Aodhan Sweeney, Qiang Fu, Susan Solomon, Stephen Po-Chedley, William J. Randel, Andrea Steiner, Pu Lin, Thomas Birner, Sean Davis, Peidong Wang
Observed temperature changes from 2002 to 2022 reveal a pronounced warming of the Southern Hemisphere (SH) subtropical lower stratosphere, and a cooling of the Antarctic lower stratosphere. In contrast, model simulations of 21st-century stratospheric temperature changes show widespread cooling driven by increasing greenhouse gases, with local warming in the Antarctic lower stratosphere due to ozone healing. We provide evidence that these discrepancies between observed and simulated stratospheric temperature changes are linked to a slowdown of the Brewer-Dobson Circulation, particularly in the SH. These changes in the stratospheric circulation are strongest from October through December. This altered circulation warms the SH subtropical lower stratosphere while cooling the Antarctic lower stratosphere, canceling and even reversing the Antarctic ozone recovery that would have occurred in its absence during this period. When circulation changes are accounted for, the SH subtropical lower-stratospheric warming is removed, and Antarctic lower-stratospheric warming is revealed with enhanced ozone healing, highlighting the crucial role of the stratospheric circulation in shaping temperature and ozone changes.
{"title":"Recent Warming of the Southern Hemisphere Subtropical Lower Stratosphere and Antarctic Ozone Healing","authors":"Aodhan Sweeney, Qiang Fu, Susan Solomon, Stephen Po-Chedley, William J. Randel, Andrea Steiner, Pu Lin, Thomas Birner, Sean Davis, Peidong Wang","doi":"10.1029/2025AV001737","DOIUrl":"10.1029/2025AV001737","url":null,"abstract":"<p>Observed temperature changes from 2002 to 2022 reveal a pronounced warming of the Southern Hemisphere (SH) subtropical lower stratosphere, and a cooling of the Antarctic lower stratosphere. In contrast, model simulations of 21st-century stratospheric temperature changes show widespread cooling driven by increasing greenhouse gases, with local warming in the Antarctic lower stratosphere due to ozone healing. We provide evidence that these discrepancies between observed and simulated stratospheric temperature changes are linked to a slowdown of the Brewer-Dobson Circulation, particularly in the SH. These changes in the stratospheric circulation are strongest from October through December. This altered circulation warms the SH subtropical lower stratosphere while cooling the Antarctic lower stratosphere, canceling and even reversing the Antarctic ozone recovery that would have occurred in its absence during this period. When circulation changes are accounted for, the SH subtropical lower-stratospheric warming is removed, and Antarctic lower-stratospheric warming is revealed with enhanced ozone healing, highlighting the crucial role of the stratospheric circulation in shaping temperature and ozone changes.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 4","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001737","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144758561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chi Zhang, Chuanfei Dong, Terry Z. Liu, Christian Mazelle, Savvas Raptis, Hongyang Zhou, Jacob Fruchtman, Jasper Halekas, Jing-Huan Li, Kathleen G. Hanley, Shannon M. Curry, David L. Mitchell, Xinmin Li
Understanding the nature of planetary bow shocks is beneficial for advancing our knowledge of solar wind interactions with planets and fundamental plasma physics processes. Here, we utilize data from the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft to investigate the Martian bow shock, revealing its distinctive characteristics within our solar system. We find that unlike other planetary shocks, the reformation of Mars's bow shock driven by the ultra-low frequency (ULF) waves is more global and less dependent on shock geometries. This distinct behavior is attributed to the broad distribution of ULF waves in the upstream region at Mars, generated not only by shock-reflected ions but also by planetary protons. Additionally, during the reformation process, the amplitude of the ULF waves and the steepened structures are significantly large. This results in the newly reformed shock exceeding the original one, a phenomenon not observed at other planets under similar shock conditions. Therefore, the ULF waves significantly enhance the complexity of shock dynamics and play a more substantial role at Mars compared to other planets.
{"title":"Role of ULF Waves in Reforming the Martian Bow Shock","authors":"Chi Zhang, Chuanfei Dong, Terry Z. Liu, Christian Mazelle, Savvas Raptis, Hongyang Zhou, Jacob Fruchtman, Jasper Halekas, Jing-Huan Li, Kathleen G. Hanley, Shannon M. Curry, David L. Mitchell, Xinmin Li","doi":"10.1029/2025AV001654","DOIUrl":"10.1029/2025AV001654","url":null,"abstract":"<p>Understanding the nature of planetary bow shocks is beneficial for advancing our knowledge of solar wind interactions with planets and fundamental plasma physics processes. Here, we utilize data from the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft to investigate the Martian bow shock, revealing its distinctive characteristics within our solar system. We find that unlike other planetary shocks, the reformation of Mars's bow shock driven by the ultra-low frequency (ULF) waves is more global and less dependent on shock geometries. This distinct behavior is attributed to the broad distribution of ULF waves in the upstream region at Mars, generated not only by shock-reflected ions but also by planetary protons. Additionally, during the reformation process, the amplitude of the ULF waves and the steepened structures are significantly large. This results in the newly reformed shock exceeding the original one, a phenomenon not observed at other planets under similar shock conditions. Therefore, the ULF waves significantly enhance the complexity of shock dynamics and play a more substantial role at Mars compared to other planets.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 4","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001654","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144695831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongliang Zhang, Tetsuo Motoba, Larry Paxton, Robert Schaefer
We report the discovery of a new type of aurora, namely, double auroral undulation that occurred simultaneously on both equatorward and poleward edges of the duskside auroral oval during the main phase of the May 10–11, 2024 superstorm. Whereas the equatorward auroral undulation (EAU) has been frequently observed and well known, the poleward auroral undulation (PAU) has never been observed yet. Both EAU and PAU were found in the N2 LBHL (165–180 nm, mostly due to electron precipitation) and Lyman α 121.6 nm (due to proton precipitation) images acquired by the Defense Meteorological Satellite Program (DMSP) spacecraft. The spatial amplitude and wavelength of the PAU reached ∼900 km. During the PAU crossing, DMSP observed both precipitating electrons and ions (protons) and a plasma drift up to ∼5,000 m/s with a strong shear. Simultaneous ground-based all-sky imaging at South Pole captured the dynamic behavior of the PAU that propagated in an anti-sunward direction at a phase speed of ∼250 m/s. The solar wind conditions during the PAU were a high solar wind speed (∼700 km/s), an intense southward interplanetary magnetic field (IMF, approximately −40 nT), and a high density (37 cm−3). These upstream conditions suggest that the generation of PAU is likely due to giant Kelvin-Helmholtz waves on the magnetopause for southward IMF.
{"title":"Double Auroral Undulation During the Main Phase of the May 10–11, 2024 Storm","authors":"Yongliang Zhang, Tetsuo Motoba, Larry Paxton, Robert Schaefer","doi":"10.1029/2025AV001688","DOIUrl":"10.1029/2025AV001688","url":null,"abstract":"<p>We report the discovery of a new type of aurora, namely, double auroral undulation that occurred simultaneously on both equatorward and poleward edges of the duskside auroral oval during the main phase of the May 10–11, 2024 superstorm. Whereas the equatorward auroral undulation (EAU) has been frequently observed and well known, the poleward auroral undulation (PAU) has never been observed yet. Both EAU and PAU were found in the N<sub>2</sub> LBHL (165–180 nm, mostly due to electron precipitation) and Lyman <i>α</i> 121.6 nm (due to proton precipitation) images acquired by the Defense Meteorological Satellite Program (DMSP) spacecraft. The spatial amplitude and wavelength of the PAU reached ∼900 km. During the PAU crossing, DMSP observed both precipitating electrons and ions (protons) and a plasma drift up to ∼5,000 m/s with a strong shear. Simultaneous ground-based all-sky imaging at South Pole captured the dynamic behavior of the PAU that propagated in an anti-sunward direction at a phase speed of ∼250 m/s. The solar wind conditions during the PAU were a high solar wind speed (∼700 km/s), an intense southward interplanetary magnetic field (IMF, approximately −40 nT), and a high density (37 cm<sup>−3</sup>). These upstream conditions suggest that the generation of PAU is likely due to giant Kelvin-Helmholtz waves on the magnetopause for southward IMF.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 4","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001688","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144666545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Y. Ahn, D. L. Goldberg, F. Liu, D. C. Anderson, T. Coombes, C. P. Loughner, M. Kiel, A. Chatterjee
Cities play a crucial role in reducing global greenhouse gas emissions. While activity-based (“bottom up”) emission estimates are widely used for global cities, they often lack independent verification. In this study, we use remotely-sensed CO2 observations from the Orbiting Carbon Observatory-3 (OCO-3) to “top-down” estimate CO2 emissions for 54 global cities. This global-scale analysis is enabled by a computationally efficient cross-sectional flux approach, which uses NO2 observations from TROPOMI and trajectory simulations from HYSPLIT to identify OCO-3 pixels influenced by urban plumes. Our satellite-based emission estimates for 54 global cities agree within 7% to two widely used bottom-up data sets but reveal regional discrepancies. Bottom-up estimates tend to overestimate emissions for cities in Central East Asia and South and West Asia, while underestimating emissions in Africa, East and Southeast Asia & Oceania, Europe, and North America. Additionally, our satellite-based socioeconomic analysis shows that (a) high-income cities tend to have less carbon-intensive economies: North American cities emit 0.1 kg CO2 per USD of economic output, while African cities emit 0.5 kg CO2 per USD, and (b) per capita emissions decrease with increasing population size, from 7.7 tCO2/person for cities under 5 million residents to 1.8 tCO2/person for cities over 20 million residents. This study highlights the potential of satellite data to bridge gaps between top-down and bottom-up emission estimates, enhancing the robustness and transparency of emissions monitoring. Our findings emphasize the growing role of satellite data in verifying urban CO2 emissions and supporting efforts to mitigate emissions for global cities.
{"title":"Satellite-Based Analysis of CO2 Emissions From Global Cities: Regional, Economic, and Demographic Attributes","authors":"D. Y. Ahn, D. L. Goldberg, F. Liu, D. C. Anderson, T. Coombes, C. P. Loughner, M. Kiel, A. Chatterjee","doi":"10.1029/2025AV001747","DOIUrl":"10.1029/2025AV001747","url":null,"abstract":"<p>Cities play a crucial role in reducing global greenhouse gas emissions. While activity-based (“bottom up”) emission estimates are widely used for global cities, they often lack independent verification. In this study, we use remotely-sensed CO<sub>2</sub> observations from the Orbiting Carbon Observatory-3 (OCO-3) to “top-down” estimate CO<sub>2</sub> emissions for 54 global cities. This global-scale analysis is enabled by a computationally efficient cross-sectional flux approach, which uses NO<sub>2</sub> observations from TROPOMI and trajectory simulations from HYSPLIT to identify OCO-3 pixels influenced by urban plumes. Our satellite-based emission estimates for 54 global cities agree within 7% to two widely used bottom-up data sets but reveal regional discrepancies. Bottom-up estimates tend to overestimate emissions for cities in Central East Asia and South and West Asia, while underestimating emissions in Africa, East and Southeast Asia & Oceania, Europe, and North America. Additionally, our satellite-based socioeconomic analysis shows that (a) high-income cities tend to have less carbon-intensive economies: North American cities emit 0.1 kg CO<sub>2</sub> per USD of economic output, while African cities emit 0.5 kg CO<sub>2</sub> per USD, and (b) per capita emissions decrease with increasing population size, from 7.7 tCO<sub>2</sub>/person for cities under 5 million residents to 1.8 tCO<sub>2</sub>/person for cities over 20 million residents. This study highlights the potential of satellite data to bridge gaps between top-down and bottom-up emission estimates, enhancing the robustness and transparency of emissions monitoring. Our findings emphasize the growing role of satellite data in verifying urban CO<sub>2</sub> emissions and supporting efforts to mitigate emissions for global cities.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 4","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001747","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144635227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyuan Wu, Daniel K. Whiter, Sai Zhang, Ulrich Taubenschuss, Philippe Zarka, Georg Fischer, Laurent Lamy, Shengyi Ye, James Waters, Baptiste Cecconi, Ping Li, Caitriona M. Jackman, Alexandra R. Fogg, Claire Baskevitch, Yoshiya Kasahara, Yasumasa Kasaba
Auroral Kilometric Radiation (AKR), the dominant radio emission from Earth, has been extensively studied, though previous analyses were constrained by limited spacecraft coverage. This study utilizes long-term observations from Polar, Wind, and Arase spacecraft to generate comprehensive global AKR occurrence rate maps, revealing a high-latitude and nightside preference. A detailed investigation of the equatorial shadow region confirms that the dense plasmasphere blocks AKR emissions across all wave frequencies. Low-frequency emissions (<100 kHz) are presents outside the shadow region at larger radial distance, which is attributed to magnetosheath reflection, while higher-frequency emissions (>100 kHz) propagate via plasmaspheric ducting and leakage, filling the equatorial region immediately outside the plasmasphere. Ray-tracing simulations identify low-density ducts within the plasmasphere as crucial channels that enable AKR to penetrate the dense plasmasphere, particularly at higher frequencies. These results align with meridional AKR observations, offering new insights into AKR propagation patterns.
{"title":"Spatial Distribution and Plasmaspheric Ducting of Auroral Kilometric Radiation Revealed by Wind, Polar, and Arase","authors":"Siyuan Wu, Daniel K. Whiter, Sai Zhang, Ulrich Taubenschuss, Philippe Zarka, Georg Fischer, Laurent Lamy, Shengyi Ye, James Waters, Baptiste Cecconi, Ping Li, Caitriona M. Jackman, Alexandra R. Fogg, Claire Baskevitch, Yoshiya Kasahara, Yasumasa Kasaba","doi":"10.1029/2025AV001743","DOIUrl":"10.1029/2025AV001743","url":null,"abstract":"<p>Auroral Kilometric Radiation (AKR), the dominant radio emission from Earth, has been extensively studied, though previous analyses were constrained by limited spacecraft coverage. This study utilizes long-term observations from Polar, Wind, and Arase spacecraft to generate comprehensive global AKR occurrence rate maps, revealing a high-latitude and nightside preference. A detailed investigation of the equatorial shadow region confirms that the dense plasmasphere blocks AKR emissions across all wave frequencies. Low-frequency emissions (<100 kHz) are presents outside the shadow region at larger radial distance, which is attributed to magnetosheath reflection, while higher-frequency emissions (>100 kHz) propagate via plasmaspheric ducting and leakage, filling the equatorial region immediately outside the plasmasphere. Ray-tracing simulations identify low-density ducts within the plasmasphere as crucial channels that enable AKR to penetrate the dense plasmasphere, particularly at higher frequencies. These results align with meridional AKR observations, offering new insights into AKR propagation patterns.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 4","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001743","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin A. Reed, Brian Medeiros, Christiane Jablonowski, Isla R. Simpson, Aiko Voigt, Allison A. Wing
Simulating the Earth system is crucial for studying Earth's climate and how it changes. Modeling approaches that simplify the Earth system while retaining key characteristics are important tools to advance understanding. The simplicity and flexibility of idealized models enables imaginative science and makes them powerful educational tools. Evolving scientific community needs and increasing model complexity, however, makes it challenging to maintain and support idealized configurations in cutting-edge Earth system modeling frameworks. We call on the scientific community to re-emphasize model hierarchies within these frameworks to aid in understanding the Earth system, advancing model development, and developing the future workforce.
{"title":"Why Idealized Models Are More Important Than Ever in Earth System Science","authors":"Kevin A. Reed, Brian Medeiros, Christiane Jablonowski, Isla R. Simpson, Aiko Voigt, Allison A. Wing","doi":"10.1029/2025AV001716","DOIUrl":"10.1029/2025AV001716","url":null,"abstract":"<p>Simulating the Earth system is crucial for studying Earth's climate and how it changes. Modeling approaches that simplify the Earth system while retaining key characteristics are important tools to advance understanding. The simplicity and flexibility of idealized models enables imaginative science and makes them powerful educational tools. Evolving scientific community needs and increasing model complexity, however, makes it challenging to maintain and support idealized configurations in cutting-edge Earth system modeling frameworks. We call on the scientific community to re-emphasize model hierarchies within these frameworks to aid in understanding the Earth system, advancing model development, and developing the future workforce.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 4","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001716","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144581978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}