首页 > 最新文献

AI Open最新文献

英文 中文
Hierarchical label with imbalance and attributed network structure fusion for network embedding 不平衡分层标签与网络嵌入的属性网络结构融合
Pub Date : 2022-01-01 DOI: 10.1016/j.aiopen.2022.07.002
Shu Zhao , Jialin Chen , Jie Chen , Yanping Zhang , Jie Tang

Network embedding (NE) aims to learn low-dimensional vectors for nodes while preserving the network’s essential properties (e.g., attributes and structure). Previous methods have been proposed to learn node representations with encouraging achievements. Recent research has shown that the hierarchical label has potential value in seeking latent hierarchical structures and learning more effective classification information. Nevertheless, most existing network embedding methods either focus on the network without the hierarchical label, or the learning process of hierarchical structure for labels is separate from the network structure. Learning node embedding with the hierarchical label suffers from two challenges: (1) Fusing hierarchical labels and network is still an arduous task. (2) The data volume imbalance under different hierarchical labels is more noticeable than flat labels. This paper proposes a Hierarchical Label and Attributed Network Structure Fusion model(HANS), which realizes the fusion of hierarchical labels and nodes through attributes and the attention-based fusion module. Particularly, HANS designs a directed hierarchy structure encoder for modeling label dependencies in three directions (parent–child, child–parent, and sibling) to strengthen the co-occurrence information between labels of different frequencies and reduce the impact of the label imbalance. Experiments on real-world datasets demonstrate that the proposed method achieves significantly better performance than the state-of-the-art algorithms.

网络嵌入(NE)旨在学习节点的低维向量,同时保留网络的基本属性(如属性和结构)。先前已经提出了学习节点表示的方法,并取得了令人鼓舞的成果。最近的研究表明,层次标签在寻找潜在的层次结构和学习更有效的分类信息方面具有潜在的价值。然而,大多数现有的网络嵌入方法要么专注于没有分层标签的网络,要么标签的分层结构学习过程与网络结构分离。使用分层标签嵌入学习节点面临两个挑战:(1)融合分层标签和网络仍然是一项艰巨的任务。(2) 不同层次标签下的数据量失衡比平面标签更明显。本文提出了一种层次标签与属性网络结构融合模型(HANS),通过属性和基于注意力的融合模块实现了层次标签与节点的融合。特别是,HANS设计了一种有向层次结构编码器,用于对三个方向(父-子、子-父和兄弟)的标签依赖性进行建模,以增强不同频率标签之间的共现信息,并减少标签不平衡的影响。在真实世界数据集上的实验表明,所提出的方法比最先进的算法取得了更好的性能。
{"title":"Hierarchical label with imbalance and attributed network structure fusion for network embedding","authors":"Shu Zhao ,&nbsp;Jialin Chen ,&nbsp;Jie Chen ,&nbsp;Yanping Zhang ,&nbsp;Jie Tang","doi":"10.1016/j.aiopen.2022.07.002","DOIUrl":"https://doi.org/10.1016/j.aiopen.2022.07.002","url":null,"abstract":"<div><p>Network embedding (NE) aims to learn low-dimensional vectors for nodes while preserving the network’s essential properties (e.g., attributes and structure). Previous methods have been proposed to learn node representations with encouraging achievements. Recent research has shown that the hierarchical label has potential value in seeking latent hierarchical structures and learning more effective classification information. Nevertheless, most existing network embedding methods either focus on the network without the hierarchical label, or the learning process of hierarchical structure for labels is separate from the network structure. Learning node embedding with the hierarchical label suffers from two challenges: (1) Fusing hierarchical labels and network is still an arduous task. (2) The data volume imbalance under different hierarchical labels is more noticeable than flat labels. This paper proposes a <strong>H</strong>ierarchical Label and <strong>A</strong>ttributed <strong>N</strong>etwork <strong>S</strong>tructure Fusion model(HANS), which realizes the fusion of hierarchical labels and nodes through attributes and the attention-based fusion module. Particularly, HANS designs a directed hierarchy structure encoder for modeling label dependencies in three directions (parent–child, child–parent, and sibling) to strengthen the co-occurrence information between labels of different frequencies and reduce the impact of the label imbalance. Experiments on real-world datasets demonstrate that the proposed method achieves significantly better performance than the state-of-the-art algorithms.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 91-100"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000122/pdfft?md5=b0971b7ac0f357e13fd0e41f95f6412d&pid=1-s2.0-S2666651022000122-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72246448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Self-directed machine learning 自主机器学习
Pub Date : 2022-01-01 DOI: 10.1016/j.aiopen.2022.06.001
Wenwu Zhu , Xin Wang , Pengtao Xie

Conventional machine learning (ML) relies heavily on manual design from machine learning experts to decide learning tasks, data, models, optimization algorithms, and evaluation metrics, which is labor-intensive, time-consuming, and cannot learn autonomously like humans. In education science, self-directed learning, where human learners select learning tasks and materials on their own without requiring hands-on guidance, has been shown to be more effective than passive teacher-guided learning. Inspired by the concept of self-directed human learning, we introduce the principal concept of Self-directed Machine Learning (SDML) and propose a framework for SDML. Specifically, we design SDML as a self-directed learning process guided by self-awareness, including internal awareness and external awareness. Our proposed SDML process benefits from self task selection, self data selection, self model selection, self optimization strategy selection and self evaluation metric selection through self-awareness without human guidance. Meanwhile, the learning performance of the SDML process serves as feedback to further improve self-awareness. We propose a mathematical formulation for SDML based on multi-level optimization. Furthermore, we present case studies together with potential applications of SDML, followed by discussing future research directions. We expect that SDML could enable machines to conduct human-like self-directed learning and provide a new perspective towards artificial general intelligence.

传统的机器学习(ML)在很大程度上依赖于机器学习专家的手动设计来决定学习任务、数据、模型、优化算法和评估指标,这是劳动密集型的、耗时的,并且不能像人类一样自主学习。在教育科学中,人类学习者在不需要动手指导的情况下自行选择学习任务和材料的自主学习已被证明比被动的教师指导学习更有效。受人类自主学习概念的启发,我们引入了自主机器学习(SDML)的主要概念,并提出了SDML的框架。具体而言,我们将SDML设计为一个由自我意识引导的自我导向学习过程,包括内部意识和外部意识。我们提出的SDML过程受益于自我任务选择、自我数据选择、自我模型选择、自我优化策略选择和通过自我意识进行的自我评估度量选择,而无需人类指导。同时,SDML过程的学习表现可以作为反馈,进一步提高自我意识。我们提出了一个基于多级优化的SDML数学公式。此外,我们还介绍了SDML的案例研究和潜在应用,然后讨论了未来的研究方向。我们期望SDML能够使机器进行类似人类的自主学习,并为通用人工智能提供一个新的视角。
{"title":"Self-directed machine learning","authors":"Wenwu Zhu ,&nbsp;Xin Wang ,&nbsp;Pengtao Xie","doi":"10.1016/j.aiopen.2022.06.001","DOIUrl":"https://doi.org/10.1016/j.aiopen.2022.06.001","url":null,"abstract":"<div><p>Conventional machine learning (ML) relies heavily on manual design from machine learning experts to decide learning tasks, data, models, optimization algorithms, and evaluation metrics, which is labor-intensive, time-consuming, and cannot learn autonomously like humans. In education science, self-directed learning, where human learners select learning tasks and materials on their own without requiring hands-on guidance, has been shown to be more effective than passive teacher-guided learning. Inspired by the concept of self-directed human learning, we introduce the principal concept of Self-directed Machine Learning (SDML) and propose a framework for SDML. Specifically, we design SDML as a self-directed learning process guided by self-awareness, including internal awareness and external awareness. Our proposed SDML process benefits from self task selection, self data selection, self model selection, self optimization strategy selection and self evaluation metric selection through self-awareness without human guidance. Meanwhile, the learning performance of the SDML process serves as feedback to further improve self-awareness. We propose a mathematical formulation for SDML based on multi-level optimization. Furthermore, we present case studies together with potential applications of SDML, followed by discussing future research directions. We expect that SDML could enable machines to conduct human-like self-directed learning and provide a new perspective towards artificial general intelligence.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 58-70"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000109/pdfft?md5=5480e0d544d9f6d6307d44ca29f5d00c&pid=1-s2.0-S2666651022000109-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72282567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Deep learning for fake news detection: A comprehensive survey 深度学习用于假新闻检测:一项综合调查
Pub Date : 2022-01-01 DOI: 10.1016/j.aiopen.2022.09.001
Linmei Hu , Siqi Wei , Ziwang Zhao , Bin Wu

The information age enables people to obtain news online through various channels, yet in the meanwhile making false news spread at unprecedented speed. Fake news exerts detrimental effects for it impairs social stability and public trust, which calls for increasing demand for fake news detection (FND). As deep learning (DL) achieves tremendous success in various domains, it has also been leveraged in FND tasks and surpasses traditional machine learning based methods, yielding state-of-the-art performance. In this survey, we present a complete review and analysis of existing DL based FND methods that focus on various features such as news content, social context, and external knowledge. We review the methods under the lines of supervised, weakly supervised, and unsupervised methods. For each line, we systematically survey the representative methods utilizing different features. Then, we introduce several commonly used FND datasets and give a quantitative analysis of the performance of the DL based FND methods over these datasets. Finally, we analyze the remaining limitations of current approaches and highlight some promising future directions.

信息时代使人们能够通过各种渠道在网上获取新闻,但同时也使虚假新闻以前所未有的速度传播。假新闻损害了社会稳定和公众信任,对假新闻检测的需求不断增加。随着深度学习(DL)在各个领域取得巨大成功,它也被用于FND任务,并超越了传统的基于机器学习的方法,产生了最先进的性能。在这项调查中,我们对现有的基于DL的FND方法进行了全面的回顾和分析,这些方法侧重于新闻内容、社会背景和外部知识等各种特征。我们在有监督的、弱监督的和无监督的方法下回顾了这些方法。对于每条线,我们系统地调查了利用不同特征的代表性方法。然后,我们介绍了几种常用的FND数据集,并对基于DL的FND方法在这些数据集上的性能进行了定量分析。最后,我们分析了当前方法的剩余局限性,并强调了一些有前景的未来方向。
{"title":"Deep learning for fake news detection: A comprehensive survey","authors":"Linmei Hu ,&nbsp;Siqi Wei ,&nbsp;Ziwang Zhao ,&nbsp;Bin Wu","doi":"10.1016/j.aiopen.2022.09.001","DOIUrl":"https://doi.org/10.1016/j.aiopen.2022.09.001","url":null,"abstract":"<div><p>The information age enables people to obtain news online through various channels, yet in the meanwhile making false news spread at unprecedented speed. Fake news exerts detrimental effects for it impairs social stability and public trust, which calls for increasing demand for fake news detection (FND). As deep learning (DL) achieves tremendous success in various domains, it has also been leveraged in FND tasks and surpasses traditional machine learning based methods, yielding state-of-the-art performance. In this survey, we present a complete review and analysis of existing DL based FND methods that focus on various features such as news content, social context, and external knowledge. We review the methods under the lines of supervised, weakly supervised, and unsupervised methods. For each line, we systematically survey the representative methods utilizing different features. Then, we introduce several commonly used FND datasets and give a quantitative analysis of the performance of the DL based FND methods over these datasets. Finally, we analyze the remaining limitations of current approaches and highlight some promising future directions.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 133-155"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000134/pdfft?md5=d2d9826705629e3762ea484a2d93d29d&pid=1-s2.0-S2666651022000134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72286084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Human motion modeling with deep learning: A survey 基于深度学习的人体运动建模:综述
Pub Date : 2022-01-01 DOI: 10.1016/j.aiopen.2021.12.002
Zijie Ye, Haozhe Wu, Jia Jia

The aim of human motion modeling is to understand human behaviors and create reasonable human motion like real people given different priors. With the development of deep learning, researchers tend to leverage data-driven methods to improve the performance of traditional motion modeling methods. In this paper, we present a comprehensive survey of recent human motion modeling researches. We discuss three categories of human motion modeling researches: human motion prediction, humanoid motion control and cross-modal motion synthesis and provide a detailed review over existing methods. Finally, we further discuss the remaining challenges in human motion modeling.

人体运动建模的目的是理解人类的行为,并像真实的人一样在不同的先验条件下创造出合理的人体运动。随着深度学习的发展,研究人员倾向于利用数据驱动的方法来提高传统运动建模方法的性能。本文对近年来人体运动建模的研究进行了综述。讨论了人体运动预测、类人运动控制和跨模态运动综合三大类人体运动建模研究,并对现有方法进行了详细综述。最后,我们进一步讨论了人体运动建模中存在的挑战。
{"title":"Human motion modeling with deep learning: A survey","authors":"Zijie Ye,&nbsp;Haozhe Wu,&nbsp;Jia Jia","doi":"10.1016/j.aiopen.2021.12.002","DOIUrl":"10.1016/j.aiopen.2021.12.002","url":null,"abstract":"<div><p>The aim of human motion modeling is to understand human behaviors and create reasonable human motion like real people given different priors. With the development of deep learning, researchers tend to leverage data-driven methods to improve the performance of traditional motion modeling methods. In this paper, we present a comprehensive survey of recent human motion modeling researches. We discuss three categories of human motion modeling researches: human motion prediction, humanoid motion control and cross-modal motion synthesis and provide a detailed review over existing methods. Finally, we further discuss the remaining challenges in human motion modeling.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 35-39"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651021000309/pdfft?md5=ad9a69283a477c5f5d6b127141e48a38&pid=1-s2.0-S2666651021000309-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83892046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
On the distribution alignment of propagation in graph neural networks 关于图神经网络中传播的分布对齐
Pub Date : 2022-01-01 DOI: 10.1016/j.aiopen.2022.11.006
Qinkai Zheng , Xiao Xia , Kun Zhang , Evgeny Kharlamov , Yuxiao Dong

Graph neural networks (GNNs) have been widely adopted for modeling graph-structure data. Most existing GNN studies have focused on designing different strategies to propagate information over the graph structures. After systematic investigations, we observe that the propagation step in GNNs matters, but its resultant performance improvement is insensitive to the location where we apply it. Our empirical examination further shows that the performance improvement brought by propagation mostly comes from a phenomenon of distribution alignment, i.e., propagation over graphs actually results in the alignment of the underlying distributions between the training and test sets. The findings are instrumental to understand GNNs, e.g., why decoupled GNNs can work as good as standard GNNs.1

图神经网络(GNN)已被广泛用于对图结构数据进行建模。大多数现有的GNN研究都集中在设计不同的策略来在图结构上传播信息。经过系统的研究,我们观察到GNN中的传播步骤很重要,但其性能改进对我们应用它的位置不敏感。我们的实证检验进一步表明,传播带来的性能改进主要来自分布对齐现象,即。,图上的传播实际上导致训练集和测试集之间的底层分布的对齐。这些发现有助于理解GNN,例如,为什么解耦的GNN可以像标准GNN一样工作。1
{"title":"On the distribution alignment of propagation in graph neural networks","authors":"Qinkai Zheng ,&nbsp;Xiao Xia ,&nbsp;Kun Zhang ,&nbsp;Evgeny Kharlamov ,&nbsp;Yuxiao Dong","doi":"10.1016/j.aiopen.2022.11.006","DOIUrl":"https://doi.org/10.1016/j.aiopen.2022.11.006","url":null,"abstract":"<div><p>Graph neural networks (GNNs) have been widely adopted for modeling graph-structure data. Most existing GNN studies have focused on designing <em>different</em> strategies to propagate information over the graph structures. After systematic investigations, we observe that the propagation step in GNNs matters, but its resultant performance improvement is insensitive to the location where we apply it. Our empirical examination further shows that the performance improvement brought by propagation mostly comes from a phenomenon of <em>distribution alignment</em>, i.e., propagation over graphs actually results in the alignment of the underlying distributions between the training and test sets. The findings are instrumental to understand GNNs, e.g., why decoupled GNNs can work as good as standard GNNs.<span><sup>1</sup></span></p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 218-228"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000213/pdfft?md5=e78f6562530f06a112827f05883082be&pid=1-s2.0-S2666651022000213-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72282565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HSSDA: Hierarchical relation aided Semi-Supervised Domain Adaptation HSSDA:层次关系辅助的半监督域自适应
Pub Date : 2022-01-01 DOI: 10.1016/j.aiopen.2022.11.001
Xiechao Guo , Ruiping Liu , Dandan Song

The mainstream domain adaptation (DA) methods transfer the supervised source domain knowledge to the unsupervised or semi-supervised target domain, so as to assist the classification task in the target domain. Usually the supervision only contains the class label of the object. However, when human beings recognize a new object, they will not only learn the class label of the object, but also correlate the object to its parent class, and use this information to learn the similarities and differences between child classes. Our model utilizes hierarchical relations via making the parent class label of labeled data (all the source domain data and part of target domain data) as a part of supervision to guide prototype learning module vbfd to learn the parent class information encoding, so that the prototypes of the same parent class are closer in the prototype space, which leads to better classification results. Inspired by this mechanism, we propose a Hierarchical relation aided Semi-Supervised Domain Adaptation (HSSDA) method which incorporates the hierarchical relations into the Semi-Supervised Domain Adaptation (SSDA) method to improve the classification results of the model. Our model performs well on the DomainNet dataset, and gets the state-of-the-art results in the semi-supervised DA problem.

主流的领域自适应(DA)方法将有监督的源领域知识转移到无监督或半监督的目标领域,以辅助目标领域中的分类任务。通常监督只包含对象的类标签。然而,当人类识别出一个新对象时,他们不仅会学习该对象的类标签,还会将该对象与其父类关联起来,并利用这些信息来学习子类之间的异同。我们的模型利用层次关系,将标记数据(所有源域数据和部分目标域数据)的父类标签作为监督的一部分,指导原型学习模块vbfd学习父类信息编码,使同一父类的原型在原型空间中更近,从而获得更好的分类结果。受此机制的启发,我们提出了一种层次关系辅助半监督域自适应(HSSDA)方法,该方法将层次关系纳入半监督域适应(SSDA)方法中,以提高模型的分类结果。我们的模型在DomainNet数据集上表现良好,并在半监督DA问题中获得了最先进的结果。
{"title":"HSSDA: Hierarchical relation aided Semi-Supervised Domain Adaptation","authors":"Xiechao Guo ,&nbsp;Ruiping Liu ,&nbsp;Dandan Song","doi":"10.1016/j.aiopen.2022.11.001","DOIUrl":"https://doi.org/10.1016/j.aiopen.2022.11.001","url":null,"abstract":"<div><p>The mainstream domain adaptation (DA) methods transfer the supervised source domain knowledge to the unsupervised or semi-supervised target domain, so as to assist the classification task in the target domain. Usually the supervision only contains the class label of the object. However, when human beings recognize a new object, they will not only learn the class label of the object, but also correlate the object to its parent class, and use this information to learn the similarities and differences between child classes. Our model utilizes hierarchical relations via making the parent class label of labeled data (all the source domain data and part of target domain data) as a part of supervision to guide prototype learning module vbfd to learn the parent class information encoding, so that the prototypes of the same parent class are closer in the prototype space, which leads to better classification results. Inspired by this mechanism, we propose a <strong>Hierarchical relation aided Semi-Supervised Domain Adaptation (HSSDA)</strong> method which incorporates the hierarchical relations into the Semi-Supervised Domain Adaptation (SSDA) method to improve the classification results of the model. Our model performs well on the DomainNet dataset, and gets the state-of-the-art results in the semi-supervised DA problem.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 156-161"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266665102200016X/pdfft?md5=acdf10fbc8ecc16b703bc63cf409d5c7&pid=1-s2.0-S266665102200016X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72286082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CAILIE 1.0: A dataset for Challenge of AI in Law - Information Extraction V1.0 CAILIE 1.0:人工智能法律挑战数据集-信息提取V1.0
Pub Date : 2022-01-01 DOI: 10.1016/j.aiopen.2022.12.002
Yu Cao, Yuanyuan Sun, Ce Xu, Chunnan Li, Jinming Du, Hongfei Lin
{"title":"CAILIE 1.0: A dataset for Challenge of AI in Law - Information Extraction V1.0","authors":"Yu Cao,&nbsp;Yuanyuan Sun,&nbsp;Ce Xu,&nbsp;Chunnan Li,&nbsp;Jinming Du,&nbsp;Hongfei Lin","doi":"10.1016/j.aiopen.2022.12.002","DOIUrl":"https://doi.org/10.1016/j.aiopen.2022.12.002","url":null,"abstract":"","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"208-212"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000237/pdfft?md5=0d34de7b220463b0502bcbc2ad2a5225&pid=1-s2.0-S2666651022000237-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72246444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A survey on heterogeneous information network based recommender systems: Concepts, methods, applications and resources 基于异构信息网络的推荐系统综述:概念、方法、应用和资源
Pub Date : 2022-01-01 DOI: 10.1016/j.aiopen.2022.03.002
Jiawei Liu , Chuan Shi , Cheng Yang , Zhiyuan Lu , Philip S. Yu

As an important way to alleviate information overload, a recommender system aims to filter out irrelevant information for users and provides them items that they may be interested in. In recent years, an increasing amount of works have been proposed to introduce auxiliary information in recommender systems to alleviate data sparsity and cold-start problems. Among them, heterogeneous information networks (HIN)-based recommender systems provide a unified approach to fuse various auxiliary information, which can be combined with mainstream recommendation algorithms to effectively enhance the performance and interpretability of models, and thus have been applied in many kinds of recommendation tasks. This paper provides a comprehensive and systematic survey of HIN-based recommender systems, including four aspects: concepts, methods, applications, and resources. Specifically, we firstly introduce the concepts related to recommender systems, heterogeneous information networks and HIN-based recommendation. Secondly, we present more than 70 methods categorized according to models or application scenarios, and describe representative methods symbolically. Thirdly, we summarize the benchmark datasets and open source code. Finally, we discuss several potential research directions and conclude our survey.

作为缓解信息过载的一种重要方式,推荐系统旨在为用户过滤掉不相关的信息,并为他们提供他们可能感兴趣的项目。近年来,越来越多的工作被提出在推荐系统中引入辅助信息,以缓解数据稀疏和冷启动问题。其中,基于异构信息网络(HIN)的推荐系统提供了一种融合各种辅助信息的统一方法,可以与主流推荐算法相结合,有效地提高模型的性能和可解释性,并已应用于多种推荐任务。本文对基于HIN的推荐系统进行了全面、系统的综述,包括概念、方法、应用和资源四个方面。具体来说,我们首先介绍了推荐系统、异构信息网络和基于HIN的推荐的相关概念。其次,我们提出了70多种根据模型或应用场景分类的方法,并象征性地描述了具有代表性的方法。第三,我们总结了基准数据集和开源代码。最后,我们讨论了几个潜在的研究方向,并总结了我们的调查。
{"title":"A survey on heterogeneous information network based recommender systems: Concepts, methods, applications and resources","authors":"Jiawei Liu ,&nbsp;Chuan Shi ,&nbsp;Cheng Yang ,&nbsp;Zhiyuan Lu ,&nbsp;Philip S. Yu","doi":"10.1016/j.aiopen.2022.03.002","DOIUrl":"https://doi.org/10.1016/j.aiopen.2022.03.002","url":null,"abstract":"<div><p>As an important way to alleviate information overload, a recommender system aims to filter out irrelevant information for users and provides them items that they may be interested in. In recent years, an increasing amount of works have been proposed to introduce auxiliary information in recommender systems to alleviate data sparsity and cold-start problems. Among them, heterogeneous information networks (HIN)-based recommender systems provide a unified approach to fuse various auxiliary information, which can be combined with mainstream recommendation algorithms to effectively enhance the performance and interpretability of models, and thus have been applied in many kinds of recommendation tasks. This paper provides a comprehensive and systematic survey of HIN-based recommender systems, including four aspects: concepts, methods, applications, and resources. Specifically, we firstly introduce the concepts related to recommender systems, heterogeneous information networks and HIN-based recommendation. Secondly, we present more than 70 methods categorized according to models or application scenarios, and describe representative methods symbolically. Thirdly, we summarize the benchmark datasets and open source code. Finally, we discuss several potential research directions and conclude our survey.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 40-57"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000092/pdfft?md5=6df8ab165a626a41bbcb77bcaac40c0f&pid=1-s2.0-S2666651022000092-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72246449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Data augmentation approaches in natural language processing: A survey 自然语言处理中的数据扩充方法:一项调查
Pub Date : 2022-01-01 DOI: 10.1016/j.aiopen.2022.03.001
Bohan Li, Yutai Hou, Wanxiang Che

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges. Some useful resources are provided in Appendix A.

作为一种有效的策略,数据增强(DA)可以缓解深度学习技术可能失败的数据短缺情况。它被广泛应用于计算机视觉,然后被引入到自然语言处理中,并在许多任务中实现了改进。DA方法的主要焦点之一是提高训练数据的多样性,从而帮助模型更好地推广到看不见的测试数据。在这项调查中,我们根据扩增数据的多样性将DA方法分为三类,包括转述、噪声和采样。我们的论文开始根据以上类别详细分析DA方法。此外,我们还介绍了它们在NLP任务中的应用以及面临的挑战。附录A提供了一些有用的资源。
{"title":"Data augmentation approaches in natural language processing: A survey","authors":"Bohan Li,&nbsp;Yutai Hou,&nbsp;Wanxiang Che","doi":"10.1016/j.aiopen.2022.03.001","DOIUrl":"https://doi.org/10.1016/j.aiopen.2022.03.001","url":null,"abstract":"<div><p>As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the <strong>diversity</strong> of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges. Some useful resources are provided in Appendix A.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 71-90"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000080/pdfft?md5=daaa1ffcdc6b6cb892dcef9a8b3ee29a&pid=1-s2.0-S2666651022000080-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72246445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 118
PTR: Prompt Tuning with Rules for Text Classification PTR:使用文本分类规则进行提示调整
Pub Date : 2022-01-01 DOI: 10.1016/j.aiopen.2022.11.003
Xu Han , Weilin Zhao , Ning Ding , Zhiyuan Liu , Maosong Sun

Recently, prompt tuning has been widely applied to stimulate the rich knowledge in pre-trained language models (PLMs) to serve NLP tasks. Although prompt tuning has achieved promising results on some few-class classification tasks, such as sentiment classification and natural language inference, manually designing prompts is cumbersome. Meanwhile, generating prompts automatically is also difficult and time-consuming. Therefore, obtaining effective prompts for complex many-class classification tasks still remains a challenge. In this paper, we propose to encode the prior knowledge of a classification task into rules, then design sub-prompts according to the rules, and finally combine the sub-prompts to handle the task. We name this Prompt Tuning method with Rules “PTR”. Compared with existing prompt-based methods, PTR achieves a good trade-off between effectiveness and efficiency in building prompts. We conduct experiments on three many-class classification tasks, including relation classification, entity typing, and intent classification. The results show that PTR outperforms both vanilla and prompt tuning baselines, indicating the effectiveness of utilizing rules for prompt tuning. The source code of PTR is available at https://github.com/thunlp/PTR.

近年来,快速调优已被广泛应用于激发预训练语言模型(PLM)中丰富的知识,以服务于NLP任务。尽管提示调优在情感分类和自然语言推理等少数类别分类任务上取得了很好的效果,但手动设计提示是很麻烦的。同时,自动生成提示也是困难和耗时的。因此,为复杂的多类分类任务获得有效的提示仍然是一个挑战。在本文中,我们建议将分类任务的先验知识编码为规则,然后根据规则设计子提示,最后将子提示组合起来处理任务。我们用规则将此提示调整方法命名为“PTR”。与现有的基于提示的方法相比,PTR在构建提示时实现了有效性和效率之间的良好权衡。我们对三个多类分类任务进行了实验,包括关系分类、实体分类和意图分类。结果表明,PTR的性能优于普通和提示调优基线,表明了利用规则进行提示调优的有效性。PTR的源代码位于https://github.com/thunlp/PTR.
{"title":"PTR: Prompt Tuning with Rules for Text Classification","authors":"Xu Han ,&nbsp;Weilin Zhao ,&nbsp;Ning Ding ,&nbsp;Zhiyuan Liu ,&nbsp;Maosong Sun","doi":"10.1016/j.aiopen.2022.11.003","DOIUrl":"https://doi.org/10.1016/j.aiopen.2022.11.003","url":null,"abstract":"<div><p>Recently, prompt tuning has been widely applied to stimulate the rich knowledge in pre-trained language models (PLMs) to serve NLP tasks. Although prompt tuning has achieved promising results on some few-class classification tasks, such as sentiment classification and natural language inference, manually designing prompts is cumbersome. Meanwhile, generating prompts automatically is also difficult and time-consuming. Therefore, obtaining effective prompts for complex many-class classification tasks still remains a challenge. In this paper, we propose to encode the prior knowledge of a classification task into rules, then design sub-prompts according to the rules, and finally combine the sub-prompts to handle the task. We name this <strong>P</strong>rompt <strong>T</strong>uning method with <strong>R</strong>ules “<strong>PTR</strong>”. Compared with existing prompt-based methods, PTR achieves a good trade-off between effectiveness and efficiency in building prompts. We conduct experiments on three many-class classification tasks, including relation classification, entity typing, and intent classification. The results show that PTR outperforms both vanilla and prompt tuning baselines, indicating the effectiveness of utilizing rules for prompt tuning. The source code of PTR is available at <span>https://github.com/thunlp/PTR</span><svg><path></path></svg>.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 182-192"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000183/pdfft?md5=00c56e1aac330e25c378cff01e2ca394&pid=1-s2.0-S2666651022000183-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72286080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 291
期刊
AI Open
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1