首页 > 最新文献

Circular Economy最新文献

英文 中文
PHOENIX: Towards a circular economy of plasmix waste—A systemic design approach PHOENIX:实现质谱废物的循环经济--系统设计方法
Pub Date : 2024-02-06 DOI: 10.1016/j.cec.2024.100075
Eleonora Fiore , Paolo Tamborrini

Plastic recycling is a critical aspect of achieving a circular economy, aiming to reduce fossil fuel dependency, greenhouse gas emissions, and biodiversity impacts from uncontrolled disposal routes. The study outlines the evolving landscape of plastic recycling in the European Union (EU), addresses challenges, and emphasizes the need for innovative approaches to achieve circular economy goals. This paper delves into the innovative approaches and strategies employed by the PHOENIX project, a multidisciplinary project funded by the Cariplo Foundation, which focuses on plasmix – a complex mixture of plastics often excluded from recycling due to its heterogeneous composition. The authors utilize a systemic design approach, integrating survey results, interviews, literature reviews, and case studies to provide a comprehensive understanding of plasmix and propose novel solutions. Key findings include the application of design from recycling, systemic design strategies, and the utilization of plasmix in new product developments. It presents survey insights and stakeholder perspectives, and introduces systemic strategies applied in the project. The study concludes with valuable considerations for future research and underscores the significance of such initiatives in reshaping the plastic recycling paradigm.

塑料回收利用是实现循环经济的一个重要方面,其目的是减少对化石燃料的依赖、温室气体排放以及不加控制的处置途径对生物多样性的影响。该研究概述了欧盟(EU)塑料回收的发展状况,探讨了面临的挑战,并强调了采用创新方法实现循环经济目标的必要性。本文深入探讨了 PHOENIX 项目所采用的创新方法和策略,该项目是一个由 Cariplo 基金会资助的多学科项目,重点关注 plasmix--一种复杂的塑料混合物,由于其成分复杂,通常被排除在回收范围之外。作者利用系统设计方法,将调查结果、访谈、文献综述和案例研究结合起来,全面了解了plasmix,并提出了新的解决方案。主要发现包括回收设计的应用、系统设计策略以及在新产品开发中对plasmix的利用。报告介绍了调查见解和利益相关者的观点,并介绍了项目中应用的系统性策略。研究最后提出了对未来研究的宝贵意见,并强调了此类倡议在重塑塑料回收模式方面的重要意义。
{"title":"PHOENIX: Towards a circular economy of plasmix waste—A systemic design approach","authors":"Eleonora Fiore ,&nbsp;Paolo Tamborrini","doi":"10.1016/j.cec.2024.100075","DOIUrl":"https://doi.org/10.1016/j.cec.2024.100075","url":null,"abstract":"<div><p>Plastic recycling is a critical aspect of achieving a circular economy, aiming to reduce fossil fuel dependency, greenhouse gas emissions, and biodiversity impacts from uncontrolled disposal routes. The study outlines the evolving landscape of plastic recycling in the European Union (EU), addresses challenges, and emphasizes the need for innovative approaches to achieve circular economy goals. This paper delves into the innovative approaches and strategies employed by the PHOENIX project, a multidisciplinary project funded by the Cariplo Foundation, which focuses on plasmix – a complex mixture of plastics often excluded from recycling due to its heterogeneous composition. The authors utilize a systemic design approach, integrating survey results, interviews, literature reviews, and case studies to provide a comprehensive understanding of plasmix and propose novel solutions. Key findings include the application of design from recycling, systemic design strategies, and the utilization of plasmix in new product developments. It presents survey insights and stakeholder perspectives, and introduces systemic strategies applied in the project. The study concludes with valuable considerations for future research and underscores the significance of such initiatives in reshaping the plastic recycling paradigm.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 1","pages":"Article 100075"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000037/pdfft?md5=2daa63567cb43d8d972bf1c24aa15378&pid=1-s2.0-S2773167724000037-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139936922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended producer responsibility to reconstruct the circular value chain 扩大生产者责任,重建循环价值链
Pub Date : 2024-02-01 DOI: 10.1016/j.cec.2024.100076
Xin Tong, Tao Wang, Jinling Li, Xuejun Wang
{"title":"Extended producer responsibility to reconstruct the circular value chain","authors":"Xin Tong, Tao Wang, Jinling Li, Xuejun Wang","doi":"10.1016/j.cec.2024.100076","DOIUrl":"https://doi.org/10.1016/j.cec.2024.100076","url":null,"abstract":"","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"375 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139824368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended producer responsibility to enable an inclusive circular economy 扩大生产者责任,实现包容性循环经济
Pub Date : 2024-02-01 DOI: 10.1016/j.cec.2024.100074
Xin Tong, Jingwei Wang
{"title":"Extended producer responsibility to enable an inclusive circular economy","authors":"Xin Tong, Jingwei Wang","doi":"10.1016/j.cec.2024.100074","DOIUrl":"https://doi.org/10.1016/j.cec.2024.100074","url":null,"abstract":"","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139882931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparing polyethylene composites using nonmetallic fractions derived from waste printed circuit boards and shellfish waste: Toward synergistic waste utilization and circular economy 利用从废印刷电路板和贝类废物中提取的非金属馏分制备聚乙烯复合材料:实现废物协同利用和循环经济
Pub Date : 2024-01-28 DOI: 10.1016/j.cec.2024.100073
Jiayao Tong , Shaoqi Yu , Zhitong Yao , Jingjing Jiang , Hongwei Lu , Ying-Guo Zhou , Hongli Yang , Zhengshun Wen

The recycling of waste printed circuit boards (WPCBs) generates nonmetallic fractions (NMFs); due to the complex components of NMFs and the limited nature of economic benefits of treating NMFs, treatment of NMFs is challenging. In this study, two types of NMFs—dry-NMFs (D-NMFs) and wet-NMFs (W-NMFs)—derived from the dry and wet separation processes of WPCBs, respectively, were investigated. These NMFs were used as fillers to reinforce the polyethylene (PE) matrix, and their effects on the composite properties were examined. Thermal property studies revealed that incorporating both types of NMFs improved the thermal stability of the prepared composite samples. When neat PE was filled with 15 wt% of D-NMFs and W-NMFs, the final decomposition temperature (Tf) increased from 475 to 482 and 487 °C, respectively. Mechanical property studies revealed that the addition of NMFs to the composite sample, particularly that of W-NMFs, enhanced the stiffness of the prepared samples, although at the expense of some reduction in their toughness values. The tensile strength, tensile modulus, flexural strength, and flexural modulus values increased from 9.41, 121.80, 5.89, and 99.15 MPa for neat PE to 11.15, 521.82, 17.94, and 597.29 MPa, respectively, for composites containing 25 wt% of W-NMFs. Furthermore, the introduction of shellfish wastes in the NMF/PE blend, especially that of clam shell, further enhanced the overall properties of the composite. After adding 8 wt% of clam shell with 15 wt% W-NMFs, the Tf increased from 487 to 498 °C. The tensile strength, tensile modulus, flexural strength, and flexural modulus values increased from 11.37, 355.13, 16.06, and 443.31 MPa for neat PE to 12.26, 466.73, 18.71, and 568.46 MPa, respectively, for the composite prepared with clam shell. Thus, this study contributes to the WPCB recycling literature and promotes circular economy development.

废印刷电路板(WPCB)的回收利用会产生非金属馏分(NMFs);由于非金属馏分成分复杂,且处理非金属馏分的经济效益有限,因此处理非金属馏分具有挑战性。在本研究中,研究了两种类型的非甲烷总烃--干法非甲烷总烃 (D-NMFs) 和湿法非甲烷总烃 (W-NMFs)--分别来自 WPCB 的干法和湿法分离过程。这些 NMFs 被用作增强聚乙烯(PE)基体的填料,并考察了它们对复合材料性能的影响。热性能研究表明,加入这两种类型的非甲氧基甲烷纤维能提高制备的复合材料样品的热稳定性。在纯聚乙烯中添加 15 wt% 的 D-NMFs 和 W-NMFs,最终分解温度(Tf)分别从 475 ℃ 升至 482 ℃ 和 487 ℃。力学性能研究表明,在复合材料样品中添加 NMFs(尤其是 W-NMFs)可提高制备样品的刚度,但其代价是韧性值有所降低。含有 25 wt% W-NMFs 的复合材料的拉伸强度、拉伸模量、弯曲强度和弯曲模量值分别从纯聚乙烯的 9.41、121.80、5.89 和 99.15 兆帕增加到 11.15、521.82、17.94 和 597.29 兆帕。此外,在 NMF/PE 混合物中引入贝类废料,尤其是蛤壳废料,可进一步提高复合材料的整体性能。在添加 8 wt% 的蛤壳和 15 wt% 的 W-NMFs 后,温度系数从 487 ℃ 升至 498 ℃。使用蛤壳制备的复合材料的拉伸强度、拉伸模量、弯曲强度和弯曲模量值分别从纯聚乙烯的 11.37、355.13、16.06 和 443.31 兆帕增加到 12.26、466.73、18.71 和 568.46 兆帕。因此,本研究为 WPCB 循环利用文献做出了贡献,并促进了循环经济的发展。
{"title":"Preparing polyethylene composites using nonmetallic fractions derived from waste printed circuit boards and shellfish waste: Toward synergistic waste utilization and circular economy","authors":"Jiayao Tong ,&nbsp;Shaoqi Yu ,&nbsp;Zhitong Yao ,&nbsp;Jingjing Jiang ,&nbsp;Hongwei Lu ,&nbsp;Ying-Guo Zhou ,&nbsp;Hongli Yang ,&nbsp;Zhengshun Wen","doi":"10.1016/j.cec.2024.100073","DOIUrl":"https://doi.org/10.1016/j.cec.2024.100073","url":null,"abstract":"<div><p>The recycling of waste printed circuit boards (WPCBs) generates nonmetallic fractions (NMFs); due to the complex components of NMFs and the limited nature of economic benefits of treating NMFs, treatment of NMFs is challenging. In this study, two types of NMFs—dry-NMFs (D-NMFs) and wet-NMFs (W-NMFs)—derived from the dry and wet separation processes of WPCBs, respectively, were investigated. These NMFs were used as fillers to reinforce the polyethylene (PE) matrix, and their effects on the composite properties were examined. Thermal property studies revealed that incorporating both types of NMFs improved the thermal stability of the prepared composite samples. When neat PE was filled with 15 wt% of D-NMFs and W-NMFs, the final decomposition temperature (<em>T</em><sub>f</sub>) increased from 475 to 482 and 487 °C, respectively. Mechanical property studies revealed that the addition of NMFs to the composite sample, particularly that of W-NMFs, enhanced the stiffness of the prepared samples, although at the expense of some reduction in their toughness values. The tensile strength, tensile modulus, flexural strength, and flexural modulus values increased from 9.41, 121.80, 5.89, and 99.15 MPa for neat PE to 11.15, 521.82, 17.94, and 597.29 MPa, respectively, for composites containing 25 wt% of W-NMFs. Furthermore, the introduction of shellfish wastes in the NMF/PE blend, especially that of clam shell, further enhanced the overall properties of the composite. After adding 8 wt% of clam shell with 15 wt% W-NMFs, the <em>T</em><sub>f</sub> increased from 487 to 498 °C. The tensile strength, tensile modulus, flexural strength, and flexural modulus values increased from 11.37, 355.13, 16.06, and 443.31 MPa for neat PE to 12.26, 466.73, 18.71, and 568.46 MPa, respectively, for the composite prepared with clam shell. Thus, this study contributes to the WPCB recycling literature and promotes circular economy development.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 1","pages":"Article 100073"},"PeriodicalIF":0.0,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000013/pdfft?md5=e5bf08dbe86ada37026531f210201009&pid=1-s2.0-S2773167724000013-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139936923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systems and Ecosystems in the Circular Economy: What’s the Difference? 循环经济中的系统和生态系统:有什么区别?
Pub Date : 2024-01-01 DOI: 10.55845/rmdn3752
Wisdom Kanda
‘Systems’ and ‘ecosystems’ are buzz concepts in the circular economy literature. However, the differences between these concepts remain ambiguous. Systems and ecosystems are often used interchangeably and at times confusingly. While conceptual ambiguity offers possibilities for broad interpretations and engagement, it can undermine the relevance of these concepts as analytical lenses to disrupt the linear economy. In this perspective article, I examine whether systems and ecosystems are distinct concepts and how they complement each other. To do so, I analysed these concepts and applied them to a case of biomethane for transportation using scientific literature. Systems and ecosystems are not mutually exclusive; rather, they offer nuanced perspectives to describe, analyse, and facilitate complex interactions among entities and their external environment. They signify the complexity, interdependency, and co-evolutionary nature of the circular economy. Ecosystems are a subcategory of systems. Differences between the concepts of systems and ecosystems partially arise from their origins, evolution, and the research communities using them. The article shows how systems and ecosystems perspectives can enrich each other and calls for better integration between the two concepts in the circular economy discourse.
系统 "和 "生态系统 "是循环经济文献中的热门概念。然而,这些概念之间的区别仍然模糊不清。系统 "和 "生态系统 "经常被交替使用,有时甚至混淆不清。虽然概念的模糊性为广泛的解释和参与提供了可能性,但它可能会削弱这些概念作为分析视角的相关性,从而破坏线性经济。在这篇视角文章中,我探讨了系统和生态系统是否是不同的概念,以及它们如何相互补充。为此,我分析了这些概念,并利用科学文献将其应用到生物甲烷运输案例中。系统和生态系统并不相互排斥;相反,它们为描述、分析和促进实体与其外部环境之间的复杂互动提供了细致入微的视角。它们标志着循环经济的复杂性、相互依赖性和共同进化性。生态系统是系统的一个子类别。系统和生态系统概念之间的差异部分源于它们的起源、演变和使用它们的研究团体。文章展示了系统和生态系统的观点如何相互丰富,并呼吁在循环经济讨论中更好地整合这两个概念。
{"title":"Systems and Ecosystems in the Circular Economy: What’s the Difference?","authors":"Wisdom Kanda","doi":"10.55845/rmdn3752","DOIUrl":"https://doi.org/10.55845/rmdn3752","url":null,"abstract":"‘Systems’ and ‘ecosystems’ are buzz concepts in the circular economy literature. However, the differences between these concepts remain ambiguous. Systems and ecosystems are often used interchangeably and at times confusingly. While conceptual ambiguity offers possibilities for broad interpretations and engagement, it can undermine the relevance of these concepts as analytical lenses to disrupt the linear economy. In this perspective article, I examine whether systems and ecosystems are distinct concepts and how they complement each other. To do so, I analysed these concepts and applied them to a case of biomethane for transportation using scientific literature. Systems and ecosystems are not mutually exclusive; rather, they offer nuanced perspectives to describe, analyse, and facilitate complex interactions among entities and their external environment. They signify the complexity, interdependency, and co-evolutionary nature of the circular economy. Ecosystems are a subcategory of systems. Differences between the concepts of systems and ecosystems partially arise from their origins, evolution, and the research communities using them. The article shows how systems and ecosystems perspectives can enrich each other and calls for better integration between the two concepts in the circular economy discourse.","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139393617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-processing paths of agricultural and rural solid wastes for a circular economy based on the construction concept of “zero-waste city” in China 基于“零垃圾城市”建设理念的循环经济农业与农村固体废物协同处理路径
Pub Date : 2023-12-01 DOI: 10.1016/j.cec.2023.100065
Hongbin Cong , Haibo Meng , Mingsong Chen , Wei Song , Haohan Xing

The treatment and utilisation of agricultural and rural solid wastes are important initiatives to advance high-quality agricultural development and improve rural living environment in a concerted manner. We identified the general background and need of agricultural andrural solid wastes in China, and elucidated the main sources and classified the agricultural and rural solid wastes; we grouped the wastes according to their source, value, components, and form, and described the basic characteristics of agricultural and rural solid wastes, namely, diversity, spatio-temporal fluctuations, and consistency of collection. Based on this, the technical pathways of agricultural and rural solid waste co-processing were systematically summarised for a circular economy based on the construction concept of ‘zero-waste city’ in China, including conversion to fertilisers and energy, value enhancement, and volume reduction. Three main models were developed, namely, the mixed fermentation of agricultural and rural solid wastes for fertiliser production, mixed pyrolysis/gasification/incineration for energy production, and urban-rural integrated waste treatment. Subsequently, we systematically analysed the main framework, fundamental characteristics, and applicable scenarios of the three models. We established the foundations and strategies for the co-processing and efficient utilisation of agricultural and rural solid wastes.

农业和农村固体废物处理利用是统筹推进农业高质量发展、改善农村人居环境的重要举措。明确了中国农业和农村固体废物的背景和需求,阐述了农业和农村固体废物的主要来源并进行了分类;根据废弃物的来源、价值、成分和形态进行分类,描述了农业和农村固体废弃物的多样性、时空波动和收集一致性等基本特征。在此基础上,系统总结了基于中国“零废物城市”建设理念的循环经济中农业和农村固体废物协同处理的技术路径,包括转化为肥料和能源、增值和减容。开发了农业和农村固体废物混合发酵生产肥料、混合热解/气化/焚烧生产能源和城乡一体化废物处理三种主要模式。随后,我们系统地分析了三种模型的主要框架、基本特征和适用场景。我们建立了农业和农村固体废物协同处理和有效利用的基础和战略。
{"title":"Co-processing paths of agricultural and rural solid wastes for a circular economy based on the construction concept of “zero-waste city” in China","authors":"Hongbin Cong ,&nbsp;Haibo Meng ,&nbsp;Mingsong Chen ,&nbsp;Wei Song ,&nbsp;Haohan Xing","doi":"10.1016/j.cec.2023.100065","DOIUrl":"https://doi.org/10.1016/j.cec.2023.100065","url":null,"abstract":"<div><p>The treatment and utilisation of agricultural and rural solid wastes are important initiatives to advance high-quality agricultural development and improve rural living environment in a concerted manner. We identified the general background and need of agricultural andrural solid wastes in China, and elucidated the main sources and classified the agricultural and rural solid wastes; we grouped the wastes according to their source, value, components, and form, and described the basic characteristics of agricultural and rural solid wastes, namely, diversity, spatio-temporal fluctuations, and consistency of collection. Based on this, the technical pathways of agricultural and rural solid waste co-processing were systematically summarised for a circular economy based on the construction concept of ‘zero-waste city’ in China, including conversion to fertilisers and energy, value enhancement, and volume reduction. Three main models were developed, namely, the mixed fermentation of agricultural and rural solid wastes for fertiliser production, mixed pyrolysis/gasification/incineration for energy production, and urban-rural integrated waste treatment. Subsequently, we systematically analysed the main framework, fundamental characteristics, and applicable scenarios of the three models. We established the foundations and strategies for the co-processing and efficient utilisation of agricultural and rural solid wastes.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"2 4","pages":"Article 100065"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167723000420/pdfft?md5=f435bcf571b607f97d1725a4e7b165a0&pid=1-s2.0-S2773167723000420-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138483991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances of research in coal and biomass co-firing for electricity and heat generation 煤与生物质共烧发电和供热的研究进展
Pub Date : 2023-12-01 DOI: 10.1016/j.cec.2023.100063
Li Liu , Muhammad Zaki Memon , Yuanbo Xie , Shitie Gao , You Guo , Jingliang Dong , Yuan Gao , Aimin Li , Guozhao Ji

Coal-fired power generation resulted in a shortage of conventional fossil fuels and an increase in greenhouse gas emissions. The co-firing of coal and biomass waste in coal-fired boilers was a promising strategy to supplement the energy source and reduce greenhouse gases. However, the co-firing mechanism and potential problems were not well understood. Therefore, the differences between coal and biomass in properties such as proximate and ultimate composition, components in ash and the calorific value were first discussed. Next, compared with the combustion of coal alone, this review analyzed the discrepancies and corresponding issues of co-firing in combustion behaviors and products such as ash and gaseous pollutants. Finally, this review outlined how operational conditions could affect the co-firing performance.

燃煤发电导致了传统化石燃料的短缺和温室气体排放的增加。煤与生物质废弃物在燃煤锅炉中共烧是一种很有前途的补充能源和减少温室气体排放的策略。然而,共烧机理和可能存在的问题尚不清楚。因此,首先讨论了煤和生物质在近似和最终组成、灰分成分和热值等性质上的差异。其次,通过与煤单独燃烧的比较,分析了共烧在燃烧行为和燃烧产物如灰分、气态污染物等方面的差异及相应的问题。最后,本文概述了操作条件如何影响共烧性能。
{"title":"Recent advances of research in coal and biomass co-firing for electricity and heat generation","authors":"Li Liu ,&nbsp;Muhammad Zaki Memon ,&nbsp;Yuanbo Xie ,&nbsp;Shitie Gao ,&nbsp;You Guo ,&nbsp;Jingliang Dong ,&nbsp;Yuan Gao ,&nbsp;Aimin Li ,&nbsp;Guozhao Ji","doi":"10.1016/j.cec.2023.100063","DOIUrl":"https://doi.org/10.1016/j.cec.2023.100063","url":null,"abstract":"<div><p>Coal-fired power generation resulted in a shortage of conventional fossil fuels and an increase in greenhouse gas emissions. The co-firing of coal and biomass waste in coal-fired boilers was a promising strategy to supplement the energy source and reduce greenhouse gases. However, the co-firing mechanism and potential problems were not well understood. Therefore, the differences between coal and biomass in properties such as proximate and ultimate composition, components in ash and the calorific value were first discussed. Next, compared with the combustion of coal alone, this review analyzed the discrepancies and corresponding issues of co-firing in combustion behaviors and products such as ash and gaseous pollutants. Finally, this review outlined how operational conditions could affect the co-firing performance.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"2 4","pages":"Article 100063"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167723000407/pdfft?md5=f831fc20f57da638b1b34ac70744e0e8&pid=1-s2.0-S2773167723000407-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138501959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A recycling technology selection framework for evaluating the effectiveness of plastic recycling technologies for circular economy advancement 一个评估塑料回收技术对循环经济发展有效性的回收技术选择框架
Pub Date : 2023-12-01 DOI: 10.1016/j.cec.2023.100066
Idowu O. Kunlere, Kalim U. Shah

Despite progress in plastic waste recycling technologies, global plastic waste recycling rates remain disappointing. This issue not only suggests an underutilization of existing recycling technologies but also hinders resource utilization, the circular economy, and sustainable manufacturing. Several studies have proposed to address this issue, such as by evaluating the efficiency of recycling technologies based on the volume of recycled waste. However, such single-indicator methods often overlook other critical factors and, thus, may not provide holistic assessments. Additionally, existing methods for evaluating or comparing different recycling technologies are often complex and time-consuming. Meanwhile, several other studies have proposed hundreds of indicators for assessing the effectiveness and suitability of recycling technologies, which often complicates the selection process. Consequently, recyclers and other stakeholders often struggle to select effective and suitable recycling technologies for different plastic waste types and under specific conditions. To address these challenges, we propose the recycling technology selection framework (RTSF), a simple tool that enables easy visualization of relevant recycling indicators under five key pillars: economic, technical, environmental, social, and policy. By allowing recyclers and stakeholders to quickly identify, select, and visualize factors of interest from a large pool, the RTSF enables qualitative comparison and enhances the evaluation of the effectiveness and suitability of multiple plastic recycling technologies. Lastly, the RTSF can serve as a preliminary tool and be used in conjunction with other approaches to enhance the effectiveness of plastic recycling technologies.

尽管塑料废物回收技术取得了进展,但全球塑料废物回收率仍然令人失望。这个问题不仅表明现有回收技术的利用不足,而且阻碍了资源利用、循环经济和可持续制造。一些研究建议解决这个问题,例如根据回收废物的数量来评价回收技术的效率。然而,这种单一指标方法往往忽略了其他关键因素,因此可能无法提供全面的评估。此外,现有的评估或比较不同回收技术的方法往往是复杂和耗时的。与此同时,其他几项研究提出了数百项指标来评估回收技术的有效性和适用性,这往往使选择过程复杂化。因此,回收商和其他利益相关者往往难以为不同的塑料废物类型和特定条件选择有效和合适的回收技术。为了应对这些挑战,我们提出了回收技术选择框架(RTSF),这是一个简单的工具,可以在经济、技术、环境、社会和政策五个关键支柱下轻松可视化相关回收指标。通过允许回收商和利益相关者快速识别、选择和可视化感兴趣的因素,RTSF可以进行定性比较,并增强对多种塑料回收技术的有效性和适用性的评估。最后,RTSF可以作为一个初步工具,并与其他方法一起使用,以提高塑料回收技术的有效性。
{"title":"A recycling technology selection framework for evaluating the effectiveness of plastic recycling technologies for circular economy advancement","authors":"Idowu O. Kunlere,&nbsp;Kalim U. Shah","doi":"10.1016/j.cec.2023.100066","DOIUrl":"https://doi.org/10.1016/j.cec.2023.100066","url":null,"abstract":"<div><p>Despite progress in plastic waste recycling technologies, global plastic waste recycling rates remain disappointing. This issue not only suggests an underutilization of existing recycling technologies but also hinders resource utilization, the circular economy, and sustainable manufacturing. Several studies have proposed to address this issue, such as by evaluating the efficiency of recycling technologies based on the volume of recycled waste. However, such single-indicator methods often overlook other critical factors and, thus, may not provide holistic assessments. Additionally, existing methods for evaluating or comparing different recycling technologies are often complex and time-consuming. Meanwhile, several other studies have proposed hundreds of indicators for assessing the effectiveness and suitability of recycling technologies, which often complicates the selection process. Consequently, recyclers and other stakeholders often struggle to select effective and suitable recycling technologies for different plastic waste types and under specific conditions. To address these challenges, we propose the recycling technology selection framework (RTSF), a simple tool that enables easy visualization of relevant recycling indicators under five key pillars: economic, technical, environmental, social, and policy. By allowing recyclers and stakeholders to quickly identify, select, and visualize factors of interest from a large pool, the RTSF enables qualitative comparison and enhances the evaluation of the effectiveness and suitability of multiple plastic recycling technologies. Lastly, the RTSF can serve as a preliminary tool and be used in conjunction with other approaches to enhance the effectiveness of plastic recycling technologies.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"2 4","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167723000432/pdfft?md5=d47b7580938de439e2fb470d66b243b9&pid=1-s2.0-S2773167723000432-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138471822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
xploring the Limitations of a Circular Economy Under Capitalism and Raising Expectations for a Sustainable Future 探索资本主义下循环经济的局限性,提升对可持续未来的期望
Pub Date : 2023-12-01 DOI: 10.55845/heml8087
Pauline Deutz
The concept of a circular economy has gained remarkable policy and academic traction.  Associated expectations of social benefits are underexamined.  Driven by the current perilous state of the environment and society, this article pulls aside the curtain of perceived academic political neutrality that hides the implications of capitalism.  Whilst a circular economy brings new options for business, places and individuals, political action is needed to bring about significant, and lasting, change.  A system driven by profit does not and cannot respond to needs.  It is time for a serious discussion to improve the prospects for everyone’s future.
循环经济的概念在政策和学术上都获得了显著的关注。对社会福利的相关期望没有得到充分的考虑。在当前环境和社会的危险状态的驱使下,本文揭开了隐藏资本主义含义的学术政治中立的帷幕。虽然循环经济为企业、地方和个人带来了新的选择,但需要采取政治行动来带来重大而持久的变化。一个由利润驱动的系统不会也不能对需求做出反应。现在是认真讨论改善每个人未来前景的时候了。
{"title":"xploring the Limitations of a Circular Economy Under Capitalism and Raising Expectations for a Sustainable Future","authors":"Pauline Deutz","doi":"10.55845/heml8087","DOIUrl":"https://doi.org/10.55845/heml8087","url":null,"abstract":"The concept of a circular economy has gained remarkable policy and academic traction.  Associated expectations of social benefits are underexamined.  Driven by the current perilous state of the environment and society, this article pulls aside the curtain of perceived academic political neutrality that hides the implications of capitalism.  Whilst a circular economy brings new options for business, places and individuals, political action is needed to bring about significant, and lasting, change.  A system driven by profit does not and cannot respond to needs.  It is time for a serious discussion to improve the prospects for everyone’s future.","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":" 43","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138614361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Slag chemistry, element distribution behaviors, and metallurgical balance of e-waste smelting process 电子垃圾冶炼过程的渣化学、元素分布行为及冶金平衡
Pub Date : 2023-11-21 DOI: 10.1016/j.cec.2023.100062
Fengchun Ye , Zhihong Liu , Longgong Xia

The co-smelting of electronic waste (e-waste) in copper/lead pyrometallurgical processes is widely recognized as the preferred solution for sustainable development. However, aluminum and halogen elements in e-waste causes new challenges. To address this, the slag chemistry of high Al2O3-containing slag was studied, and the distribution behaviors of Au, Ag, Sn, and other elements in the copper alloy/slag/gas system were investigated in the presence of halogen elements (F/Cl/Br) using the equilibration method. The industrial practice of electronic waste smelting was modeled using METSIM, and the material and energy balances of one industrial process were obtained. Under the conditions of electronic waste smelting, the solubility of Al2O3 in the FexO–SiO2–Al2O3–CaO slag system decreased with increasing CaO content. When the CaO content was 20 wt%, and the Fe/SiO2 mass ratio was 0.62–0.95, the solubility of Al2O3 in the slag reached 20 wt%. When 1%–10% CaF2 was added, 93% of Au entered the metal phase. When the same amount of CaCl2 or CaBr2 was added, up to 32% Au entered the gas phase. When CaF2 was added to the system, 22%–49% of Ag entered the gas phase. However, when CaCl2 or CaBr2 was added, 3%–34% of Ag entered the gas phase. The proportion of tin in the gas and slag phases increased with increasing temperature or the addition of halides. The METSIM simulation results showed that under optimized conditions, the crude copper contained more than 90 wt% copper, the discharged slag contained approximately 0.5 wt% copper, and the recovery rates of copper, gold, and silver were ≥98%. The heat generated from raw materials and fuel accounted for the largest part of the heat income, representing 65.32% of the total.

在铜/铅火冶过程中共熔炼电子废物(e-waste)被广泛认为是可持续发展的首选解决方案。然而,电子垃圾中的铝和卤素元素带来了新的挑战。为此,研究了高al2o3含渣的渣化学性质,并采用平衡法研究了在卤素元素(F/Cl/Br)存在下,Au、Ag、Sn等元素在铜合金/渣/气体系中的分布行为。利用METSIM软件对电子废弃物冶炼的工业实践进行建模,得到了一个工业过程的物质和能量平衡。在电子废弃物冶炼条件下,随着CaO含量的增加,Al2O3在FexO-SiO2-Al2O3-CaO渣体系中的溶解度降低。当CaO含量为20 wt%, Fe/SiO2质量比为0.62 ~ 0.95时,Al2O3在渣中的溶解度达到20 wt%。当加入1% ~ 10%的CaF2时,93%的Au进入金属相。当加入等量的CaCl2或CaBr2时,高达32%的Au进入气相。当系统中加入CaF2时,22% ~ 49%的银进入气相。然而,当加入CaCl2或CaBr2时,3%-34%的Ag进入气相。随着温度的升高或卤化物的加入,气相和渣相中锡的比例增加。METSIM模拟结果表明,在优化条件下,粗铜含铜量大于90 wt%,排渣含铜量约为0.5 wt%,铜、金、银的回收率≥98%。原料和燃料产生的热量占热收入的最大部分,占总热量的65.32%。
{"title":"Slag chemistry, element distribution behaviors, and metallurgical balance of e-waste smelting process","authors":"Fengchun Ye ,&nbsp;Zhihong Liu ,&nbsp;Longgong Xia","doi":"10.1016/j.cec.2023.100062","DOIUrl":"https://doi.org/10.1016/j.cec.2023.100062","url":null,"abstract":"<div><p>The co-smelting of electronic waste (e-waste) in copper/lead pyrometallurgical processes is widely recognized as the preferred solution for sustainable development. However, aluminum and halogen elements in e-waste causes new challenges. To address this, the slag chemistry of high Al<sub>2</sub>O<sub>3</sub>-containing slag was studied, and the distribution behaviors of Au, Ag, Sn, and other elements in the copper alloy/slag/gas system were investigated in the presence of halogen elements (F/Cl/Br) using the equilibration method. The industrial practice of electronic waste smelting was modeled using METSIM, and the material and energy balances of one industrial process were obtained. Under the conditions of electronic waste smelting, the solubility of Al<sub>2</sub>O<sub>3</sub> in the FexO–SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–CaO slag system decreased with increasing CaO content. When the CaO content was 20 wt%, and the Fe/SiO<sub>2</sub> mass ratio was 0.62–0.95, the solubility of Al<sub>2</sub>O<sub>3</sub> in the slag reached 20 wt%. When 1%–10% CaF<sub>2</sub> was added, 93% of Au entered the metal phase. When the same amount of CaCl<sub>2</sub> or CaBr<sub>2</sub> was added, up to 32% Au entered the gas phase. When CaF<sub>2</sub> was added to the system, 22%–49% of Ag entered the gas phase. However, when CaCl<sub>2</sub> or CaBr<sub>2</sub> was added, 3%–34% of Ag entered the gas phase. The proportion of tin in the gas and slag phases increased with increasing temperature or the addition of halides. The METSIM simulation results showed that under optimized conditions, the crude copper contained more than 90 wt% copper, the discharged slag contained approximately 0.5 wt% copper, and the recovery rates of copper, gold, and silver were ≥98%. The heat generated from raw materials and fuel accounted for the largest part of the heat income, representing 65.32% of the total.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"2 4","pages":"Article 100062"},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167723000390/pdfft?md5=c7b8e436b8583ae1902a1a3d59a0d80c&pid=1-s2.0-S2773167723000390-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138448206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Circular Economy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1