首页 > 最新文献

Biomedical Technology最新文献

英文 中文
Effect of orthotic insole on symptomatic flexible flatfoot in school-age children: Meta-analysis and 1-year follow-up study 矫形鞋垫对学龄儿童症状性灵活扁平足的影响:元分析和一年随访研究
Pub Date : 2024-08-29 DOI: 10.1016/j.bmt.2024.08.001
Shuncai Hu, Qing Lin, Lifeng Qiu, Yang Liu, Siyan Guan, Zhizhi Luo, Yang Wang, Xiaofan Wang

Purpose

This study aimed to investigate the efficacy of orthopedic insoles, specifically three-dimensional (3D)-printed orthopedic insoles, for treatment of symptomatic flexible flatfoot in school-age children.

Methods

A systematic review of PubMed and China National Knowledge Infrastructure (CNKI) from database inception to March 2024 was conducted to determine additional studies. This single-center study included 38 participants, including 20 who chose ordinary orthopedic insoles and 18 who chose 3D printed orthopedic insoles, presented from January 2021 to December 2022. Pain symptom relief was compared between the two groups after 1 year of follow-up.

Results

A systematic review identified an additional six publications, involving 206 samples, and meta-analysis indicated that the force-bearing area, arch index, and heel valgus angle after treatment were 0.74 (95 ​% confidence interval [CI]: 0.65–1.01), 0.20 (95 ​% CI: 0.03–1.35), and 0.10 (95 ​% CI: 0.03–0.28) of those before treatment, respectively. The 1-year follow-up study revealed that because of its good comfort, 3D printed orthopedic insole can significantly improve the wearing time of both male (P ​< ​0.001) and overweight participants (P ​< ​0.001) and significantly reduce the pain score (P ​= ​0.032).

Conclusions

Orthotic insoles are effective in helping the recovery of flexible flatfoot. Among them, the 3D-printed orthopedic insoles have a better effect on relieving pain symptoms and have a great development potential.

目的 本研究旨在探讨矫形鞋垫(特别是三维(3D)打印矫形鞋垫)治疗学龄儿童症状性柔性扁平足的疗效。方法 对PubMed和中国国家知识基础设施(CNKI)从数据库开始到2024年3月的数据进行系统性回顾,以确定更多的研究。这项单中心研究纳入了 38 名参与者,其中 20 人选择了普通矫形鞋垫,18 人选择了 3D 打印矫形鞋垫,研究时间为 2021 年 1 月至 2022 年 12 月。结果系统性回顾发现了另外六篇出版物,涉及206个样本,荟萃分析表明治疗后的受力面积、足弓指数和足跟外翻角度分别为治疗前的0.74(95%置信区间[CI]:0.65-1.01)、0.20(95% CI:0.03-1.35)和0.10(95% CI:0.03-0.28)。1年的随访研究显示,3D打印矫形鞋垫因其良好的舒适性,可显著改善男性(P < 0.001)和超重参与者(P < 0.001)的穿着时间,并显著降低疼痛评分(P = 0.032)。结论矫形鞋垫能有效帮助灵活型扁平足的恢复,其中三维打印矫形鞋垫对缓解疼痛症状有较好的效果,具有很大的发展潜力。
{"title":"Effect of orthotic insole on symptomatic flexible flatfoot in school-age children: Meta-analysis and 1-year follow-up study","authors":"Shuncai Hu,&nbsp;Qing Lin,&nbsp;Lifeng Qiu,&nbsp;Yang Liu,&nbsp;Siyan Guan,&nbsp;Zhizhi Luo,&nbsp;Yang Wang,&nbsp;Xiaofan Wang","doi":"10.1016/j.bmt.2024.08.001","DOIUrl":"10.1016/j.bmt.2024.08.001","url":null,"abstract":"<div><h3>Purpose</h3><p>This study aimed to investigate the efficacy of orthopedic insoles, specifically three-dimensional (3D)-printed orthopedic insoles, for treatment of symptomatic flexible flatfoot in school-age children.</p></div><div><h3>Methods</h3><p>A systematic review of PubMed and China National Knowledge Infrastructure (CNKI) from database inception to March 2024 was conducted to determine additional studies. This single-center study included 38 participants, including 20 who chose ordinary orthopedic insoles and 18 who chose 3D printed orthopedic insoles, presented from January 2021 to December 2022. Pain symptom relief was compared between the two groups after 1 year of follow-up.</p></div><div><h3>Results</h3><p>A systematic review identified an additional six publications, involving 206 samples, and meta-analysis indicated that the force-bearing area, arch index, and heel valgus angle after treatment were 0.74 (95 ​% confidence interval [CI]: 0.65–1.01), 0.20 (95 ​% CI: 0.03–1.35), and 0.10 (95 ​% CI: 0.03–0.28) of those before treatment, respectively. The 1-year follow-up study revealed that because of its good comfort, 3D printed orthopedic insole can significantly improve the wearing time of both male (<em>P</em> ​&lt; ​0.001) and overweight participants (<em>P</em> ​&lt; ​0.001) and significantly reduce the pain score (<em>P</em> ​= ​0.032).</p></div><div><h3>Conclusions</h3><p>Orthotic insoles are effective in helping the recovery of flexible flatfoot. Among them, the 3D-printed orthopedic insoles have a better effect on relieving pain symptoms and have a great development potential.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"7 ","pages":"Pages 63-70"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X24000163/pdfft?md5=b0f8149d222ae2bd36d56643a01112ba&pid=1-s2.0-S2949723X24000163-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging strategies for the treatment of endometriosis 治疗子宫内膜异位症的新策略
Pub Date : 2024-08-29 DOI: 10.1016/j.bmt.2024.08.002
Qiong Chen , Jing Wang , Xiaoya Ding , Qingfei Zhang , Ping Duan

Endometriosis is an estrogen-dependent disorder of the reproductive tract, affecting approximately 10 ​% of women. The symptoms of this condition are vague and not correlated with the disease's stage. These associated symptoms significantly impact women's overall well-being. The etiology of endometriosis remains inadequately understood, with coelomic metaplasia, lymphatic and vascular dissemination being regarded as additional hypotheses in addition to the retrograde menstruation theory. Endometriosis is primarily treated with drug therapy and surgical intervention, but the recurrence rate of symptoms after five years remains approximately 50 ​%. Therefore, the advancement of more effective and safe therapies for the treatment of endometriosis is of paramount importance. In this review, we introduce the utilization of photodynamic therapy, hyperthermia, gene therapy, immunotherapy, stem cell therapy, nanotechnology, and micron technology in the management of endometriosis. The objective is to provide novel research perspectives for therapeutic approaches and facilitate future clinical translation to enhance patient outcomes.

子宫内膜异位症是一种依赖雌激素的生殖道疾病,约有 10% 的妇女会患病。这种疾病的症状比较模糊,而且与疾病的阶段无关。这些相关症状严重影响了妇女的整体健康。人们对子宫内膜异位症的病因仍不十分清楚,除月经逆行理论外,还有一些其他的假说,如子宫内膜移行症、淋巴和血管播散等。子宫内膜异位症主要采用药物治疗和手术干预,但五年后症状复发率仍高达约 50%。因此,开发更有效、更安全的子宫内膜异位症治疗方法至关重要。在这篇综述中,我们将介绍光动力疗法、热疗、基因疗法、免疫疗法、干细胞疗法、纳米技术和微米技术在子宫内膜异位症治疗中的应用。目的是为治疗方法提供新的研究视角,并促进未来的临床转化,以提高患者的治疗效果。
{"title":"Emerging strategies for the treatment of endometriosis","authors":"Qiong Chen ,&nbsp;Jing Wang ,&nbsp;Xiaoya Ding ,&nbsp;Qingfei Zhang ,&nbsp;Ping Duan","doi":"10.1016/j.bmt.2024.08.002","DOIUrl":"10.1016/j.bmt.2024.08.002","url":null,"abstract":"<div><p>Endometriosis is an estrogen-dependent disorder of the reproductive tract, affecting approximately 10 ​% of women. The symptoms of this condition are vague and not correlated with the disease's stage. These associated symptoms significantly impact women's overall well-being. The etiology of endometriosis remains inadequately understood, with coelomic metaplasia, lymphatic and vascular dissemination being regarded as additional hypotheses in addition to the retrograde menstruation theory. Endometriosis is primarily treated with drug therapy and surgical intervention, but the recurrence rate of symptoms after five years remains approximately 50 ​%. Therefore, the advancement of more effective and safe therapies for the treatment of endometriosis is of paramount importance. In this review, we introduce the utilization of photodynamic therapy, hyperthermia, gene therapy, immunotherapy, stem cell therapy, nanotechnology, and micron technology in the management of endometriosis. The objective is to provide novel research perspectives for therapeutic approaches and facilitate future clinical translation to enhance patient outcomes.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"7 ","pages":"Pages 46-62"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X24000175/pdfft?md5=62b25ff0bb6b24e2e05534564539033a&pid=1-s2.0-S2949723X24000175-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-enhanced nature medicine for ischemic stroke: Opportunities and challenges 治疗缺血性中风的纳米增强自然医学:机遇与挑战
Pub Date : 2024-07-16 DOI: 10.1016/j.bmt.2024.07.001
Jihao Yang , Lingyi Guo , Jun Liao , Huaqiang Yi

Ischemic stroke (IS), a major cause of death and disability globally, requires innovative therapeutic approaches due to its complex pathology. Nature medicine (NM) offers promising treatments through its bioactive compounds, which target the multifaceted nature of stroke-induced damage. However, the clinical application of NM is limited by challenges in bioavailability and specificity. This review article presents an advanced perspective on integrating nanotechnology with NM to create potent nanodelivery systems for ischemic stroke treatment. We highlight the pathological underpinnings of ischemic stroke, including oxidative stress, inflammation, and apoptosis, and discuss how NM compounds offer targeted mitigation strategies. By incorporating nanodelivery platforms, such as liposomes and nanoparticles, these NM -based treatments can achieve enhanced targeting, solubility, and controlled release, significantly improving therapeutic outcomes while reducing side effects. Despite promising developments, the translation of nano-enhanced NM into clinical practice faces obstacles, including manufacturing scalability, regulatory approval, and safety evaluations. This review emphasizes the potential of combining nanotechnology with NM to advance ischemic stroke therapy, calling for integrated research efforts to overcome existing barriers and fully realize the clinical benefits of this innovative approach.

缺血性中风(IS)是全球死亡和残疾的主要原因,由于其病理复杂,需要创新的治疗方法。自然医学(NM)通过其生物活性化合物针对中风引起的多方面损伤提供了有前景的治疗方法。然而,由于生物利用度和特异性方面的挑战,NM 的临床应用受到了限制。这篇综述文章以先进的视角介绍了如何将纳米技术与 NM 相结合,以创建用于缺血性中风治疗的强效纳米给药系统。我们强调了缺血性中风的病理基础,包括氧化应激、炎症和细胞凋亡,并讨论了 NM 化合物如何提供有针对性的缓解策略。通过结合脂质体和纳米颗粒等纳米给药平台,这些基于 NM 的疗法可以实现更强的靶向性、溶解性和控释性,从而在减少副作用的同时显著提高治疗效果。尽管发展前景广阔,但将纳米增强型 NM 转化为临床实践仍面临重重障碍,包括生产的可扩展性、监管审批和安全性评估。本综述强调了纳米技术与 NM 的结合在推进缺血性中风治疗方面的潜力,呼吁开展综合研究,以克服现有障碍,充分实现这种创新方法的临床益处。
{"title":"Nano-enhanced nature medicine for ischemic stroke: Opportunities and challenges","authors":"Jihao Yang ,&nbsp;Lingyi Guo ,&nbsp;Jun Liao ,&nbsp;Huaqiang Yi","doi":"10.1016/j.bmt.2024.07.001","DOIUrl":"10.1016/j.bmt.2024.07.001","url":null,"abstract":"<div><p>Ischemic stroke (IS), a major cause of death and disability globally, requires innovative therapeutic approaches due to its complex pathology. Nature medicine (NM) offers promising treatments through its bioactive compounds, which target the multifaceted nature of stroke-induced damage. However, the clinical application of NM is limited by challenges in bioavailability and specificity. This review article presents an advanced perspective on integrating nanotechnology with NM to create potent nanodelivery systems for ischemic stroke treatment. We highlight the pathological underpinnings of ischemic stroke, including oxidative stress, inflammation, and apoptosis, and discuss how NM compounds offer targeted mitigation strategies. By incorporating nanodelivery platforms, such as liposomes and nanoparticles, these NM -based treatments can achieve enhanced targeting, solubility, and controlled release, significantly improving therapeutic outcomes while reducing side effects. Despite promising developments, the translation of nano-enhanced NM into clinical practice faces obstacles, including manufacturing scalability, regulatory approval, and safety evaluations. This review emphasizes the potential of combining nanotechnology with NM to advance ischemic stroke therapy, calling for integrated research efforts to overcome existing barriers and fully realize the clinical benefits of this innovative approach.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"7 ","pages":"Pages 32-45"},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X24000151/pdfft?md5=7ca6bcfb5188479a44a70cc5ccf9f911&pid=1-s2.0-S2949723X24000151-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The therapeutic efficacy of post-symptom 3,4-diaminopyridine treatment in cosmetic injection-induced botulism using a novel animal model 利用新型动物模型研究症状后 3,4-二氨基吡啶治疗美容注射引起的肉毒中毒的疗效
Pub Date : 2024-07-02 DOI: 10.1016/j.bmt.2024.06.003
Ping He , Rongshuai Yan , Jie Liu , Pan You , Jianghe Zhang , Jinqing Li , Yiming Zhang

In recent years, the incidence of cosmetic injection-induced botulism has remarkably increased due to the frequent usage of botulinum neurotoxin type A (BoNT/A). To mimic and investigate this new clinical type of botulism, we established a novel animal model and evaluated the therapeutic potential of a new drug. Firstly, we injected BoNT/A into the gastrocnemius of rats to induce partial paralysis of the remaining limbs. Then, the intoxicated rats were treated with 3,4-diaminopyridine (3,4-DAP) at different stages of the disease and the forelimbs grasping strength (FGS) was evaluated. We showed that, at the sublethal dose, the FGS began to decrease at 6.00 ​± ​1.86 ​h after injection in rats, from 2.28 ​± ​0.19 ​N to 1.51 ​± ​0.18 ​N, while the FGS declined appeared earlier (4.29 ​± ​0.42 ​h) at the lethal dose, from 2.30 ​± ​0.20 ​N to 1.20 ​± ​0.16 ​N. Treatment with 3,4-DAP respectively at the time of the symptoms onset or 7 days after injection both can temporarily reverse the symptoms of muscle paralysis, indicating that 3,4-DAP may be an effective approach to relieve botulism. Overall, this study provides an available rat model and a promising therapeutic strategy for cosmetic injection-induced botulism.

近年来,由于A型肉毒杆菌神经毒素(BoNT/A)的频繁使用,美容注射诱发肉毒中毒的发病率显著上升。为了模拟和研究这种新型肉毒中毒临床类型,我们建立了一种新型动物模型,并评估了一种新药的治疗潜力。首先,我们向大鼠的腓肠肌注射 BoNT/A,诱导其余肢体部分瘫痪。然后,在疾病的不同阶段用 3,4-二氨基吡啶(3,4-DAP)治疗中毒大鼠,并评估其前肢抓握力量(FGS)。我们发现,在亚致死剂量下,大鼠的 FGS 在注射后 6.00 ± 1.86 h 开始下降,从 2.28 ± 0.19 N 降至 1.51 ± 0.18 N,而在致死剂量下,FGS 下降的时间更早(4.29 ± 0.42 h),从 2.30 ± 0.20 N 降至 1.20 ± 0.16 N。在症状出现时或注射后7天分别使用3,4-DAP治疗均可暂时逆转肌肉麻痹症状,表明3,4-DAP可能是缓解肉毒中毒的有效方法。总之,这项研究为化妆品注射引起的肉毒中毒提供了一个可用的大鼠模型和一种有前景的治疗策略。
{"title":"The therapeutic efficacy of post-symptom 3,4-diaminopyridine treatment in cosmetic injection-induced botulism using a novel animal model","authors":"Ping He ,&nbsp;Rongshuai Yan ,&nbsp;Jie Liu ,&nbsp;Pan You ,&nbsp;Jianghe Zhang ,&nbsp;Jinqing Li ,&nbsp;Yiming Zhang","doi":"10.1016/j.bmt.2024.06.003","DOIUrl":"https://doi.org/10.1016/j.bmt.2024.06.003","url":null,"abstract":"<div><p>In recent years, the incidence of cosmetic injection-induced botulism has remarkably increased due to the frequent usage of botulinum neurotoxin type A (BoNT/A). To mimic and investigate this new clinical type of botulism, we established a novel animal model and evaluated the therapeutic potential of a new drug. Firstly, we injected BoNT/A into the gastrocnemius of rats to induce partial paralysis of the remaining limbs. Then, the intoxicated rats were treated with 3,4-diaminopyridine (3,4-DAP) at different stages of the disease and the forelimbs grasping strength (FGS) was evaluated. We showed that, at the sublethal dose, the FGS began to decrease at 6.00 ​± ​1.86 ​h after injection in rats, from 2.28 ​± ​0.19 ​N to 1.51 ​± ​0.18 ​N, while the FGS declined appeared earlier (4.29 ​± ​0.42 ​h) at the lethal dose, from 2.30 ​± ​0.20 ​N to 1.20 ​± ​0.16 ​N. Treatment with 3,4-DAP respectively at the time of the symptoms onset or 7 days after injection both can temporarily reverse the symptoms of muscle paralysis, indicating that 3,4-DAP may be an effective approach to relieve botulism. Overall, this study provides an available rat model and a promising therapeutic strategy for cosmetic injection-induced botulism.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"7 ","pages":"Pages 25-31"},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X2400014X/pdfft?md5=33b378da876cfcc1ef62239719647f35&pid=1-s2.0-S2949723X2400014X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic insights into myopia development: Differential protein expression and the role of calcium signaling in form deprivation myopia in Guinea pigs 蛋白质组学对近视发展的启示:蛋白质表达差异和钙信号在豚鼠形觉剥夺性近视中的作用
Pub Date : 2024-06-11 DOI: 10.1016/j.bmt.2024.06.001
Rongbin Liang , Tao Li , Wenqing Shi , Hui Gao , Bei Ai , Bing Li , Xiaodong Zhou

This study aims to explore the changes in the vitreous proteomics of form deprivation myopia (FDM) in guinea pigs, in order to reveal the molecular mechanisms involved in the onset and development of myopia. The myopia model in guinea pigs was successfully established by covering one eye of the guinea pigs with a latex bead sac for 4 weeks. This study used 4D data-independent acquisition proteomics technology to analyze vitreous body samples from both the FDM group and the control group. The goal of the proteomics analysis was to identify differences in protein expression within the vitreous body of FDM guinea pigs. Myopia was successfully induced in the FDM group after 4 weeks of modeling. A total of 6298 proteins were identified, among which 348 were differentially expressed proteins (DEPs), with 81 upregulated and 267 downregulated. These DEPs were subjected to in-depth bioinformatics analyses, including Gene Ontology, the Eukaryotic Orthologous Groups, and the Kyoto Encyclopedia of Genes and Genomes. These analyses revealed significant involvement in cellular processes, metabolic pathways, biological regulation, cytoskeletal organization, and cell movement. Our results indicate that calcium signaling plays a critical role in mediating eye changes associated with form deprivation, which may bear similarities to mechanisms observed in neurodegenerative diseases. A total of 348 DEPs related to the development and progression of myopia were identified. These changes involve key biological processes, including protein degradation, cell adhesion, and transport, especially alterations in calcium signaling pathways. Stromal interaction molecule 1 (STIM1) is an important biological marker of FDM, which was confirmed by Western blot, immunohistochemistry and ELISA. Our study found clear differences in the expression of proteins in the vitreous during the development of myopic guinea pigs, especially those related to calcium signaling pathway. Our study offers new insights into the pathogenesis of myopia, particularly changes related to protein metabolism pathways.

本研究旨在探讨豚鼠形觉剥夺性近视(FDM)玻璃体蛋白质组学的变化,从而揭示近视发生和发展的分子机制。通过用乳胶珠囊覆盖豚鼠的一只眼睛4周,成功建立了豚鼠近视模型。本研究利用四维数据独立采集蛋白质组学技术分析了FDM组和对照组的玻璃体样本。蛋白质组学分析的目的是确定 FDM 豚鼠玻璃体内蛋白质表达的差异。FDM 组在建模 4 周后成功诱导出近视。共鉴定出 6298 个蛋白质,其中 348 个为差异表达蛋白质(DEPs),81 个上调,267 个下调。对这些差异表达蛋白进行了深入的生物信息学分析,包括基因本体、真核同源组和京都基因和基因组百科全书。这些分析揭示了钙信号在细胞过程、代谢途径、生物调控、细胞骨架组织和细胞运动中的重要参与。我们的研究结果表明,钙信号在介导与形式剥夺相关的眼睛变化中起着关键作用,这可能与神经退行性疾病中观察到的机制相似。我们共发现了 348 个与近视的发生和发展相关的 DEPs。这些变化涉及关键的生物过程,包括蛋白质降解、细胞粘附和运输,尤其是钙信号通路的改变。基质相互作用分子 1(STIM1)是 FDM 的重要生物学标志物,这一点已通过 Western 印迹、免疫组织化学和 ELISA 得到证实。我们的研究发现,在近视豚鼠的发育过程中,玻璃体内蛋白质的表达存在明显差异,尤其是与钙信号通路相关的蛋白质。我们的研究为近视的发病机制,尤其是与蛋白质代谢途径相关的变化提供了新的见解。
{"title":"Proteomic insights into myopia development: Differential protein expression and the role of calcium signaling in form deprivation myopia in Guinea pigs","authors":"Rongbin Liang ,&nbsp;Tao Li ,&nbsp;Wenqing Shi ,&nbsp;Hui Gao ,&nbsp;Bei Ai ,&nbsp;Bing Li ,&nbsp;Xiaodong Zhou","doi":"10.1016/j.bmt.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.bmt.2024.06.001","url":null,"abstract":"<div><p>This study aims to explore the changes in the vitreous proteomics of form deprivation myopia (FDM) in guinea pigs, in order to reveal the molecular mechanisms involved in the onset and development of myopia. The myopia model in guinea pigs was successfully established by covering one eye of the guinea pigs with a latex bead sac for 4 weeks. This study used 4D data-independent acquisition proteomics technology to analyze vitreous body samples from both the FDM group and the control group. The goal of the proteomics analysis was to identify differences in protein expression within the vitreous body of FDM guinea pigs. Myopia was successfully induced in the FDM group after 4 weeks of modeling. A total of 6298 proteins were identified, among which 348 were differentially expressed proteins (DEPs), with 81 upregulated and 267 downregulated. These DEPs were subjected to in-depth bioinformatics analyses, including Gene Ontology, the Eukaryotic Orthologous Groups, and the Kyoto Encyclopedia of Genes and Genomes. These analyses revealed significant involvement in cellular processes, metabolic pathways, biological regulation, cytoskeletal organization, and cell movement. Our results indicate that calcium signaling plays a critical role in mediating eye changes associated with form deprivation, which may bear similarities to mechanisms observed in neurodegenerative diseases. A total of 348 DEPs related to the development and progression of myopia were identified. These changes involve key biological processes, including protein degradation, cell adhesion, and transport, especially alterations in calcium signaling pathways. Stromal interaction molecule 1 (STIM1) is an important biological marker of FDM, which was confirmed by Western blot, immunohistochemistry and ELISA. Our study found clear differences in the expression of proteins in the vitreous during the development of myopic guinea pigs, especially those related to calcium signaling pathway. Our study offers new insights into the pathogenesis of myopia, particularly changes related to protein metabolism pathways.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"7 ","pages":"Pages 15-24"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X24000126/pdfft?md5=c7b83f5cf95221d34931ea50c1ab4a18&pid=1-s2.0-S2949723X24000126-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomaterials for cardiovascular diseases 治疗心血管疾病的生物材料
Pub Date : 2024-06-05 DOI: 10.1016/j.bmt.2024.05.001
Yongqi Huang , Ziqi Ding

Cardiovascular disease (CVD) remains a leading cause of mortality worldwide, claiming countless lives and posing a formidable health challenge. Extensive efforts have been dedicated to combating this disease, including the development of innovative biomaterials for blood vessel stents, drug delivery and imaging diagnosis. These advancements have substantially addressed issues such as patient rejection and blood contamination. In this review, we begin by outlining the prevalence and various forms of CVD. Subsequently, we delve into advanced biomaterials—including synthetic biomaterials, natural biomaterials, and hybrid biomaterials—and medical instruments used in the treatment or alleviation of CVD, discussing their advantages and limitations. Finally, we offer insights into future prospects and strategies for refining these technologies and instruments moving forward.

心血管疾病(CVD)仍然是全球死亡的主要原因,夺去了无数人的生命,对健康构成了严峻的挑战。人们为防治这种疾病付出了巨大努力,包括开发用于血管支架、药物输送和成像诊断的创新生物材料。这些进步极大地解决了患者排斥和血液污染等问题。在本综述中,我们首先概述了心血管疾病的发病率和各种形式。随后,我们深入探讨了用于治疗或缓解心血管疾病的先进生物材料(包括合成生物材料、天然生物材料和混合生物材料)和医疗器械,讨论了它们的优势和局限性。最后,我们将深入探讨完善这些技术和器械的未来前景和战略。
{"title":"Biomaterials for cardiovascular diseases","authors":"Yongqi Huang ,&nbsp;Ziqi Ding","doi":"10.1016/j.bmt.2024.05.001","DOIUrl":"https://doi.org/10.1016/j.bmt.2024.05.001","url":null,"abstract":"<div><p>Cardiovascular disease (CVD) remains a leading cause of mortality worldwide, claiming countless lives and posing a formidable health challenge. Extensive efforts have been dedicated to combating this disease, including the development of innovative biomaterials for blood vessel stents, drug delivery and imaging diagnosis. These advancements have substantially addressed issues such as patient rejection and blood contamination. In this review, we begin by outlining the prevalence and various forms of CVD. Subsequently, we delve into advanced biomaterials—including synthetic biomaterials, natural biomaterials, and hybrid biomaterials—and medical instruments used in the treatment or alleviation of CVD, discussing their advantages and limitations. Finally, we offer insights into future prospects and strategies for refining these technologies and instruments moving forward.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"7 ","pages":"Pages 1-14"},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X24000114/pdfft?md5=cb5784637ec851af912f15042bb6e167&pid=1-s2.0-S2949723X24000114-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum regarding missing Declaration of Competing Interest statements in previously published articles 关于以前发表的文章中缺少 "竞争利益声明 "的勘误
Pub Date : 2024-04-10 DOI: 10.1016/j.bmt.2024.04.001
{"title":"Erratum regarding missing Declaration of Competing Interest statements in previously published articles","authors":"","doi":"10.1016/j.bmt.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.bmt.2024.04.001","url":null,"abstract":"","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"6 ","pages":"Pages 91-92"},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X24000023/pdfft?md5=8230957c0b6cf2e210228a9aa1877084&pid=1-s2.0-S2949723X24000023-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “A computational model to assess the effectiveness of adhesive materials in restoration of crown-root fractures” [Biomed. Technol. 6 (2024) 1-8] 对 "评估牙冠-牙根断裂修复中粘合材料有效性的计算模型 "的更正 [Biomed.
Pub Date : 2024-04-04 DOI: 10.1016/j.bmt.2024.03.001
Amandeep Kaur , Shubham Gupta , Nitesh Tewari , Arnab Chanda
{"title":"Corrigendum to “A computational model to assess the effectiveness of adhesive materials in restoration of crown-root fractures” [Biomed. Technol. 6 (2024) 1-8]","authors":"Amandeep Kaur ,&nbsp;Shubham Gupta ,&nbsp;Nitesh Tewari ,&nbsp;Arnab Chanda","doi":"10.1016/j.bmt.2024.03.001","DOIUrl":"https://doi.org/10.1016/j.bmt.2024.03.001","url":null,"abstract":"","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"6 ","pages":"Page 90"},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X24000011/pdfft?md5=8841db78a0faa73d458151ab891957fe&pid=1-s2.0-S2949723X24000011-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyaryletherketones: Properties and applications in modern medicine 聚芳醚酮:特性及在现代医学中的应用
Pub Date : 2024-01-09 DOI: 10.1016/j.bmt.2023.11.002
Gregory Sacks , Veer Shah , Lilian Yao , Catherine Yan , Darshi Shah , Lorely Limeta , Vincent DeStefano

Polyaryletherketones (PAEKs) are a family of durable, multifunctional, thermoplastic biopolymers. This article first provides necessary context and thorough information regarding the mechanical, physical, chemical, crystalline, and shape memory properties of PAEKs as well as critical details regarding manufacturing. Additionally, it provides an update on the clinical and biomedical uses of PAEKs by summarizing the most recent and groundbreaking applications of these thermopolymers. PAEKs have been used clinically in fields including orthopedics, craniofacial and cardiothoracic surgery, as well as cardiovascular and dental medicine. Other applications include tissue engineering, post-surgical antibiotic delivery, antimicrobial applications, anti-cancer drug delivery, and 3D printing. Of importance, PAEKs have comparable mechanical strength and elastic modulus to human bone, which enable PAEKs to serve as a viable alternative to metal-based implants. Given their remarkable properties, and ability to be specifically and rapidly manufactured through 3D printing, PAEKs will continue to be a subject of biomedical research and serve a vital role in medical applications.

聚芳醚酮(PAEKs)是一系列耐用、多功能的热塑性生物聚合物。本文首先提供了有关 PAEKs 的机械、物理、化学、结晶和形状记忆特性的必要背景和全面信息,以及有关制造的关键细节。此外,文章还总结了 PAEK 热聚合物最新的突破性应用,为临床和生物医学应用提供了最新信息。PAEK 在临床上的应用领域包括整形外科、颅面外科、心胸外科以及心血管和牙科医学。其他应用还包括组织工程、手术后抗生素输送、抗菌应用、抗癌药物输送和 3D 打印。重要的是,PAEKs 具有与人体骨骼相当的机械强度和弹性模量,这使 PAEKs 成为金属基植入物的可行替代品。鉴于 PAEKs 的卓越特性,以及通过 3D 打印技术专门快速制造 PAEKs 的能力,PAEKs 将继续成为生物医学研究的主题,并在医疗应用中发挥重要作用。
{"title":"Polyaryletherketones: Properties and applications in modern medicine","authors":"Gregory Sacks ,&nbsp;Veer Shah ,&nbsp;Lilian Yao ,&nbsp;Catherine Yan ,&nbsp;Darshi Shah ,&nbsp;Lorely Limeta ,&nbsp;Vincent DeStefano","doi":"10.1016/j.bmt.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.bmt.2023.11.002","url":null,"abstract":"<div><p>Polyaryletherketones (PAEKs) are a family of durable, multifunctional, thermoplastic biopolymers. This article first provides necessary context and thorough information regarding the mechanical, physical, chemical, crystalline, and shape memory properties of PAEKs as well as critical details regarding manufacturing. Additionally, it provides an update on the clinical and biomedical uses of PAEKs by summarizing the most recent and groundbreaking applications of these thermopolymers. PAEKs have been used clinically in fields including orthopedics, craniofacial and cardiothoracic surgery, as well as cardiovascular and dental medicine. Other applications include tissue engineering, post-surgical antibiotic delivery, antimicrobial applications, anti-cancer drug delivery, and 3D printing. Of importance, PAEKs have comparable mechanical strength and elastic modulus to human bone, which enable PAEKs to serve as a viable alternative to metal-based implants. Given their remarkable properties, and ability to be specifically and rapidly manufactured through 3D printing, PAEKs will continue to be a subject of biomedical research and serve a vital role in medical applications.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"6 ","pages":"Pages 75-89"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X23000673/pdfft?md5=741112a94bdd8f8660046b21062d8865&pid=1-s2.0-S2949723X23000673-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139399084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on selenium nanoparticles and their biomedical applications 硒纳米粒子及其生物医学应用综述
Pub Date : 2023-12-29 DOI: 10.1016/j.bmt.2023.12.001
K.K. Karthik , Binoy Varghese Cheriyan , S. Rajeshkumar , Meenaloshini Gopalakrishnan

Nanotechnology has enormous promise for a wide range of applications in biology. Nanoparticles (NPs) have the benefit of improving bioactivity, decreasing toxicity, allowing for precision targeting, and modulating the release profile of encapsulated compounds. Nanomaterials' unique qualities, such as their tiny size, biocompatibility, and ability to cross cell membranes for drug administration, make them useful in a variety of biological applications. Selenium (Se), a critical trace element, stands out among these nanoparticles due to its specific bioactivities in nano forms. Selenium is incorporated into Selenoproteins such as selenocysteine (Sec), which play an important role in maintaining physiological redox balance via oxidoreductase activity, a critical enzymatic process. In the field of medication delivery, selenium-based devices have been designed to transport pharmaceuticals to specific locations. Selenium nanoparticles (SeNPs) appear to be a suitable platform for delivering medications to their desired sites. Selenium's medicinal potential has been thoroughly investigated, including its efficacy against various cancer cells, microbial pathogens, viral infections, neuroprotective properties, diabetic control, oxidative stress, and inflammation-mediated illnesses such as rheumatoid arthritis. Notably, due to selenium's extraordinary involvement in immune system regulation, SeNPs have an edge over other nanoparticles. SeNPs phytosynthesis offers an appealing alternative to standard physical and chemical processes, featuring biocompatibility and environmental friendliness. This paper gives an overview of SeNPs' biological uses and emphasizes recent advances in the field.

纳米技术在生物学领域的广泛应用前景广阔。纳米颗粒(NPs)具有提高生物活性、降低毒性、精确靶向和调节封装化合物释放曲线等优点。纳米材料的独特品质,如微小尺寸、生物相容性和穿过细胞膜给药的能力,使其在各种生物应用中大显身手。硒(Se)作为一种重要的微量元素,因其纳米形式的特殊生物活性而在这些纳米粒子中脱颖而出。硒与硒半胱氨酸(Sec)等硒蛋白结合,通过氧化还原酶活性(一种关键的酶促过程)在维持生理氧化还原平衡方面发挥重要作用。在药物输送领域,人们设计了以硒为基础的装置,用于将药物输送到特定位置。硒纳米粒子(SeNPs)似乎是将药物输送到所需部位的合适平台。硒的药用潜力已得到深入研究,包括对各种癌细胞、微生物病原体、病毒感染、神经保护特性、糖尿病控制、氧化应激和炎症介导的疾病(如类风湿性关节炎)的疗效。值得注意的是,由于硒在免疫系统调节中的特殊作用,SeNPs 比其他纳米粒子更具优势。SeNPs 植物合成法具有生物相容性和环境友好性,是标准物理和化学过程的一种有吸引力的替代方法。本文概述了 SeNPs 的生物用途,并重点介绍了该领域的最新进展。
{"title":"A review on selenium nanoparticles and their biomedical applications","authors":"K.K. Karthik ,&nbsp;Binoy Varghese Cheriyan ,&nbsp;S. Rajeshkumar ,&nbsp;Meenaloshini Gopalakrishnan","doi":"10.1016/j.bmt.2023.12.001","DOIUrl":"https://doi.org/10.1016/j.bmt.2023.12.001","url":null,"abstract":"<div><p>Nanotechnology has enormous promise for a wide range of applications in biology. Nanoparticles (NPs) have the benefit of improving bioactivity, decreasing toxicity, allowing for precision targeting, and modulating the release profile of encapsulated compounds. Nanomaterials' unique qualities, such as their tiny size, biocompatibility, and ability to cross cell membranes for drug administration, make them useful in a variety of biological applications. Selenium (Se), a critical trace element, stands out among these nanoparticles due to its specific bioactivities in nano forms. Selenium is incorporated into Selenoproteins such as selenocysteine (Sec), which play an important role in maintaining physiological redox balance via oxidoreductase activity, a critical enzymatic process. In the field of medication delivery, selenium-based devices have been designed to transport pharmaceuticals to specific locations. Selenium nanoparticles (SeNPs) appear to be a suitable platform for delivering medications to their desired sites. Selenium's medicinal potential has been thoroughly investigated, including its efficacy against various cancer cells, microbial pathogens, viral infections, neuroprotective properties, diabetic control, oxidative stress, and inflammation-mediated illnesses such as rheumatoid arthritis. Notably, due to selenium's extraordinary involvement in immune system regulation, SeNPs have an edge over other nanoparticles. SeNPs phytosynthesis offers an appealing alternative to standard physical and chemical processes, featuring biocompatibility and environmental friendliness. This paper gives an overview of SeNPs' biological uses and emphasizes recent advances in the field.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"6 ","pages":"Pages 61-74"},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X23000764/pdfft?md5=a445391da4c23dcea4c119151b5d864c&pid=1-s2.0-S2949723X23000764-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139100875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomedical Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1