首页 > 最新文献

Circular Economy最新文献

英文 中文
From science-policy interface to science-policy panel: The United Nations’ strengthening of the sustainable life cycle management of chemicals 从科学政策界面到科学政策小组:联合国加强化学品的可持续生命周期管理
Pub Date : 2024-06-01 DOI: 10.1016/j.cec.2024.100090
Qiaoyun Zhang , Hairong Zhao , Yuan Chen

In recent years, the chemical production and waste generation have been rapidly increasing, presenting substantial hazards to the ecosystem and human well-being. To address this issue, a series of multilateral environmental agreements (MEAs) have been developed internationally, that provide essential decision-making support for the appropriate governance of chemicals and wastes in the participating countries. MEAs have established subsidiary bodies known as science-policy interface (SPI) institutions to provide evidence-based support and scientific assessments for environmental policies. However, the existing SPIs face limitations that hinder their ability to tackle the obstacles presented by the vast quantities of chemicals and wastes currently found in the environment. Therefore, the fifth session of the United Nations Environment Assembly made the decision to establish a science-policy panel to promote the effective management of chemicals and waste and to prevent pollution (SPP-CWP). This panel is intended to be an independent intergovernmental body, similar to the Intergovernmental Panel on Climate Change and Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. The United Nations Environment Programme convened an ad hoc open-ended working group (OEWG) to design strategies for the SPP-CWP. Since 2022, three OEWG meetings have been conducted, and draft documents outlining the panel's scope, functions, operational principles, conflict of interest policy, institutional setup, work processes, and procedures have been formulated. In this article, we analyzed the background and development of the SPP-CWP and provided updates regarding the progress of the panel's establishment. We also suggested future trends for the SPP-CWP. We concluded that SPP-CWP will be a comprehensive and authoritative international body, providing policymakers with exhaustive reports, consequently strengthening the capacity of life cycle management of chemicals. Thus, the panel will effectively reduce or prevent waste production and pollution, promote material circulation, and minimize resource consumption, making significant contributions to the establishment of a circular economy and an environmentally friendly society.

近年来,化学品生产和废物产生迅速增加,对生态系统和人类福祉造成了巨大危害。为解决这一问题,国际上制定了一系列多边环境协定(MEAs),为参与国妥善治理化学品和废物提供了重要的决策支持。多边环境协定设立了被称为科学政策接口(SPI)机构的附属机构,为环境政策提供循证支持和科学评估。然而,现有的 SPI 面临着各种限制,阻碍了其应对目前环境中发现的大量化学品和废物所带来的障碍的能力。因此,联合国环境大会第五届会议决定设立一个科学政策小组,以促进化学品和废物的有效管理并防止污染(SPP-CWP)。该小组旨在成为一个独立的政府间机构,类似于政府间气候变化专门委员会和生物多样性和生态系统服务政府间科学政策平台。联合国环境规划署召集了一个不限成员名额特设工作组(OEWG),为 SPP-CWP 制定战略。自 2022 年以来,已召开了三次不限成员名额工作组会议,并制定了概述小组范围、职能、运作原则、利益冲突政策、机构设置、工作流程和程序的文件草案。在这篇文章中,我们分析了 SPP-CWP 的背景和发展,并提供了小组成立的最新进展情况。我们还提出了 SPP-CWP 的未来发展趋势。我们认为,SPP-CWP 将成为一个全面而权威的国际机构,为决策者提供详尽的报告,从而加强化学品生命周期管理的能力。因此,该小组将有效减少或防止废物的产生和污染,促进物质循环,最大限度地减少资源消耗,为建立循环经济和环境友好型社会做出重要贡献。
{"title":"From science-policy interface to science-policy panel: The United Nations’ strengthening of the sustainable life cycle management of chemicals","authors":"Qiaoyun Zhang ,&nbsp;Hairong Zhao ,&nbsp;Yuan Chen","doi":"10.1016/j.cec.2024.100090","DOIUrl":"https://doi.org/10.1016/j.cec.2024.100090","url":null,"abstract":"<div><p>In recent years, the chemical production and waste generation have been rapidly increasing, presenting substantial hazards to the ecosystem and human well-being. To address this issue, a series of multilateral environmental agreements (MEAs) have been developed internationally, that provide essential decision-making support for the appropriate governance of chemicals and wastes in the participating countries. MEAs have established subsidiary bodies known as science-policy interface (SPI) institutions to provide evidence-based support and scientific assessments for environmental policies. However, the existing SPIs face limitations that hinder their ability to tackle the obstacles presented by the vast quantities of chemicals and wastes currently found in the environment. Therefore, the fifth session of the United Nations Environment Assembly made the decision to establish a science-policy panel to promote the effective management of chemicals and waste and to prevent pollution (SPP-CWP). This panel is intended to be an independent intergovernmental body, similar to the Intergovernmental Panel on Climate Change and Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. The United Nations Environment Programme convened an ad hoc open-ended working group (OEWG) to design strategies for the SPP-CWP. Since 2022, three OEWG meetings have been conducted, and draft documents outlining the panel's scope, functions, operational principles, conflict of interest policy, institutional setup, work processes, and procedures have been formulated. In this article, we analyzed the background and development of the SPP-CWP and provided updates regarding the progress of the panel's establishment. We also suggested future trends for the SPP-CWP. We concluded that SPP-CWP will be a comprehensive and authoritative international body, providing policymakers with exhaustive reports, consequently strengthening the capacity of life cycle management of chemicals. Thus, the panel will effectively reduce or prevent waste production and pollution, promote material circulation, and minimize resource consumption, making significant contributions to the establishment of a circular economy and an environmentally friendly society.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 2","pages":"Article 100090"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000189/pdfft?md5=1129a35af79892fc7d10a6cc9e702521&pid=1-s2.0-S2773167724000189-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of machine learning tools for biological treatment of organic wastes: Perspectives and challenges 将机器学习工具应用于有机废物的生物处理:前景与挑战
Pub Date : 2024-06-01 DOI: 10.1016/j.cec.2024.100088
Long Chen , Pinjing He , Hua Zhang , Wei Peng , Junjie Qiu , Fan Lü

Biological treatment technologies (such as anaerobic digestion, composting, and insect farming) have been extensively employed to handle various degradable organic wastes. However, the inherent complexity and instability of biological treatment processes adversely affect the production of renewable energy and nutrient-rich products. To ensure stable processes and consistent product quality, researchers have invested heavily in control strategies for biological treatment, with machine learning (ML) recently proving effective in optimizing treatment, predicting parameters, detecting disturbances, and enabling real-time monitoring. This review critically assesses the application of ML in biological treatment, providing an in-depth evaluation of key algorithms. This study reveals that artificial neural networks, tree-based models, support vector machines, and genetic algorithms are the leading algorithms in biological treatment. A thorough investigation of the applications of ML in anaerobic digestion, composting, and insect farming underscores its remarkable capacity to predict products, optimize processes, perform real-time monitoring, and mitigate pollution emissions. Furthermore, this review outlines the challenges and prospects encountered in applying ML to biological treatment, highlighting crucial directions for future research in this area.

生物处理技术(如厌氧消化、堆肥和昆虫养殖)已被广泛用于处理各种可降解有机废物。然而,生物处理过程固有的复杂性和不稳定性对生产可再生能源和营养丰富的产品产生了不利影响。为了确保稳定的工艺和一致的产品质量,研究人员在生物处理的控制策略方面投入了大量资金,机器学习(ML)最近被证明在优化处理、预测参数、检测干扰和实现实时监控方面非常有效。本综述严格评估了 ML 在生物处理中的应用,并对关键算法进行了深入评估。研究表明,人工神经网络、树型模型、支持向量机和遗传算法是生物处理中的主要算法。通过深入研究人工智能在厌氧消化、堆肥和昆虫养殖中的应用,可以发现其在预测产品、优化流程、执行实时监控和减少污染排放方面的卓越能力。此外,本综述还概述了将 ML 应用于生物处理时遇到的挑战和前景,并强调了该领域未来研究的重要方向。
{"title":"Applications of machine learning tools for biological treatment of organic wastes: Perspectives and challenges","authors":"Long Chen ,&nbsp;Pinjing He ,&nbsp;Hua Zhang ,&nbsp;Wei Peng ,&nbsp;Junjie Qiu ,&nbsp;Fan Lü","doi":"10.1016/j.cec.2024.100088","DOIUrl":"https://doi.org/10.1016/j.cec.2024.100088","url":null,"abstract":"<div><p>Biological treatment technologies (such as anaerobic digestion, composting, and insect farming) have been extensively employed to handle various degradable organic wastes. However, the inherent complexity and instability of biological treatment processes adversely affect the production of renewable energy and nutrient-rich products. To ensure stable processes and consistent product quality, researchers have invested heavily in control strategies for biological treatment, with machine learning (ML) recently proving effective in optimizing treatment, predicting parameters, detecting disturbances, and enabling real-time monitoring. This review critically assesses the application of ML in biological treatment, providing an in-depth evaluation of key algorithms. This study reveals that artificial neural networks, tree-based models, support vector machines, and genetic algorithms are the leading algorithms in biological treatment. A thorough investigation of the applications of ML in anaerobic digestion, composting, and insect farming underscores its remarkable capacity to predict products, optimize processes, perform real-time monitoring, and mitigate pollution emissions. Furthermore, this review outlines the challenges and prospects encountered in applying ML to biological treatment, highlighting crucial directions for future research in this area.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 2","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000165/pdfft?md5=7fe1b903735e4e0257707a55780cac4d&pid=1-s2.0-S2773167724000165-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress and hurdles in cathode recycling for Li-ion batteries 锂离子电池正极回收的最新进展和障碍
Pub Date : 2024-06-01 DOI: 10.1016/j.cec.2024.100087
Ponraj Jenis , Ting Zhang , Brindha Ramasubramanian , Sen Lin , Prasada Rao Rayavarapu , Jianguo Yu , Seeram Ramakrishna

This review focuses on standard Li recycling approaches for LiFePO4 (LFP) and nickel−cobalt−manganese (NCM) cathodes. The study discusses about advances in leaching agents, including organic acid, alkaline solutions, natural organic acid, and electrochemical treatments. Emphasis is placed on the significance of selective Li leaching strategies to optimize the recycling of waste batteries. The review also outlines potential future research directions for enhancing selective recycling, providing valuable insights into the recycling of LFP and NCM batteries. Simultaneously, the article addresses the challenges associated with the transition from conventional lithium-ion batteries to all-solid-state batteries (ASSBs) in the pursuit of sustainable energy storage technologies. It highlights key points, including the challenges in developing ASSBs, the role of employing various material combinations and its preparation techniques, adopting scalable solution-based processes for commercialization, and strategies for sustainable ASSB recycling. The proposition of a fully recyclable ASSB model underscores the commitment to lower recycling costs using safer and simpler methods, positioning nanotechnology as an enabling tool for achieving advancements in materials and cell-level performance.

本综述侧重于磷酸铁锂(LFP)和镍钴锰(NCM)阴极的标准锂回收方法。研究讨论了浸出剂方面的进展,包括有机酸、碱性溶液、天然有机酸和电化学处理。重点强调了选择性锂浸出策略对优化废电池回收利用的重要意义。文章还概述了加强选择性回收利用的潜在未来研究方向,为 LFP 和 NCM 电池的回收利用提供了宝贵的见解。同时,文章探讨了从传统锂离子电池过渡到全固态电池 (ASSB) 以实现可持续能源存储技术所面临的挑战。文章强调了一些要点,包括开发全固态电池的挑战、采用各种材料组合及其制备技术的作用、采用可扩展的基于溶液的工艺实现商业化,以及可持续的全固态电池回收战略。提出完全可回收的 ASSB 模型强调了使用更安全、更简单的方法降低回收成本的承诺,并将纳米技术定位为实现材料和电池级性能进步的有利工具。
{"title":"Recent progress and hurdles in cathode recycling for Li-ion batteries","authors":"Ponraj Jenis ,&nbsp;Ting Zhang ,&nbsp;Brindha Ramasubramanian ,&nbsp;Sen Lin ,&nbsp;Prasada Rao Rayavarapu ,&nbsp;Jianguo Yu ,&nbsp;Seeram Ramakrishna","doi":"10.1016/j.cec.2024.100087","DOIUrl":"https://doi.org/10.1016/j.cec.2024.100087","url":null,"abstract":"<div><p>This review focuses on standard Li recycling approaches for LiFePO<sub>4</sub> (LFP) and nickel−cobalt−manganese (NCM) cathodes. The study discusses about advances in leaching agents, including organic acid, alkaline solutions, natural organic acid, and electrochemical treatments. Emphasis is placed on the significance of selective Li leaching strategies to optimize the recycling of waste batteries. The review also outlines potential future research directions for enhancing selective recycling, providing valuable insights into the recycling of LFP and NCM batteries. Simultaneously, the article addresses the challenges associated with the transition from conventional lithium-ion batteries to all-solid-state batteries (ASSBs) in the pursuit of sustainable energy storage technologies. It highlights key points, including the challenges in developing ASSBs, the role of employing various material combinations and its preparation techniques, adopting scalable solution-based processes for commercialization, and strategies for sustainable ASSB recycling. The proposition of a fully recyclable ASSB model underscores the commitment to lower recycling costs using safer and simpler methods, positioning nanotechnology as an enabling tool for achieving advancements in materials and cell-level performance.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 2","pages":"Article 100087"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000153/pdfft?md5=3bde72603f61f39850df5615c97ebbd4&pid=1-s2.0-S2773167724000153-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141438791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trash or treasure? A circular business model of recycling plasmix 垃圾还是宝藏?循环利用的商业模式plasmix
Pub Date : 2024-06-01 DOI: 10.1016/j.cec.2024.100089
Federico Zilia , Francesca Gaia Andreottola , Luigi Orsi , Marco Parolini , Jacopo Bacenetti

The production of plastic materials in the mid-20th century brought about transformative changes in consumer goods manufacturing and societal norms. However, this advancement paralleled an alarming surge in plastic pollution, driven by unrestrained consumption. This study focuses on the non-homogeneous and non-recyclable plastic waste (also known as plasmix in the Italian waste management), a residual blend resulting from plastic recycling processes. The main goals are to conduct an in-depth study of the plasmix landscape, to identify integration challenges, and to create a sustainable business model for broader adoption. Additionally, we aim to use life cycle assessment to examine the environmental effects of semi-finished plasmix-based materials that can be used to produce different products. This integrated approach ensures a holistic understanding of plasmix recycling, promoting both economic and environmental sustainability. The study contributes to sustainable waste management practices by offering a strategic approach to transform a challenging waste stream into economic opportunities. By addressing the market viability of plasmix-based products through an empirically supported business model, the research underscores the significance of recycling in mitigating plastic pollution and advancing a circular economy.

20 世纪中期,塑料材料的生产给消费品制造和社会规范带来了变革。然而,与此同时,在无节制消费的推动下,塑料污染也出现了惊人的增长。本研究的重点是塑料回收过程中产生的非均质、不可回收的塑料废物(在意大利废物管理中也被称为 plasmix)。主要目标是深入研究 plasmix 的现状,确定整合方面的挑战,并为更广泛的应用创建一个可持续的商业模式。此外,我们还打算利用生命周期评估来研究可用于生产不同产品的半成品塑性基材料对环境的影响。这种综合方法可确保全面了解净浆回收利用,促进经济和环境的可持续发展。这项研究提供了一种将具有挑战性的废物流转化为经济机会的战略方法,有助于可持续废物管理实践。该研究通过一个经验支持的商业模式来解决基于塑性体的产品的市场可行性问题,从而强调了回收利用在减轻塑料污染和促进循环经济方面的重要意义。
{"title":"Trash or treasure? A circular business model of recycling plasmix","authors":"Federico Zilia ,&nbsp;Francesca Gaia Andreottola ,&nbsp;Luigi Orsi ,&nbsp;Marco Parolini ,&nbsp;Jacopo Bacenetti","doi":"10.1016/j.cec.2024.100089","DOIUrl":"10.1016/j.cec.2024.100089","url":null,"abstract":"<div><p>The production of plastic materials in the mid-20th century brought about transformative changes in consumer goods manufacturing and societal norms. However, this advancement paralleled an alarming surge in plastic pollution, driven by unrestrained consumption. This study focuses on the non-homogeneous and non-recyclable plastic waste (also known as plasmix in the Italian waste management), a residual blend resulting from plastic recycling processes. The main goals are to conduct an in-depth study of the plasmix landscape, to identify integration challenges, and to create a sustainable business model for broader adoption. Additionally, we aim to use life cycle assessment to examine the environmental effects of semi-finished plasmix-based materials that can be used to produce different products. This integrated approach ensures a holistic understanding of plasmix recycling, promoting both economic and environmental sustainability. The study contributes to sustainable waste management practices by offering a strategic approach to transform a challenging waste stream into economic opportunities. By addressing the market viability of plasmix-based products through an empirically supported business model, the research underscores the significance of recycling in mitigating plastic pollution and advancing a circular economy.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 2","pages":"Article 100089"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000177/pdfft?md5=0fbfcd168cd7be0d1ed2a31c94dc8c46&pid=1-s2.0-S2773167724000177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reveal dynamic flows of regional e-waste: Evidence from a field research 揭示区域电子废物的动态流动:来自实地研究的证据
Pub Date : 2024-06-01 DOI: 10.1016/j.cec.2024.100086
Chonggang Yang , Bingyu Xu , Zhikun Zhu , Yan He , Yujia Wang , He Xu , Mo Zhang

Electronic waste (e-waste) has increased because of the rapid replacement of electrical and electronic equipment. Owing to the increased emphasis on the dual properties of environmental contamination and metal resources, accurate identification of the e-waste recycling process is crucial. In this study, a product-level material flow analysis (MFA) is performed from a macroscopic social flow of waste TV sets in order to demonstrate the material metabolism of regional e-waste recycling. Previous studies have focused on the estimation of the quantity of e-waste generated or analyzing the overall amount of recycled resource output, the results derived from the estimation may have some unreliability, and our bottom-up research investigates the material flows that occur between the generation, collection and recycling of e-waste. MFA based on questionnaires and field research present accurate quantities and proportions of the recycling process. The results reveal that accelerating the construction of regional e-waste recycling systems and data networks and accurately identifying e-waste source, flow, and destination are required in order to improve resource efficiency toward carbon neutrality.

由于电气和电子设备的快速更新换代,电子废物(e-waste)也随之增加。由于环境污染和金属资源的双重属性日益受到重视,准确识别电子垃圾的回收过程至关重要。本研究从废弃电视机的宏观社会流出发,进行了产品层面的物质流分析(MFA),以展示区域电子废弃物回收利用的物质代谢过程。以往的研究主要关注电子废弃物产生量的估算或再生资源产出总量的分析,估算得出的结果可能存在一定的不稳定性,而我们的研究是自下而上地调查电子废弃物产生、收集和回收之间的物质流。基于问卷调查和实地研究的 MFA 呈现了回收过程中的准确数量和比例。研究结果表明,为了提高资源效率,实现碳中和,必须加快建设区域电子废物回收系统和数据网络,并准确识别电子废物的来源、流向和去向。
{"title":"Reveal dynamic flows of regional e-waste: Evidence from a field research","authors":"Chonggang Yang ,&nbsp;Bingyu Xu ,&nbsp;Zhikun Zhu ,&nbsp;Yan He ,&nbsp;Yujia Wang ,&nbsp;He Xu ,&nbsp;Mo Zhang","doi":"10.1016/j.cec.2024.100086","DOIUrl":"10.1016/j.cec.2024.100086","url":null,"abstract":"<div><p>Electronic waste (e-waste) has increased because of the rapid replacement of electrical and electronic equipment. Owing to the increased emphasis on the dual properties of environmental contamination and metal resources, accurate identification of the e-waste recycling process is crucial. In this study, a product-level material flow analysis (MFA) is performed from a macroscopic social flow of waste TV sets in order to demonstrate the material metabolism of regional e-waste recycling. Previous studies have focused on the estimation of the quantity of e-waste generated or analyzing the overall amount of recycled resource output, the results derived from the estimation may have some unreliability, and our bottom-up research investigates the material flows that occur between the generation, collection and recycling of e-waste. MFA based on questionnaires and field research present accurate quantities and proportions of the recycling process. The results reveal that accelerating the construction of regional e-waste recycling systems and data networks and accurately identifying e-waste source, flow, and destination are required in order to improve resource efficiency toward carbon neutrality.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 2","pages":"Article 100086"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000141/pdfft?md5=322c2394db4587f79a994c571c6e90e2&pid=1-s2.0-S2773167724000141-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141053222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended producer responsibility to enable an inclusive circular economy 扩大生产者责任,实现包容性循环经济
Pub Date : 2024-03-01 DOI: 10.1016/j.cec.2024.100074
Xin Tong, Jingwei Wang
{"title":"Extended producer responsibility to enable an inclusive circular economy","authors":"Xin Tong,&nbsp;Jingwei Wang","doi":"10.1016/j.cec.2024.100074","DOIUrl":"10.1016/j.cec.2024.100074","url":null,"abstract":"","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 1","pages":"Article 100074"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000025/pdfft?md5=357bad43186654f5132f98bf897efdf2&pid=1-s2.0-S2773167724000025-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139823134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards sustainable construction waste management: Study on a disassemblable brick partition wall for the architecture, construction, and engineering industry 实现可持续的建筑垃圾管理:建筑、施工和工程行业可拆卸砖隔墙研究
Pub Date : 2024-03-01 DOI: 10.1016/j.cec.2024.100078
Yi Xu, Shujie Liu, Felix Heisel

This study proposes an approach to combat construction waste in the architecture, construction, and engineering (ACE) industry by developing a disassemblable brick partition wall. Brick reuse is severely restricted by the presence of mortar; innovative approaches need to be explored. An existing strategy, utilizing mortarless interlocking, relies on non-standardized bricks. It is worth noting that these methods are not specifically created for disassembly, despite the fact that they theoretically could be. A relatively innovative technique for tightening and stabilizing brick units emerged in recent years, involving the utilization of metal components. Despite its potential, there are limited case studies of this approach. By drawing on two typical examples of pros and cons, MIFA 1862 and the UMAR Unit, we propose a new strategy and examine it from multiple perspectives. The findings of the analysis demonstrate how adaptable and versatile the proposed system is, allowing it to be modified into a variety of sizes and forms. Additionally, the system has proven to have considerable advantages in terms of construction speed, and energy efficiency throughout the structure's service time and in future use phases.

本研究提出了一种通过开发可拆卸砖隔墙来解决建筑、施工和工程(ACE)行业建筑垃圾问题的方法。砖的再利用受到砂浆的严重限制,因此需要探索创新方法。现有的一种策略是利用无砂浆互锁,依赖于非标准化的砖块。值得注意的是,这些方法并不是专门为拆卸而设计的,尽管它们在理论上是可以拆卸的。近年来出现了一种相对创新的砖砌单元紧固和稳定技术,涉及金属组件的使用。尽管这种方法很有潜力,但案例研究却很有限。通过借鉴 MIFA 1862 和 UMAR 单元这两个典型的利弊实例,我们提出了一种新策略,并从多个角度对其进行了研究。分析结果表明,所提议的系统具有很强的适应性和通用性,可以修改成各种规模和形式。此外,事实证明,该系统在施工速度、结构服役期和未来使用阶段的能效方面具有相当大的优势。
{"title":"Towards sustainable construction waste management: Study on a disassemblable brick partition wall for the architecture, construction, and engineering industry","authors":"Yi Xu,&nbsp;Shujie Liu,&nbsp;Felix Heisel","doi":"10.1016/j.cec.2024.100078","DOIUrl":"10.1016/j.cec.2024.100078","url":null,"abstract":"<div><p>This study proposes an approach to combat construction waste in the architecture, construction, and engineering (ACE) industry by developing a disassemblable brick partition wall. Brick reuse is severely restricted by the presence of mortar; innovative approaches need to be explored. An existing strategy, utilizing mortarless interlocking, relies on non-standardized bricks. It is worth noting that these methods are not specifically created for disassembly, despite the fact that they theoretically could be. A relatively innovative technique for tightening and stabilizing brick units emerged in recent years, involving the utilization of metal components. Despite its potential, there are limited case studies of this approach. By drawing on two typical examples of pros and cons, MIFA 1862 and the UMAR Unit, we propose a new strategy and examine it from multiple perspectives. The findings of the analysis demonstrate how adaptable and versatile the proposed system is, allowing it to be modified into a variety of sizes and forms. Additionally, the system has proven to have considerable advantages in terms of construction speed, and energy efficiency throughout the structure's service time and in future use phases.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 1","pages":"Article 100078"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000062/pdfft?md5=ad076d60a1655b776f58c530ce3c6131&pid=1-s2.0-S2773167724000062-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140086576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration and practice of “zero-waste city” in China 中国 "零废弃城市 "的探索与实践
Pub Date : 2024-03-01 DOI: 10.1016/j.cec.2024.100079
Shiyue Qi, Ying Chen, Xuexue Wang, Yang Yang, Jingjie Teng, Yongming Wang

The ever-increasing rise in the generation of solid waste has become a global environmental issue. Many cities around the world have adopted zero-waste strategies, policies, and plans to achieve zero-waste goals. China puts great importance to solid waste management and has implemented a zero-waste city pilot program in 11 cities and 5 special areas. During the 14th Five-Year Plan period, China will promote the construction of “zero-waste city” in 113 cities and 8 special areas. This study introduces the exploration and practice of a zero-waste city in China, including the concept of a zero-waste city, the top-level design for constructing such cities, and the effectiveness of pilot programs. The top-level design of zero-waste city construction in China was explained, including the overall thinking, stage goal, main path, overall structural framework, and promotion method. This study also elaborates on the progress and achievements of zero-waste city construction, summarizing the reform measures in terms of legal processes, policy tools for goal-oriented guidance, and high-level promotion and overall planning. The construction of a zero-waste city is a powerful tool for deepening comprehensive solid waste management reform and is an important initiative for ecological civilization construction.

固体废物产生量的不断增加已成为一个全球性的环境问题。世界上许多城市都采取了零废弃战略、政策和计划,以实现零废弃目标。中国高度重视固体废物管理,已在 11 个城市和 5 个特区开展了零废弃城市试点。十四五 "期间,中国将在 113 个城市和 8 个特区推进 "零废弃城市 "建设。本研究介绍了中国 "零废弃城市 "的探索与实践,包括 "零废弃城市 "的概念、"零废弃城市 "建设的顶层设计和试点成效。研究阐述了中国零废弃城市建设的顶层设计,包括总体思路、阶段目标、主要路径、总体结构框架、推进方式等。本研究还阐述了零废弃城市建设的进展和成果,从法律程序、目标导向的政策工具、高位推动和整体规划等方面总结了改革措施。零废弃物城市建设是深化固体废物综合管理改革的有力抓手,是生态文明建设的重要举措。
{"title":"Exploration and practice of “zero-waste city” in China","authors":"Shiyue Qi,&nbsp;Ying Chen,&nbsp;Xuexue Wang,&nbsp;Yang Yang,&nbsp;Jingjie Teng,&nbsp;Yongming Wang","doi":"10.1016/j.cec.2024.100079","DOIUrl":"10.1016/j.cec.2024.100079","url":null,"abstract":"<div><p>The ever-increasing rise in the generation of solid waste has become a global environmental issue. Many cities around the world have adopted zero-waste strategies, policies, and plans to achieve zero-waste goals. China puts great importance to solid waste management and has implemented a zero-waste city pilot program in 11 cities and 5 special areas. During the 14th Five-Year Plan period, China will promote the construction of “zero-waste city” in 113 cities and 8 special areas. This study introduces the exploration and practice of a zero-waste city in China, including the concept of a zero-waste city, the top-level design for constructing such cities, and the effectiveness of pilot programs. The top-level design of zero-waste city construction in China was explained, including the overall thinking, stage goal, main path, overall structural framework, and promotion method. This study also elaborates on the progress and achievements of zero-waste city construction, summarizing the reform measures in terms of legal processes, policy tools for goal-oriented guidance, and high-level promotion and overall planning. The construction of a zero-waste city is a powerful tool for deepening comprehensive solid waste management reform and is an important initiative for ecological civilization construction.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 1","pages":"Article 100079"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000074/pdfft?md5=04389c7c614c2d98a840f7e916d1ea03&pid=1-s2.0-S2773167724000074-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140086106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biotechnological approaches: Degradation and valorization of waste plastic to promote the circular economy 生物技术方法:废弃塑料的降解和增值,促进循环经济
Pub Date : 2024-03-01 DOI: 10.1016/j.cec.2024.100077
Sridevi Veluru , Ramakrishna Seeram

The practical application of plastics is as indispensable as it is problematic regarding disposal. Plastics present significant opportunities in the context of circular usage and recycling. A circular economy dictates the utilization of every side stream to minimize waste. Current waste management techniques are insufficient in reducing plastic waste entering landfills, wastewater treatment systems, and the environment. Under these circumstances, plastic biodegradation has emerged as a viable and environmentally responsible approach to plastic pollution. Methods are needed for the natural degradation of plastics using microbes that can utilize plastics as their sole carbon source. Studies to enhance the catalytic activity of plastic-degrading enzymes through protein engineering approaches are a relatively new field of research. Enzymatic degradation for product creation represents a purely biological plastic recycling method in a sustainable economy. This review builds insights derived from previous studies and provides a brief overview of plastic degradation using enzymes, improvements in plastic-degrading enzyme efficiency, and stabilization via various protein engineering strategies. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering and future directions are discussed.

塑料的实际应用是不可或缺的,但在处置方面也存在问题。在循环使用和回收利用方面,塑料带来了重大机遇。循环经济要求利用各种副产品,最大限度地减少废物。目前的废物管理技术不足以减少进入垃圾填埋场、废水处理系统和环境的塑料废物。在这种情况下,塑料生物降解成为一种可行的、对环境负责的解决塑料污染的方法。我们需要利用能将塑料作为唯一碳源的微生物来实现塑料的自然降解。通过蛋白质工程方法提高塑料降解酶催化活性的研究是一个相对较新的研究领域。通过酶降解来创造产品是可持续经济中的一种纯生物塑料回收方法。本综述以先前的研究为基础,简要概述了利用酶降解塑料、提高塑料降解酶的效率以及通过各种蛋白质工程策略稳定塑料的方法。此外,还讨论了基于系统代谢工程的塑料废物价值化技术的最新进展和未来方向。
{"title":"Biotechnological approaches: Degradation and valorization of waste plastic to promote the circular economy","authors":"Sridevi Veluru ,&nbsp;Ramakrishna Seeram","doi":"10.1016/j.cec.2024.100077","DOIUrl":"10.1016/j.cec.2024.100077","url":null,"abstract":"<div><p>The practical application of plastics is as indispensable as it is problematic regarding disposal. Plastics present significant opportunities in the context of circular usage and recycling. A circular economy dictates the utilization of every side stream to minimize waste. Current waste management techniques are insufficient in reducing plastic waste entering landfills, wastewater treatment systems, and the environment. Under these circumstances, plastic biodegradation has emerged as a viable and environmentally responsible approach to plastic pollution. Methods are needed for the natural degradation of plastics using microbes that can utilize plastics as their sole carbon source. Studies to enhance the catalytic activity of plastic-degrading enzymes through protein engineering approaches are a relatively new field of research. Enzymatic degradation for product creation represents a purely biological plastic recycling method in a sustainable economy. This review builds insights derived from previous studies and provides a brief overview of plastic degradation using enzymes, improvements in plastic-degrading enzyme efficiency, and stabilization via various protein engineering strategies. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering and future directions are discussed.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 1","pages":"Article 100077"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000050/pdfft?md5=4b610f8275feb9110300a0e663da825b&pid=1-s2.0-S2773167724000050-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140086533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended producer responsibility to reconstruct the circular value chain 扩大生产者责任,重建循环价值链
Pub Date : 2024-02-06 DOI: 10.1016/j.cec.2024.100076
Xin Tong, Tao Wang, Jinling Li, Xuejun Wang

This research explores the role of extended producer responsibility (EPR) as an enabler of circular value chain in the Chinese context. The driven forces and key stakeholders were identified to extend producer responsibility in developing the national-circular-economy strategies. An evaluation system was established to link the eco-design strategy of the producer with the downstream-recycling performance of products. The eco-design information was retrieved from the self-disclosure information in the sustainable development report of producers. The downstream-waste-flow information comes from multiple platforms of reuse and recycling companies. The aim of reforming the EPR system is to establish an open forum for competition and cooperation among different stakeholders to achieve a continuously-improving target of circularity and life cycle environmental performance of the products. With the evaluation results, the producers are encouraged to fully explore all opportunities in the circular value chain instead of focusing only on the final disposal or disassembly of waste. The conclusion suggests that EPR policies should break the restrictions on eco-design and innovation in business models by creating and capturing values of circularity along with the world's collective climate change mitigation efforts.

本研究探讨了生产者延伸责任(EPR)在中国循环价值链中的作用。在制定国家循环经济战略的过程中,确定了生产者延伸责任的驱动力和关键利益相关者。建立了一个评价体系,将生产商的生态设计战略与产品的下游回收性能联系起来。生态设计信息来自生产商可持续发展报告中的自我披露信息。下游废物流信息来自再利用和回收公司的多个平台。改革 EPR 体系的目的是为不同利益相关者之间的竞争与合作建立一个开放的平台,以实现产品的循环性和生命周期环境绩效的持续改进目标。通过评估结果,鼓励生产商充分发掘循环价值链中的所有机会,而不是仅仅关注废物的最终处置或拆卸。结论表明,EPR 政策应打破对生态设计和商业模式创新的限制,创造并获取循环价值,为全球共同减缓气候变化做出努力。
{"title":"Extended producer responsibility to reconstruct the circular value chain","authors":"Xin Tong,&nbsp;Tao Wang,&nbsp;Jinling Li,&nbsp;Xuejun Wang","doi":"10.1016/j.cec.2024.100076","DOIUrl":"10.1016/j.cec.2024.100076","url":null,"abstract":"<div><p>This research explores the role of extended producer responsibility (EPR) as an enabler of circular value chain in the Chinese context. The driven forces and key stakeholders were identified to extend producer responsibility in developing the national-circular-economy strategies. An evaluation system was established to link the eco-design strategy of the producer with the downstream-recycling performance of products. The eco-design information was retrieved from the self-disclosure information in the sustainable development report of producers. The downstream-waste-flow information comes from multiple platforms of reuse and recycling companies. The aim of reforming the EPR system is to establish an open forum for competition and cooperation among different stakeholders to achieve a continuously-improving target of circularity and life cycle environmental performance of the products. With the evaluation results, the producers are encouraged to fully explore all opportunities in the circular value chain instead of focusing only on the final disposal or disassembly of waste. The conclusion suggests that EPR policies should break the restrictions on eco-design and innovation in business models by creating and capturing values of circularity along with the world's collective climate change mitigation efforts.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"3 1","pages":"Article 100076"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167724000049/pdfft?md5=a2f6fd1bfeefb30d997276d40cf959d9&pid=1-s2.0-S2773167724000049-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139884128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Circular Economy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1