Mid-ocean ridges generate basalt and harzburgite, which are introduced into the mantle through subduction as a mechanical mixture, contributing to both lateral and radial compositional heterogeneity. The possible accumulation of basalt in the mantle transition zone has been examined, but details of the mantle composition below the 660-km discontinuity (hereafter d660) remain poorly constrained. In this study, we utilize the subtle waveform details of S660S, the underside shear-wave reflection off the d660, to interpret the seismic velocity, density, and compositional structure near, and particularly below, the d660. We identify a significant difference in S660S waveform shape in subduction zones compared to other regions. The inversion results reveal globally enriched basalt at the d660, with a notably higher content in subduction zones, consistent with the smaller impedance jump and S660S peak amplitude. The basalt fraction decreases significantly to less than 10% near 800-km depth, forming a global harzburgite-enriched layer and resulting in a steep seismic velocity gradient just below the d660, in agreement with 1D global reference models. The striking compositional radial variations near the d660 verify geodynamic predictions and challenge the applicability of homogeneous radial compositional models in the mantle. These variations may also affect the viscosity profile and, consequently, the dynamics at the boundary between the upper and lower mantle.
{"title":"Substantial Global Radial Variations of Basalt Content Near the 660-km Discontinuity","authors":"Shangqin Hao, S. Shawn Wei, Peter M. Shearer","doi":"10.1029/2024AV001409","DOIUrl":"https://doi.org/10.1029/2024AV001409","url":null,"abstract":"<p>Mid-ocean ridges generate basalt and harzburgite, which are introduced into the mantle through subduction as a mechanical mixture, contributing to both lateral and radial compositional heterogeneity. The possible accumulation of basalt in the mantle transition zone has been examined, but details of the mantle composition below the 660-km discontinuity (hereafter d660) remain poorly constrained. In this study, we utilize the subtle waveform details of <i>S660S</i>, the underside shear-wave reflection off the d660, to interpret the seismic velocity, density, and compositional structure near, and particularly below, the d660. We identify a significant difference in <i>S660S</i> waveform shape in subduction zones compared to other regions. The inversion results reveal globally enriched basalt at the d660, with a notably higher content in subduction zones, consistent with the smaller impedance jump and <i>S660S</i> peak amplitude. The basalt fraction decreases significantly to less than 10% near 800-km depth, forming a global harzburgite-enriched layer and resulting in a steep seismic velocity gradient just below the d660, in agreement with 1D global reference models. The striking compositional radial variations near the d660 verify geodynamic predictions and challenge the applicability of homogeneous radial compositional models in the mantle. These variations may also affect the viscosity profile and, consequently, the dynamics at the boundary between the upper and lower mantle.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 6","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001409","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brian Saccardi, Craig B. Brinkerhoff, Colin J. Gleason, Matthew J. Winnick
Inland waters emit significant amounts of carbon dioxide (CO2) to the atmosphere; however, the global magnitude and source distribution of inland water CO2 emissions remain uncertain. These fluxes have previously been “statistically upscaled” by independently estimating dissolved CO2 concentrations and gas exchange velocities to calculate fluxes. This scaling, while robust and defensible, has known limitations in representing carbon source limitations and spatial variability. Here, we develop and calibrate a CO2 transport model for the continental United States, simulating carbon transport and transformation in >22 million hydraulically connected rivers, lakes, and reservoirs. We estimate 25% lower CO2 fluxes compared to upscaling estimates forced by the same observational calibration data. While precise CO2 source distribution estimates are limited by the resolution of model parameterizations, our model suggests that stream corridor CO2 production dominates over groundwater inputs at the continental scale. Our results further suggest that the lack of observational networks for groundwater CO2 and scalable metabolic models of aquatic CO2 production remain the most salient barriers to further coupling of our model with other Earth system components.
内陆水域向大气排放了大量二氧化碳(CO2);然而,内陆水域二氧化碳排放的全球规模和来源分布仍不确定。以前,这些通量是通过独立估算溶解的二氧化碳浓度和气体交换速度来计算通量,从而进行 "统计放大 "的。这种方法虽然稳健可靠,但在表示碳源限制和空间变异性方面存在已知的局限性。在这里,我们开发并校准了美国大陆的二氧化碳传输模型,模拟了 2200 万条水力相连的河流、湖泊和水库中的碳传输和转化。与根据相同观测校准数据进行的放大估算相比,我们估算的二氧化碳通量低 25%。虽然精确的二氧化碳源分布估计值受限于模型参数化的分辨率,但我们的模型表明,在大陆尺度上,河流走廊的二氧化碳产生量比地下水输入量占优势。我们的研究结果进一步表明,缺乏地下水 CO2 观测网络和可扩展的水生 CO2 生成代谢模型仍然是我们的模型与其他地球系统成分进一步耦合的最突出障碍。
{"title":"Toward Modeling Continental-Scale Inland Water Carbon Dioxide Emissions","authors":"Brian Saccardi, Craig B. Brinkerhoff, Colin J. Gleason, Matthew J. Winnick","doi":"10.1029/2024AV001294","DOIUrl":"https://doi.org/10.1029/2024AV001294","url":null,"abstract":"<p>Inland waters emit significant amounts of carbon dioxide (CO<sub>2</sub>) to the atmosphere; however, the global magnitude and source distribution of inland water CO<sub>2</sub> emissions remain uncertain. These fluxes have previously been “statistically upscaled” by independently estimating dissolved CO<sub>2</sub> concentrations and gas exchange velocities to calculate fluxes. This scaling, while robust and defensible, has known limitations in representing carbon source limitations and spatial variability. Here, we develop and calibrate a CO<sub>2</sub> transport model for the continental United States, simulating carbon transport and transformation in >22 million hydraulically connected rivers, lakes, and reservoirs. We estimate 25% lower CO<sub>2</sub> fluxes compared to upscaling estimates forced by the same observational calibration data. While precise CO<sub>2</sub> source distribution estimates are limited by the resolution of model parameterizations, our model suggests that stream corridor CO<sub>2</sub> production dominates over groundwater inputs at the continental scale. Our results further suggest that the lack of observational networks for groundwater CO<sub>2</sub> and scalable metabolic models of aquatic CO<sub>2</sub> production remain the most salient barriers to further coupling of our model with other Earth system components.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 6","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001294","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. David Urquiza-Muñoz, Susan Trumbore, Robinson I. Negrón-Juárez, Yanlei Feng, Alexander Brenning, C. Michael Vasquez-Parana, Daniel Magnabosco Marra
Convective storms with strong downdrafts create windthrows: snapped and uprooted trees that locally alter the structure, composition, and carbon balance of forests. Comparing Landsat imagery from subsequent years, we documented temporal and spatial variation in the occurrence of large (≥30 ha) windthrows across the Amazon basin from 1985 to 2020. Over 33 individual years, we detected 3179 large windthrows. Windthrow density was greatest in the central and western Amazon regions, with ∼33% of all events occurring in ∼3% of the monitored area. Return intervals for large windthrows in the same location of these “hotspot” regions are centuries to millennia, while over the rest of the Amazon they are >10,000 years. Our data demonstrate a nearly 4-fold increase in windthrow number and affected area between 1985 (78 windthrows and 6,900 ha) and 2020 (264 events and 32,170 ha), with more events of >500 ha size since 1990. Such extremely large events (>500 ha up to 2,543 ha) are responsible for interannual variation in the overall median (84 ± 5.2 ha; ±95% CI) and mean (147 ± 13 ha) windthrow area, but we did not find significant temporal trends in the size distribution of windthrows with time. Our results document increased damage from convective storms over the past 40 years in the Amazon, filling a gap in temporal records for tropical regions. Our publicly accessible large windthrow database provides a valuable tool for exploring dynamic conditions leading to damaging storms and their ecological impact on Amazon forests.
{"title":"Increased Occurrence of Large-Scale Windthrows Across the Amazon Basin","authors":"J. David Urquiza-Muñoz, Susan Trumbore, Robinson I. Negrón-Juárez, Yanlei Feng, Alexander Brenning, C. Michael Vasquez-Parana, Daniel Magnabosco Marra","doi":"10.1029/2023AV001030","DOIUrl":"https://doi.org/10.1029/2023AV001030","url":null,"abstract":"<p>Convective storms with strong downdrafts create windthrows: snapped and uprooted trees that locally alter the structure, composition, and carbon balance of forests. Comparing Landsat imagery from subsequent years, we documented temporal and spatial variation in the occurrence of large (≥30 ha) windthrows across the Amazon basin from 1985 to 2020. Over 33 individual years, we detected 3179 large windthrows. Windthrow density was greatest in the central and western Amazon regions, with ∼33% of all events occurring in ∼3% of the monitored area. Return intervals for large windthrows in the same location of these “hotspot” regions are centuries to millennia, while over the rest of the Amazon they are >10,000 years. Our data demonstrate a nearly 4-fold increase in windthrow number and affected area between 1985 (78 windthrows and 6,900 ha) and 2020 (264 events and 32,170 ha), with more events of >500 ha size since 1990. Such extremely large events (>500 ha up to 2,543 ha) are responsible for interannual variation in the overall median (84 ± 5.2 ha; ±95% CI) and mean (147 ± 13 ha) windthrow area, but we did not find significant temporal trends in the size distribution of windthrows with time. Our results document increased damage from convective storms over the past 40 years in the Amazon, filling a gap in temporal records for tropical regions. Our publicly accessible large windthrow database provides a valuable tool for exploring dynamic conditions leading to damaging storms and their ecological impact on Amazon forests.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 6","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV001030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johannes Quaas, Timothy Andrews, Nicolas Bellouin, Karoline Block, Olivier Boucher, Paulo Ceppi, Guy Dagan, Sabine Doktorowski, Hannah Marie Eichholz, Piers Forster, Tom Goren, Edward Gryspeerdt, Øivind Hodnebrog, Hailing Jia, Ryan Kramer, Charlotte Lange, Amanda C. Maycock, Johannes Mülmenstädt, Gunnar Myhre, Fiona M. O’Connor, Robert Pincus, Bjørn Hallvard Samset, Fabian Senf, Keith P. Shine, Chris Smith, Camilla Weum Stjern, Toshihiko Takemura, Velle Toll, Casey J. Wall
Since the 5th Assessment Report of the Intergovernmental Panel on Climate Change (AR5) an extended concept of the energetic analysis of climate change including forcings, feedbacks and adjustment processes has become widely adopted. Adjustments are defined as processes that occur in response to the introduction of a climate forcing agent, but that are independent of global-mean surface temperature changes. Most considered are the adjustments that impact the Earth energy budget and strengthen or weaken the instantaneous radiative forcing due to the forcing agent. Some adjustment mechanisms also impact other aspects of climate not related to the Earth radiation budget. Since AR5 and a following description by Sherwood et al. (2015, https://doi.org/10.1175/bams-d-13-00167.1), much research on adjustments has been performed and is reviewed here. We classify the adjustment mechanisms into six main categories, and discuss methods of quantifying these adjustments in terms of their potentials, shortcomings and practicality. We furthermore describe aspects of adjustments that act beyond the energetic framework, and we propose new ideas to observe adjustments or to make use of observations to constrain their representation in models. Altogether, the problem of adjustments is now on a robust scientific footing, and better quantification and observational constraint is possible. This allows for improvements in understanding and quantifying climate change.
{"title":"Adjustments to Climate Perturbations—Mechanisms, Implications, Observational Constraints","authors":"Johannes Quaas, Timothy Andrews, Nicolas Bellouin, Karoline Block, Olivier Boucher, Paulo Ceppi, Guy Dagan, Sabine Doktorowski, Hannah Marie Eichholz, Piers Forster, Tom Goren, Edward Gryspeerdt, Øivind Hodnebrog, Hailing Jia, Ryan Kramer, Charlotte Lange, Amanda C. Maycock, Johannes Mülmenstädt, Gunnar Myhre, Fiona M. O’Connor, Robert Pincus, Bjørn Hallvard Samset, Fabian Senf, Keith P. Shine, Chris Smith, Camilla Weum Stjern, Toshihiko Takemura, Velle Toll, Casey J. Wall","doi":"10.1029/2023AV001144","DOIUrl":"https://doi.org/10.1029/2023AV001144","url":null,"abstract":"<p>Since the 5th Assessment Report of the Intergovernmental Panel on Climate Change (AR5) an extended concept of the energetic analysis of climate change including forcings, feedbacks and adjustment processes has become widely adopted. Adjustments are defined as processes that occur in response to the introduction of a climate forcing agent, but that are independent of global-mean surface temperature changes. Most considered are the adjustments that impact the Earth energy budget and strengthen or weaken the instantaneous radiative forcing due to the forcing agent. Some adjustment mechanisms also impact other aspects of climate not related to the Earth radiation budget. Since AR5 and a following description by Sherwood et al. (2015, https://doi.org/10.1175/bams-d-13-00167.1), much research on adjustments has been performed and is reviewed here. We classify the adjustment mechanisms into six main categories, and discuss methods of quantifying these adjustments in terms of their potentials, shortcomings and practicality. We furthermore describe aspects of adjustments that act beyond the energetic framework, and we propose new ideas to observe adjustments or to make use of observations to constrain their representation in models. Altogether, the problem of adjustments is now on a robust scientific footing, and better quantification and observational constraint is possible. This allows for improvements in understanding and quantifying climate change.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 5","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV001144","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yamirka Rojas-Agramonte, Natalia Pardo, Douwe J. J. van Hinsbergen, Christian Winter, María Paula Marroquín-Gómez, Shoujie Liu, Axel Gerdes, Richard Albert, Shitou Wu, Antonio García-Casco
We report the finding of mantle-derived zircon grains retrieved from red soils, regoliths, and beach sands from Easter Island, that are much older than the island volcanism (0–2.5 Ma) and its underlying lithosphere (Pliocene, 3–4.8 Ma). A large population of 0–165 Ma old zircons have coherent oxygen (δ18O 3.8–5.9‰) and hafnium (εHf(t)+3.5–+12.5) mantle isotopic signatures. These results are consistent with the crystallization of zircon from plume-related melts. In addition, a chemically diverse population with ages from the Paleozoic to the Archean was found. These older populations are enigmatic but they could represent remnants of ancient subducted sediments. Meanwhile, the ∼0–165 Ma population is interpreted as plume-derived, suggesting that the hotspot started at least ∼165 Ma ago. A spike of ∼164–160 Ma zircons could represent a Large Igneous Province (LIP) stage upon the first arrival of the plume. We use plate reconstructions to show that such a LIP would have formed on the Phoenix Plate and would have subducted below the Antarctic Peninsula around 100–105 Ma. There, LIP subduction would offer a solution for the enigmatic Palmer Land deformation event, previously proposed to result from a collision with an unknown indenter. The here-reported “ghost” of a prolonged hotspot activity suggests that fragments of the Easter plume and of the ambient sub-lithospheric mantle stored and re-sampled zircon xenocrysts due to convective (re)circulation at the scale of the plume head. Our study demonstrates how zircon geochronology and geochemistry provide novel insights into global-scale geodynamics, offering new perspectives on the dynamics of mantle plumes and hotspot activity.
{"title":"Zircon Xenocrysts From Easter Island (Rapa Nui) Reveal Hotspot Activity Since the Middle Jurassic","authors":"Yamirka Rojas-Agramonte, Natalia Pardo, Douwe J. J. van Hinsbergen, Christian Winter, María Paula Marroquín-Gómez, Shoujie Liu, Axel Gerdes, Richard Albert, Shitou Wu, Antonio García-Casco","doi":"10.1029/2024AV001351","DOIUrl":"https://doi.org/10.1029/2024AV001351","url":null,"abstract":"<p>We report the finding of mantle-derived zircon grains retrieved from red soils, regoliths, and beach sands from Easter Island, that are much older than the island volcanism (0–2.5 Ma) and its underlying lithosphere (Pliocene, 3–4.8 Ma). A large population of 0–165 Ma old zircons have coherent oxygen (δ<sup>18</sup>O 3.8–5.9‰) and hafnium (εHf<sub>(t)</sub>+3.5–+12.5) mantle isotopic signatures. These results are consistent with the crystallization of zircon from plume-related melts. In addition, a chemically diverse population with ages from the Paleozoic to the Archean was found. These older populations are enigmatic but they could represent remnants of ancient subducted sediments. Meanwhile, the ∼0–165 Ma population is interpreted as plume-derived, suggesting that the hotspot started at least ∼165 Ma ago. A spike of ∼164–160 Ma zircons could represent a Large Igneous Province (LIP) stage upon the first arrival of the plume. We use plate reconstructions to show that such a LIP would have formed on the Phoenix Plate and would have subducted below the Antarctic Peninsula around 100–105 Ma. There, LIP subduction would offer a solution for the enigmatic Palmer Land deformation event, previously proposed to result from a collision with an unknown indenter. The here-reported “ghost” of a prolonged hotspot activity suggests that fragments of the Easter plume and of the ambient sub-lithospheric mantle stored and re-sampled zircon xenocrysts due to convective (re)circulation at the scale of the plume head. Our study demonstrates how zircon geochronology and geochemistry provide novel insights into global-scale geodynamics, offering new perspectives on the dynamics of mantle plumes and hotspot activity.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 5","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001351","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Age progressive volcanic trends, known as hotspot tracks, are thought to be produced by partial melting of buoyant mantle plumes rising from the deep mantle (Morgan, <span>1971</span>; Wilson, <span>1963</span>). Hotspot tracks record the relative motion between plates and mantle plumes, and they are used to reconstruct the history of plate motion and to constrain the geochemical heterogeneity within the mantle, which are important to our understanding of mantle dynamics (e.g., Koppers et al., <span>2021</span>; Weis et al., <span>2023</span>).</p><p>Through a careful examination of isotopic, geochronological, and plate motion reconstruction data, Jackson et al. (<span>2024</span>) argued that certain Cretaceous (87–106 Ma) Magellan seamounts north of the Ontong-Java Plateau (OJP) may have been produced by the Samoan plume. This finding places the Samoan hotspot track among the longest-lived ones. However, there is a significant gap in volcanic activity from 24 to 87 Ma, excluding the 44 Ma Malaita volcanism. Raising the question, what mechanism could produce a 63 Ma gap in an otherwise enduring hotspot track?</p><p>It has long been observed that most hotspot tracks manifest as discrete volcanoes, exemplified by the long-lived Hawaii-Emperor Volcanic Chain, rather than continuous ridges. It is suggested that the locations of these volcanoes are controlled by fractures within the lithosphere, facilitating the migration of plume-generated magma (e.g., Hieronymus & Bercovici, <span>1999</span>). Consequently, discrete volcanoes are anticipated along hotspot tracks.</p><p>To explain the bilaterally zoned hotspot tracks (e.g., Abouchami et al., <span>2005</span>; Huang et al., <span>2011</span>; Weis et al., <span>2011</span>), Rohde et al. (<span>2013</span>) argued that mantle plumes originating from the lower mantle may bifurcate at the mantle transition zone (Figure 1a). Because of the different mantle viscosities in the upper and lower mantle, a plume might rise much slower in the lower mantle compared to in the upper mantle. To maintain the same plume flux, a plume would become thinner in the upper mantle, which may lead to plume bifurcation at the mantle transition zone (Rohde et al., <span>2013</span>). Alternatively, it is also possible that after entering the upper mantle, a plume fragments into discrete upwelling diapirs rather than maintaining a continuous flow (Figure 1a), resulting in volcanic activity gaps along hotspot tracks.</p><p>However, neither of these theories explains the prolonged absence of volcanism within a significant period (24–87 Ma) of the Samoan hotspot track. Jackson et al. (<span>2024</span>) noted that during this particular period of time, the Samoan plume was under the thick OJP. Mantle plumes ascend adiabatically, with a steeper pressure-temperature slope compared to that of the mantle solidus. As such, plumes start to melt and produce magma when reaching shallow depths (low pressure). The upwelling stops
年龄递增的火山趋势,即所谓的热点轨迹,被认为是由从地幔深处上升的浮力地幔羽流部分熔化产生的(Morgan,1971 年;Wilson,1963 年)。热点轨迹记录了板块和地幔羽流之间的相对运动,可用于重建板块运动的历史和约束地幔内的地球化学异质性,这对我们了解地幔动力学非常重要(例如,Koppers et al、通过对同位素、地质年代和板块运动重建数据的仔细研究,Jackson 等人(2024 年)认为,翁通-爪哇海台(OJP)以北的某些白垩纪(87-106 Ma)麦哲伦海山可能是由萨摩亚羽流产生的。这一发现使萨摩亚热点轨迹成为最长寿的热点轨迹之一。然而,除去 44 Ma 的马莱塔火山活动之外,从 24 Ma 到 87 Ma 的火山活动存在明显的差距。人们早就注意到,大多数热点轨道表现为离散的火山,例如长寿的夏威夷-皇帝火山链,而不是连续的山脊。有人认为,这些火山的位置受岩石圈内断裂的控制,有利于羽状岩浆的迁移(例如,Hieronymus & Bercovici, 1999)。为了解释双侧分带的热点轨道(如 Abouchami 等人,2005 年;Huang 等人,2011 年;Weis 等人,2011 年),Rohde 等人(2013 年)认为,源自下地幔的地幔羽流可能会在地幔过渡带分叉(图 1a)。由于上地幔和下地幔的地幔粘度不同,羽流在下地幔中的上升速度可能比在上地幔中慢得多。为了保持相同的羽流通量,羽流在上地幔中会变得更细,这可能会导致羽流在地幔过渡带分叉(Rohde 等人,2013 年)。或者,羽流在进入上地幔后,也可能分裂成离散的上涌二叠体,而不是保持连续的流动(图1a),从而导致沿热点轨道出现火山活动间隙。然而,这两种理论都无法解释萨摩亚热点轨道在相当长的时期内(24-87 Ma)长期没有火山活动的原因。Jackson等人(2024年)指出,在这一特定时期,萨摩亚羽流处于厚厚的OJP之下。地幔羽流是绝热上升的,与地幔固结层相比,其压力-温度斜率更陡。因此,羽流在到达浅层(低压)时开始熔化并产生岩浆。上升流在刚性岩石圈底部停止,部分熔化也随之停止。杰克逊等人(2024 年)认为,大洋交界处的岩石圈足够厚,足以抑制羽流上升到足够浅的深度进行熔化,从而排除了火山活动,形成了无海山走廊(图 1b)。然而,如果岩石圈厚度不足以完全阻止羽流熔化,如果羽流同时包含熔点较低的富集岩性和熔点较高的难熔岩性,富集岩性将优先熔化(例如Phipps Morgan, 2001; Stracke & Bourdon, 2009)。这导致在较厚岩石圈下产生的岩浆具有更丰富的地球化学特征(图 1b),如在皇帝海山链(Frey 等人,2005 年;Regelous 等人,2003 年)和麦哲伦海山、白垩纪萨摩亚火山(Jackson 等人,2024 年)观察到的那样、将麦哲伦海隆熔岩与萨摩亚联系起来的关键地球化学特征包括其明显的高87Sr/86Sr和低143Nd/144Nd比率,这是富集地幔2(EM-2)地幔末段的特征,表明其地幔源中有回收的古大陆物质(Jackson等人,2007年)。然而,萨摩亚羽流和一般地幔羽流的来源还有待进一步阐明。地幔内含物,如 EM-2,是否是根据与地震波成像的大型地幔结构(如深地幔中的大型低剪切速度省(LLSVPs))有关的羽状熔岩的地球化学数据推断出来的(如 Huang 等,2011 年;Koppers 等,2007 年)?Jackson等人(2024年)的研究结果表明,如果仅仅基于热点火山通量,全球羽流通量可能会被低估,因为在厚岩石圈下羽流的生产力会受到抑制。此外,喷发的热点熔岩的同位素组成可能不能代表其地幔源特征,因为它们偏向于富集的内含物。
{"title":"Plume-Plateau Interaction","authors":"Shichun Huang","doi":"10.1029/2024AV001464","DOIUrl":"https://doi.org/10.1029/2024AV001464","url":null,"abstract":"<p>Age progressive volcanic trends, known as hotspot tracks, are thought to be produced by partial melting of buoyant mantle plumes rising from the deep mantle (Morgan, <span>1971</span>; Wilson, <span>1963</span>). Hotspot tracks record the relative motion between plates and mantle plumes, and they are used to reconstruct the history of plate motion and to constrain the geochemical heterogeneity within the mantle, which are important to our understanding of mantle dynamics (e.g., Koppers et al., <span>2021</span>; Weis et al., <span>2023</span>).</p><p>Through a careful examination of isotopic, geochronological, and plate motion reconstruction data, Jackson et al. (<span>2024</span>) argued that certain Cretaceous (87–106 Ma) Magellan seamounts north of the Ontong-Java Plateau (OJP) may have been produced by the Samoan plume. This finding places the Samoan hotspot track among the longest-lived ones. However, there is a significant gap in volcanic activity from 24 to 87 Ma, excluding the 44 Ma Malaita volcanism. Raising the question, what mechanism could produce a 63 Ma gap in an otherwise enduring hotspot track?</p><p>It has long been observed that most hotspot tracks manifest as discrete volcanoes, exemplified by the long-lived Hawaii-Emperor Volcanic Chain, rather than continuous ridges. It is suggested that the locations of these volcanoes are controlled by fractures within the lithosphere, facilitating the migration of plume-generated magma (e.g., Hieronymus & Bercovici, <span>1999</span>). Consequently, discrete volcanoes are anticipated along hotspot tracks.</p><p>To explain the bilaterally zoned hotspot tracks (e.g., Abouchami et al., <span>2005</span>; Huang et al., <span>2011</span>; Weis et al., <span>2011</span>), Rohde et al. (<span>2013</span>) argued that mantle plumes originating from the lower mantle may bifurcate at the mantle transition zone (Figure 1a). Because of the different mantle viscosities in the upper and lower mantle, a plume might rise much slower in the lower mantle compared to in the upper mantle. To maintain the same plume flux, a plume would become thinner in the upper mantle, which may lead to plume bifurcation at the mantle transition zone (Rohde et al., <span>2013</span>). Alternatively, it is also possible that after entering the upper mantle, a plume fragments into discrete upwelling diapirs rather than maintaining a continuous flow (Figure 1a), resulting in volcanic activity gaps along hotspot tracks.</p><p>However, neither of these theories explains the prolonged absence of volcanism within a significant period (24–87 Ma) of the Samoan hotspot track. Jackson et al. (<span>2024</span>) noted that during this particular period of time, the Samoan plume was under the thick OJP. Mantle plumes ascend adiabatically, with a steeper pressure-temperature slope compared to that of the mantle solidus. As such, plumes start to melt and produce magma when reaching shallow depths (low pressure). The upwelling stops ","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 5","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001464","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnetosheath High-Speed Jets (HSJs) are transient disturbances characterized by increased dynamic pressure. They can cause various geoeffects, including ultra-low-frequency (ULF) waves and auroras. Theoretically, when ULF waves propagate into the ionosphere as Alfvén waves, they can accelerate electrons and generate discrete auroras. However, what types of aurora can be driven by HSJs and what are the underlying mechanisms remain unknown. Using coordinated magnetosheath in situ and ground observations, here, we showed that when a HSJ was identified in the magnetosheath, multiple auroral arcs parallel to the auroral oval were observed near local noon. The electron energy spectrogram of these arcs exhibited “inverted-V” structures, indicating the existence of quasi-static parallel electric fields. Concurrently, long-period ULF signals were detected on the ground, suggesting the arrival of Alfvén waves. These observations are represented by a kinetic simulation using realistic observational inputs, showing consistency with the theory regarding the generation of the “inverted-V” structure by long-period Alfvén waves. This study builds a previously unestablished connection among HSJ, ULF wave, and aurora, and provides a mechanism for generation of discrete auroral arcs near local noon, which may reveal the underlying mechanism behind a specific auroral activity commonly observed near local noon as shown in the paper.
磁鞘高速射流(HSJs)是一种以动态压力增加为特征的瞬态扰动。它们可以引起各种地球效应,包括超低频(ULF)波和极光。从理论上讲,当超低频波以阿尔芬波的形式传播到电离层时,可以加速电子并产生离散极光。然而,HSJs 可以驱动哪些类型的极光,其基本机制是什么,这些仍然是未知数。在这里,我们利用协调的磁鞘原位和地面观测结果表明,当在磁鞘中发现一个HSJ时,就会在当地正午附近观测到多个与极光椭圆平行的极光弧。这些极光弧的电子能量谱图显示出 "倒 V "结构,表明存在准静态平行电场。与此同时,地面上也探测到了长周期超低频信号,这表明阿尔夫文波的到来。这些观测结果通过使用现实观测输入的动力学模拟来表示,表明与长周期阿尔弗韦恩波产生 "倒 V "结构的理论一致。这项研究在 HSJ、超低频波和极光之间建立了一种之前尚未建立的联系,并提供了在当地正午附近产生离散极光弧的机制,这可能揭示了论文中所示的在当地正午附近经常观测到的特定极光活动背后的潜在机制。
{"title":"Magnetosheath High-Speed Jet Drives Multiple Auroral Arcs Near Local Noon","authors":"Hui-Xuan Qiu, De-Sheng Han, Run Shi, Jianjun Liu","doi":"10.1029/2024AV001197","DOIUrl":"https://doi.org/10.1029/2024AV001197","url":null,"abstract":"<p>Magnetosheath High-Speed Jets (HSJs) are transient disturbances characterized by increased dynamic pressure. They can cause various geoeffects, including ultra-low-frequency (ULF) waves and auroras. Theoretically, when ULF waves propagate into the ionosphere as Alfvén waves, they can accelerate electrons and generate discrete auroras. However, what types of aurora can be driven by HSJs and what are the underlying mechanisms remain unknown. Using coordinated magnetosheath in situ and ground observations, here, we showed that when a HSJ was identified in the magnetosheath, multiple auroral arcs parallel to the auroral oval were observed near local noon. The electron energy spectrogram of these arcs exhibited “inverted-V” structures, indicating the existence of quasi-static parallel electric fields. Concurrently, long-period ULF signals were detected on the ground, suggesting the arrival of Alfvén waves. These observations are represented by a kinetic simulation using realistic observational inputs, showing consistency with the theory regarding the generation of the “inverted-V” structure by long-period Alfvén waves. This study builds a previously unestablished connection among HSJ, ULF wave, and aurora, and provides a mechanism for generation of discrete auroral arcs near local noon, which may reveal the underlying mechanism behind a specific auroral activity commonly observed near local noon as shown in the paper.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 5","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Because of its global abundance and reactivity with hydroxyl radicals (OH•), tropospheric carbon monoxide indirectly impacts the lifetimes of other OH•-reactive gases, in particular methane and reactive hydrocarbons. The origin and chemistry of atmospheric CO have been studied using stable isotopes. Both 13CO and C18O undergo isotopic fractionation during its main chemical loss reaction, CO + OH•. The kinetic isotope effect (KIE) for 13CO is mass dependent, with a value of ∼5‰; 12CO reacts faster than 13CO with OH. Whereas C18O + OH• exhibits an inversely mass dependent KIE ∼−10‰. We hypothesize these KIEs result in a relative depletion of 13C18O, a CO clumped isotope. To test this, we collected CO from air samples on Long Island, NY, and discovered a −3 to −8‰ difference in the clumped isotope ratio, Δ31, relative to a random distribution of 13C and 18O in CO. A clear negative trend between [CO] and Δ31 is driven by two factors: (a) the atmospheric addition of CO from either a primary or secondary source with a Δ31 of ∼0‰ and (b) the continuing reaction of CO with OH•, leaving the remaining CO pool relatively depleted in 13C18O. This is analogous to the mechanism that determines CO Δ17O values. This study is among the first to show clumped isotope fractionation resulting from atmospheric chemistry and not thermal equilibration, which may inform the identification of clumped isotope KIEs in other atmospheric trace gases. These first Δ31 observations motivate future experimental and observational studies targeted at characterizing the clumped isotopes of CO sources, background CO, and experimentally fractionated CO.
对流层中的一氧化碳由于其全球丰度和与羟基自由基(OH-)的反应性,间接影响了其他与羟基自由基反应的气体,特别是甲烷和活性碳氢化合物的寿命。利用稳定同位素对大气中一氧化碳的来源和化学性质进行了研究。在一氧化碳的主要化学损耗反应 CO + OH- 过程中,13CO 和 C18O 都会发生同位素分馏。13CO 的动力学同位素效应(KIE)与质量有关,其值为∼5‰;12CO 与 OH 的反应比 13CO 快。而 C18O + OH- 的 KIE 与质量成反比,为 10‰。我们假设这些 KIE 会导致 13C18O(一种 CO 团块同位素)的相对耗竭。为了验证这一点,我们从纽约长岛的空气样本中采集了一氧化碳,发现相对于一氧化碳中 13C 和 18O 的随机分布,团块同位素比Δ31 存在-3 至-8‰的差异。CO]和 Δ31 之间明显的负相关趋势是由两个因素驱动的:(a) 大气中增加了来自原生源或Δ31 为 ∼0‰ 的次生源的 CO;(b) CO 与 OH- 的持续反应,使得剩余 CO 池中的 13C18O 相对贫乏。这与决定 CO Δ17O 值的机制类似。这项研究首次显示了由大气化学而不是热平衡引起的团块同位素分馏,这可能为确定其他大气痕量气体中的团块同位素 KIEs 提供了参考。这些首次观测到的Δ31 激发了未来针对一氧化碳源、背景一氧化碳和实验分馏一氧化碳的团块同位素特征的实验和观测研究。
{"title":"Large, Negative Atmospheric Carbon Monoxide Clumped Isotope Values Result From Kinetic Isotope Fractionation, Tracing OH• Reactivity","authors":"Gregory A. Henkes, Philip F. Place, John E. Mak","doi":"10.1029/2023AV000922","DOIUrl":"https://doi.org/10.1029/2023AV000922","url":null,"abstract":"<p>Because of its global abundance and reactivity with hydroxyl radicals (OH•), tropospheric carbon monoxide indirectly impacts the lifetimes of other OH•-reactive gases, in particular methane and reactive hydrocarbons. The origin and chemistry of atmospheric CO have been studied using stable isotopes. Both <sup>13</sup>CO and C<sup>18</sup>O undergo isotopic fractionation during its main chemical loss reaction, CO + OH•. The kinetic isotope effect (KIE) for <sup>13</sup>CO is mass dependent, with a value of ∼5‰; <sup>12</sup>CO reacts faster than <sup>13</sup>CO with OH. Whereas C<sup>18</sup>O + OH• exhibits an inversely mass dependent KIE ∼−10‰. We hypothesize these KIEs result in a relative depletion of <sup>13</sup>C<sup>18</sup>O, a CO clumped isotope. To test this, we collected CO from air samples on Long Island, NY, and discovered a −3 to −8‰ difference in the clumped isotope ratio, Δ<sub>31</sub>, relative to a random distribution of <sup>13</sup>C and <sup>18</sup>O in CO. A clear negative trend between [CO] and Δ<sub>31</sub> is driven by two factors: (a) the atmospheric addition of CO from either a primary or secondary source with a Δ<sub>31</sub> of ∼0‰ and (b) the continuing reaction of CO with OH•, leaving the remaining CO pool relatively depleted in <sup>13</sup>C<sup>18</sup>O. This is analogous to the mechanism that determines CO Δ<sup>17</sup>O values. This study is among the first to show clumped isotope fractionation resulting from atmospheric chemistry and not thermal equilibration, which may inform the identification of clumped isotope KIEs in other atmospheric trace gases. These first Δ<sub>31</sub> observations motivate future experimental and observational studies targeted at characterizing the clumped isotopes of CO sources, background CO, and experimentally fractionated CO.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 5","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV000922","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}