm−2时EE = 93.78%, 200 mAcm−2时EE = 86.24%, 300 mAcm−2时EE = 80.25%)和优异的循环稳定性(3000次循环),具有很高的应用前景。
{"title":"Enhanced stability of pyridine-containing poly(arylene ether) membranes for vanadium redox flow battery: influence of backbone structure","authors":"Yuchao Yang ,&nbsp;Bengui Zhang ,&nbsp;Qian Liu ,&nbsp;Zhenfeng Sun ,&nbsp;Chao Yang ,&nbsp;Tao Li ,&nbsp;Songwei Zhang ,&nbsp;Jingjun He ,&nbsp;Feixiang Zhai ,&nbsp;Zhihan Song ,&nbsp;Enlei Zhang ,&nbsp;Kangjun Wang","doi":"10.1016/j.advmem.2025.100181","DOIUrl":"10.1016/j.advmem.2025.100181","url":null,"abstract":"<div><div>Vanadium redox flow batteries (VRFBs) are emerging as large-scale energy storage devices to solve volatility in the utilization of renewable energy. As key components of VRFBs, membranes still suffer from problems such as high cost, low conductivity, or insufficient stability. Pyridine-containing poly (aryl ether)s have the advantages of low monomer cost, simple synthesis process, and easy processing into membranes. In this work, a series of pyridine-containing poly (aryl ether) (PyPEK, PyPES, and PyPEF) based on different backbones (4,4′-difluorobenzophenone, 4,4′-dichlorodiphenyl sulfone, and perfluorobiphenyl) were synthesized. The effects of the backbones on the membrane swelling behavior, basic membrane properties, battery performance, and stability of the membranes were studied. The PyPEF membrane exhibited excellent battery performance (EE ​= ​93.78 ​% at 80 ​mAcm<sup>−2</sup>, EE ​= ​86.24 ​% at 200 ​mAcm<sup>−2</sup>, and EE ​= ​80.25 ​% at 300 ​mAcm<sup>−2</sup>) and excellent cycling stability (3000 cycles) in VRFB, which is highly attractive for application in VRFB.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"6 ","pages":"Article 100181"},"PeriodicalIF":9.5,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145398635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorinated polyamide-based ion-solvating membranes for long-cycle quasi-solid-state lithium batteries 长周期准固态锂电池用氟化聚酰胺离子溶剂化膜
IF 9.5 Pub Date : 2025-10-23 DOI: 10.1016/j.advmem.2025.100179
Wenjing Ma , Zixin Lv , Xiaowei Zhou , Junhao Xin , Huifeng Wang , Zhiguang Zhang , Xiuling Chen , Nanwen Li
Membrane-based solid polymer electrolytes (SPEs) have emerged as promising candidates for enhancing the energy density and safety of lithium metal battery (LMBs), owing to their superior Li-salt dissociation capability, excellent lithium metal anode compatibility, and cost-effectiveness. However, conventional SPEs often suffer from limited thermal stability, low ionic conductivity, and inadequate mechanical strength. In this study, we developed a novel polymeric membrane incorporating CF3 and amide functional groups, which was subsequently imbibed with lithium salt and solvents to form a homogeneous ternary electrolyte system of polymer/solvent/lithium-ion solvated membranes (ISMs). The resulting ion solvated membranes exhibit remarkable mechanical properties, high ionic conductivity and high security. The amide groups effectively anchor anions and coordinate with Li+, while the strong electron-withdrawing effect of -CF3 groups facilitates the formation of efficient Li ​+ ​transport channels. Density functional theory (DFT) calculations confirmed that lithium ions preferentially bind to the amide and -CF3 groups rather than solvent molecules, The binding energy between co-FPA and Li+ was calculated to be −3.40 ​eV, indicating a strong interaction. ISMs demonstrate outstanding electrochemical performance, achieving an ionic conductivity of 1.845 ​× ​10−4 ​S ​cm−1 and a high Li ​+ ​transference number of 0.66. When assembled into Li/co-FPA-50/LFP cells, the system maintains 93 ​% capacity retention after 200 cycles at 0.5C (initial capacity: 158.6 mAh g−1). The ISM-based quasi-solid-state lithium batteries exhibit exceptional long-term cycling stability over 1000 cycles. This work presents an innovative approach for designing high-performance ion solvated membranes, addressing critical challenges in the development of safe and stable lithium metal batteries.
膜基固体聚合物电解质(spe)由于其优异的锂盐解离能力、优异的锂金属阳极兼容性和成本效益,已成为提高锂金属电池(lmb)能量密度和安全性的有希望的候选者。然而,传统的spe通常存在热稳定性有限、离子电导率低和机械强度不足的问题。在本研究中,我们开发了一种含有CF3和酰胺官能团的新型聚合物膜,随后将其与锂盐和溶剂一起吸收,形成聚合物/溶剂/锂离子溶剂化膜(ISMs)的均相三元电解质体系。所得离子溶剂化膜具有优异的力学性能、高离子电导率和高安全性。酰胺基团有效地锚定阴离子并与Li+配位,而-CF3基团的强吸电子效应有利于形成高效的Li+输运通道。密度泛函理论(DFT)计算证实,锂离子优先结合酰胺和-CF3基团而不是溶剂分子,co-FPA与Li+之间的结合能为- 3.40 eV,表明相互作用强。ISMs具有优异的电化学性能,离子电导率为1.845 × 10−4 S cm−1,Li +迁移数为0.66。当组装成Li/co-FPA-50/LFP电池时,系统在0.5C下循环200次后保持93%的容量保持(初始容量:158.6 mAh g−1)。基于ism的准固态锂电池表现出超过1000次循环的长期稳定性。这项工作提出了一种设计高性能离子溶剂化膜的创新方法,解决了开发安全稳定的锂金属电池的关键挑战。
{"title":"Fluorinated polyamide-based ion-solvating membranes for long-cycle quasi-solid-state lithium batteries","authors":"Wenjing Ma ,&nbsp;Zixin Lv ,&nbsp;Xiaowei Zhou ,&nbsp;Junhao Xin ,&nbsp;Huifeng Wang ,&nbsp;Zhiguang Zhang ,&nbsp;Xiuling Chen ,&nbsp;Nanwen Li","doi":"10.1016/j.advmem.2025.100179","DOIUrl":"10.1016/j.advmem.2025.100179","url":null,"abstract":"<div><div>Membrane-based solid polymer electrolytes (SPEs) have emerged as promising candidates for enhancing the energy density and safety of lithium metal battery (LMBs), owing to their superior Li-salt dissociation capability, excellent lithium metal anode compatibility, and cost-effectiveness. However, conventional SPEs often suffer from limited thermal stability, low ionic conductivity, and inadequate mechanical strength. In this study, we developed a novel polymeric membrane incorporating CF<sub>3</sub> and amide functional groups, which was subsequently imbibed with lithium salt and solvents to form a homogeneous ternary electrolyte system of polymer/solvent/lithium-ion solvated membranes (ISMs). The resulting ion solvated membranes exhibit remarkable mechanical properties, high ionic conductivity and high security. The amide groups effectively anchor anions and coordinate with Li<sup>+</sup>, while the strong electron-withdrawing effect of -CF<sub>3</sub> groups facilitates the formation of efficient Li ​<sup>+</sup> ​transport channels. Density functional theory (DFT) calculations confirmed that lithium ions preferentially bind to the amide and -CF<sub>3</sub> groups rather than solvent molecules, The binding energy between co-FPA and Li<sup>+</sup> was calculated to be −3.40 ​eV, indicating a strong interaction. ISMs demonstrate outstanding electrochemical performance, achieving an ionic conductivity of 1.845 ​× ​10<sup>−4</sup> ​S ​cm<sup>−1</sup> and a high Li ​<sup>+</sup> ​transference number of 0.66. When assembled into Li/co-FPA-50/LFP cells, the system maintains 93 ​% capacity retention after 200 cycles at 0.5C (initial capacity: 158.6 mAh g<sup>−1</sup>). The ISM-based quasi-solid-state lithium batteries exhibit exceptional long-term cycling stability over 1000 cycles. This work presents an innovative approach for designing high-performance ion solvated membranes, addressing critical challenges in the development of safe and stable lithium metal batteries.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"6 ","pages":"Article 100179"},"PeriodicalIF":9.5,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145475968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Membranes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1