Can Li, Jinfong Pan, Xiaobo Chen, Lihua Zhang, Anna Dennett, Prabhu Bharathan, Douglas Lee, Guangwen Zhou, Jiye Fang
We present a one-pot colloidal synthesis method for producing monodisperse multi-metal (Co, Mn, and Fe) spinel nanocrystals (NCs), including nanocubes, nano-octahedra, and concave nanocubes. This study explores the mechanism of morphology control, showcasing the pivotal roles of metal precursors and capping ligands in determining the exposed crystal planes on the NC surface. The cubic spinel NCs, terminated with exclusive {100}-facets, demonstrate superior electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media compared to their octahedral and concave cubic counterparts. Specifically, at 0.85 V, (CoMn)Fe2O4 spinel oxide nanocubes achieve a high mass activity of 23.9 A/g and exhibit excellent stability, highlighting the promising ORR performance associated with {100}-facets of multi-metal spinel oxides over other low-index and high-index facets. Motivated by exploring the correlation between ORR performance and surface atom arrangement (active sites), surface element composition, as well as other factors, this study introduces a prospective approach for shape-controlled synthesis of advanced spinel oxide NCs. It underscores the significance of catalyst shape control and suggests potential applications as nonprecious metal ORR electrocatalysts.
{"title":"Morphology-controlled synthesis of multi-metal-based spinel oxide nanocatalysts and their performance for oxygen reduction","authors":"Can Li, Jinfong Pan, Xiaobo Chen, Lihua Zhang, Anna Dennett, Prabhu Bharathan, Douglas Lee, Guangwen Zhou, Jiye Fang","doi":"10.1002/elt2.62","DOIUrl":"https://doi.org/10.1002/elt2.62","url":null,"abstract":"<p>We present a one-pot colloidal synthesis method for producing monodisperse multi-metal (Co, Mn, and Fe) spinel nanocrystals (NCs), including nanocubes, nano-octahedra, and concave nanocubes. This study explores the mechanism of morphology control, showcasing the pivotal roles of metal precursors and capping ligands in determining the exposed crystal planes on the NC surface. The cubic spinel NCs, terminated with exclusive {100}-facets, demonstrate superior electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media compared to their octahedral and concave cubic counterparts. Specifically, at 0.85 V, (CoMn)Fe<sub>2</sub>O<sub>4</sub> spinel oxide nanocubes achieve a high mass activity of 23.9 A/g and exhibit excellent stability, highlighting the promising ORR performance associated with {100}-facets of multi-metal spinel oxides over other low-index and high-index facets. Motivated by exploring the correlation between ORR performance and surface atom arrangement (active sites), surface element composition, as well as other factors, this study introduces a prospective approach for shape-controlled synthesis of advanced spinel oxide NCs. It underscores the significance of catalyst shape control and suggests potential applications as nonprecious metal ORR electrocatalysts.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.62","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinzhou Li, Junliang Chen, Luyao Zhang, Juan Matos, Li Wang, Jianping Yang
The escalating accumulation of plastic waste has been developed into a formidable global environmental challenge. Traditional disposal methods such as landfilling and incineration not only exacerbate environmental degradation by releasing harmful chemicals and greenhouse gases, but also squander finite resources that could otherwise be recycled or repurposed. Upcycling is a kind of plastic recycling technology that converts plastic waste into high-value chemicals and helps to avoid resource waste and environmental pollution. Electrocatalytic upcycling emerges as a novel technology distinguished by its mild operational conditions, high transformation efficiency and product selectivity. This review commences with an overview of the recycling and upcycling technology employed in plastic waste management and the respective advantages and inherent limitations are also delineated. The different types of plastic waste upcycled by electrocatalytic strategy are then discussed and the plastic waste transformation process is examined together with the mechanisms underlying the electrocatalytic upcycling. Furthermore, the structure-activity relationships between electrocatalysts and plastic waste upcycling performance are also elucidated. The review aims to furnish readers with a comprehensive understanding of the electrocatalytic techniques for plastic waste upcycling and to provide a guidance for the design of electrocatalysts towards efficient plastic waste transformation.
{"title":"Electrocatalytic upcycling of plastic waste: Progress, challenges, and future","authors":"Jinzhou Li, Junliang Chen, Luyao Zhang, Juan Matos, Li Wang, Jianping Yang","doi":"10.1002/elt2.63","DOIUrl":"https://doi.org/10.1002/elt2.63","url":null,"abstract":"<p>The escalating accumulation of plastic waste has been developed into a formidable global environmental challenge. Traditional disposal methods such as landfilling and incineration not only exacerbate environmental degradation by releasing harmful chemicals and greenhouse gases, but also squander finite resources that could otherwise be recycled or repurposed. Upcycling is a kind of plastic recycling technology that converts plastic waste into high-value chemicals and helps to avoid resource waste and environmental pollution. Electrocatalytic upcycling emerges as a novel technology distinguished by its mild operational conditions, high transformation efficiency and product selectivity. This review commences with an overview of the recycling and upcycling technology employed in plastic waste management and the respective advantages and inherent limitations are also delineated. The different types of plastic waste upcycled by electrocatalytic strategy are then discussed and the plastic waste transformation process is examined together with the mechanisms underlying the electrocatalytic upcycling. Furthermore, the structure-activity relationships between electrocatalysts and plastic waste upcycling performance are also elucidated. The review aims to furnish readers with a comprehensive understanding of the electrocatalytic techniques for plastic waste upcycling and to provide a guidance for the design of electrocatalysts towards efficient plastic waste transformation.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.63","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cobalt phosphides attract broad attention as alternatives to platinum-based materials towards hydrogen evolution reaction (HER). The catalytic performance of cobalt phosphides largely depends on the phase structure, but figuring out the optimal phase towards HER remains challenging due to their diverse stoichiometries. In our work, a series of cobalt phosphide nanoparticles with different phase structures but similar particle sizes (CoP-Co2P, Co2P-Co, Co2P, and CoP) on a porous carbon network (PC) were accurately synthesized. The CoP-Co2P/PC heterostructure demonstrates upgraded HER catalytic activity with a low overpotential of 96.7 and 162.1 mV at 10 mA cm−2 in 1 M KOH and 1 M phosphate-buffered saline solution, respectively, with a long-term (120 h) durability. In addition, the CoP-Co2P/PC exhibits good HER performance in alkaline seawater, with a small overpotential of 111.2 mV at 10 mA cm−2 and a low Tafel slope of 64.2 mV dec−1, as well as promising stability. Density functional theory results show that the Co2P side of the CoP-Co2P/PC heterostructure has the best Gibbs free energy of each step for HER, which contributes to the high HER activity. This study sets the stage for the advancement of high-performance HER electrocatalysts and the implementation of large-scale seawater electrolysis.
磷化钴作为铂基材料的替代品,在氢进化反应(HER)中备受关注。磷化钴的催化性能在很大程度上取决于相结构,但由于磷化钴的化学计量学各不相同,因此找出氢进化反应的最佳相仍然具有挑战性。在我们的工作中,我们在多孔碳网络(PC)上精确合成了一系列具有不同相结构但粒径相似的磷化钴纳米颗粒(CoP-Co2P、Co2P-Co、Co2P 和 CoP)。CoP-Co2P/PC 异质结构表现出更高的 HER 催化活性,在 1 M KOH 和 1 M 磷酸盐缓冲盐溶液中,10 mA cm-2 的过电位分别为 96.7 和 162.1 mV,且具有长期(120 h)的耐久性。此外,CoP-Co2P/PC 在碱性海水中表现出良好的 HER 性能,在 10 mA cm-2 时过电位小(111.2 mV),塔菲尔斜率低(64.2 mV dec-1),并且具有良好的稳定性。密度泛函理论结果表明,CoP-Co2P/PC 异质结构的 Co2P 侧在 HER 的每个步骤中都具有最佳的吉布斯自由能,这有助于提高 HER 活性。这项研究为开发高性能 HER 电催化剂和实现大规模海水电解奠定了基础。
{"title":"Phase-controllable cobalt phosphide heterostructure for efficient electrocatalytic hydrogen evolution in water and seawater","authors":"Guo Huang, Yujin Huang, Asad Ali, Zhijie Chen, Pei Kang Shen, Bing-Jie Ni, Jinliang Zhu","doi":"10.1002/elt2.58","DOIUrl":"10.1002/elt2.58","url":null,"abstract":"<p>Cobalt phosphides attract broad attention as alternatives to platinum-based materials towards hydrogen evolution reaction (HER). The catalytic performance of cobalt phosphides largely depends on the phase structure, but figuring out the optimal phase towards HER remains challenging due to their diverse stoichiometries. In our work, a series of cobalt phosphide nanoparticles with different phase structures but similar particle sizes (CoP-Co<sub>2</sub>P, Co<sub>2</sub>P-Co, Co<sub>2</sub>P, and CoP) on a porous carbon network (PC) were accurately synthesized. The CoP-Co<sub>2</sub>P/PC heterostructure demonstrates upgraded HER catalytic activity with a low overpotential of 96.7 and 162.1 mV at 10 mA cm<sup>−2</sup> in 1 M KOH and 1 M phosphate-buffered saline solution, respectively, with a long-term (120 h) durability. In addition, the CoP-Co<sub>2</sub>P/PC exhibits good HER performance in alkaline seawater, with a small overpotential of 111.2 mV at 10 mA cm<sup>−2</sup> and a low Tafel slope of 64.2 mV dec<sup>−1</sup>, as well as promising stability. Density functional theory results show that the Co<sub>2</sub>P side of the CoP-Co<sub>2</sub>P/PC heterostructure has the best Gibbs free energy of each step for HER, which contributes to the high HER activity. This study sets the stage for the advancement of high-performance HER electrocatalysts and the implementation of large-scale seawater electrolysis.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.58","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141805956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiajie Zhang, Yonghui Zhang, Jie Fu, Xianfeng Li, Changkun Zhang
The environmental challenges and growing energy demand have promoted the development of renewable energy, including solar, tidal, and wind. The next-generation electrochemical energy storage (EES), incorporating flow battery (FB) and metal-based battery (MB, Li, Na, Zn, Mg, etc.) received more attention. The flammable electrolytes in nonaqueous batteries have raised serious safety hazards and more unconventional electrolyte systems have been proposed recently. An emerging class of electrolytes, eutectic electrolytes have been reported in many batteries due to the facile preparation, concentrated states, and unique ion transport properties. In FB, eutectic electrolytes can significantly increase the energy density by promoting the molar ratio of redox active materials. In MB, eutectic electrolytes reduce the vapor pressure and toxicity, inhibit metal dendrites growth, and enlarge the electrochemical window. In this review, we summarize the progress status of different eutectic electrolytes on both FBs and MBs. We expect this review can supply the guidance for the application of eutectic electrolytes in EES.
{"title":"Perspective on eutectic electrolytes for next-generation batteries","authors":"Jiajie Zhang, Yonghui Zhang, Jie Fu, Xianfeng Li, Changkun Zhang","doi":"10.1002/elt2.57","DOIUrl":"10.1002/elt2.57","url":null,"abstract":"<p>The environmental challenges and growing energy demand have promoted the development of renewable energy, including solar, tidal, and wind. The next-generation electrochemical energy storage (EES), incorporating flow battery (FB) and metal-based battery (MB, Li, Na, Zn, Mg, etc.) received more attention. The flammable electrolytes in nonaqueous batteries have raised serious safety hazards and more unconventional electrolyte systems have been proposed recently. An emerging class of electrolytes, eutectic electrolytes have been reported in many batteries due to the facile preparation, concentrated states, and unique ion transport properties. In FB, eutectic electrolytes can significantly increase the energy density by promoting the molar ratio of redox active materials. In MB, eutectic electrolytes reduce the vapor pressure and toxicity, inhibit metal dendrites growth, and enlarge the electrochemical window. In this review, we summarize the progress status of different eutectic electrolytes on both FBs and MBs. We expect this review can supply the guidance for the application of eutectic electrolytes in EES.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.57","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141655926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the miniaturization and integration of electronic devices, developing advanced multifunctional phase change materials (PCMs) integrating thermal storage, thermal conduction, and microwave absorption to address electromagnetic interference, thermal dissipation, and instantaneous thermal shock is imperative. Herein, we proposed an extensible strategy to synthesize MOF-derived Co/C-anchored MoS2-based PCMs using high-temperature carbonation of flower-like MoS2 grown in situ by ZIF67 and vacuum impregnation of paraffin. The resulting MoS2@Co/C-paraffin composite PCMs exhibited good thermal storage density, thermal cycling stability, and long-term durability. The thermal conductivity of composite PCMs was 44% higher than that of pristine paraffin due to the construction of low interfacial thermal resistance. More attractively, our designed composite PCMs also possessed −57.15 dB minimum reflection loss at 9.2 GHz with a thickness of 3.0 mm, corresponding to an effective absorption bandwidth of 3.86 GHz. The excellent microwave absorption was attributed to the multicomponent synergy of magnetic loss from Co nanoparticles and conductive loss from MOF-derived carbon layers, and multiple reflection of MoS2 nanowrinkle, along with good impedance matching. This study provided a meaningful reference for the widespread application of composite PCMs combining thermal storage, thermal conduction, and microwave absorption in high-power miniaturized electronic devices.
{"title":"MOF-derived Co/C-anchored MoS2-based phase change materials toward thermal management and microwave absorption","authors":"Yang Li, Xukang Han, Jiaying Zhu, Yuhao Feng, Panpan Liu, Xiao Chen","doi":"10.1002/elt2.56","DOIUrl":"10.1002/elt2.56","url":null,"abstract":"<p>With the miniaturization and integration of electronic devices, developing advanced multifunctional phase change materials (PCMs) integrating thermal storage, thermal conduction, and microwave absorption to address electromagnetic interference, thermal dissipation, and instantaneous thermal shock is imperative. Herein, we proposed an extensible strategy to synthesize MOF-derived Co/C-anchored MoS<sub>2</sub>-based PCMs using high-temperature carbonation of flower-like MoS<sub>2</sub> grown in situ by ZIF67 and vacuum impregnation of paraffin. The resulting MoS<sub>2</sub>@Co/C-paraffin composite PCMs exhibited good thermal storage density, thermal cycling stability, and long-term durability. The thermal conductivity of composite PCMs was 44% higher than that of pristine paraffin due to the construction of low interfacial thermal resistance. More attractively, our designed composite PCMs also possessed −57.15 dB minimum reflection loss at 9.2 GHz with a thickness of 3.0 mm, corresponding to an effective absorption bandwidth of 3.86 GHz. The excellent microwave absorption was attributed to the multicomponent synergy of magnetic loss from Co nanoparticles and conductive loss from MOF-derived carbon layers, and multiple reflection of MoS<sub>2</sub> nanowrinkle, along with good impedance matching. This study provided a meaningful reference for the widespread application of composite PCMs combining thermal storage, thermal conduction, and microwave absorption in high-power miniaturized electronic devices.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.56","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141680343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to properly utilize the abundant CO2 and water resources, various catalytic materials have been developed to convert them into valuable chemicals as renewable fuels electrochemically or photochemically. Currently, most studies are conducted under mild laboratory conditions, but for some extreme environments, such as Mars and space stations, there is an urgent need to develop new catalysts satisfying such special requirements. Conventional catalytic materials mainly focus on metals and narrow bandgap semiconductor materials, while the research on wide and ultrawide bandgap materials that can inherently withstand extreme conditions has not received enough attention. Given the robust stability and excellent physico-chemical properties of diamond, it can be expected to perform in harsh environments for electrocatalysis or photocatalysis that has not been investigated thoroughly. Here, this review summarizes the catalytic functionality of diamond-based electrodes with various but tunable product selectivity to obtain the varied C1 or C2+ products, and discusses some important factors playing a key role in manipulating the catalytic activity. Moreover, the unique solvation electron effect of diamond gives it a significant advantage in photocatalytic conversions which is also summarized in this mini-review. In the end, prospects are made for the application of diamond-based catalysts under various extreme conditions. The challenges that may be faced in practical applications are also summarized and future breakthrough directions are proposed at the end.
{"title":"Multifunctional diamond-based catalysts: Promising candidates for energy conversions in extreme environments—A mini-review","authors":"Ziwei Zhao, Xiaowu Gao, Hansong Zhang, Keran Jiao, Pengfei Song, Yumin Zhang, Yongjie Wang, Jiaqi Zhu","doi":"10.1002/elt2.45","DOIUrl":"10.1002/elt2.45","url":null,"abstract":"<p>In order to properly utilize the abundant CO<sub>2</sub> and water resources, various catalytic materials have been developed to convert them into valuable chemicals as renewable fuels electrochemically or photochemically. Currently, most studies are conducted under mild laboratory conditions, but for some extreme environments, such as Mars and space stations, there is an urgent need to develop new catalysts satisfying such special requirements. Conventional catalytic materials mainly focus on metals and narrow bandgap semiconductor materials, while the research on wide and ultrawide bandgap materials that can inherently withstand extreme conditions has not received enough attention. Given the robust stability and excellent physico-chemical properties of diamond, it can be expected to perform in harsh environments for electrocatalysis or photocatalysis that has not been investigated thoroughly. Here, this review summarizes the catalytic functionality of diamond-based electrodes with various but tunable product selectivity to obtain the varied C<sub>1</sub> or C<sub>2+</sub> products, and discusses some important factors playing a key role in manipulating the catalytic activity. Moreover, the unique solvation electron effect of diamond gives it a significant advantage in photocatalytic conversions which is also summarized in this mini-review. In the end, prospects are made for the application of diamond-based catalysts under various extreme conditions. The challenges that may be faced in practical applications are also summarized and future breakthrough directions are proposed at the end.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.45","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photocathodic protection (PCP) is arguably an ideal alternative technology to the conventional electrochemical cathodic protection methods for corrosion mitigation of metallic infrastructure due to its eco-friendliness and low-energy-consumption, but the construction of highly-efficient PCP systems still remains challenging, caused primarily by the lack of driving force to guide the charge flow through the whole PCP photoanodes. Here, we tackle this key issue by equipping the PCP photoanode with ferroelectric single-domain PbTiO3 nanoplates, which can form a directional “macroscopic electric field” throughout the entire photoanode controllable by external polarization. The properly poled PCP photoanode allows the photogenerated electrons and holes to migrate in opposite directions, that is, electrons to the protected metal and holes to the photoanode/electrolyte interface, leading to largely suppressed charge annihilation and consequently a considerable boost in the overall solar energy conversion efficiency of the PCP system. The as-fabricated photoanode can not only supply sufficient photocurrent to 304 stainless steel to initiate cathodic protection, but also shift the metal potential to the corrosion-free range. Our findings provide a viable design strategy for future high-performance PCP systems based on ferroelectric nanomaterials with enhanced charge flow manipulation.
{"title":"Directing the photogenerated charge flow in a photocathodic metal protection system with single-domain ferroelectric PbTiO3 nanoplates","authors":"Hui Xie, Jianyou Yu, Yuchen Fang, Zhijun Wang, Shihe Yang, Zheng Xing","doi":"10.1002/elt2.51","DOIUrl":"https://doi.org/10.1002/elt2.51","url":null,"abstract":"<p>Photocathodic protection (PCP) is arguably an ideal alternative technology to the conventional electrochemical cathodic protection methods for corrosion mitigation of metallic infrastructure due to its eco-friendliness and low-energy-consumption, but the construction of highly-efficient PCP systems still remains challenging, caused primarily by the lack of driving force to guide the charge flow through the whole PCP photoanodes. Here, we tackle this key issue by equipping the PCP photoanode with ferroelectric single-domain PbTiO<sub>3</sub> nanoplates, which can form a directional “macroscopic electric field” throughout the entire photoanode controllable by external polarization. The properly poled PCP photoanode allows the photogenerated electrons and holes to migrate in opposite directions, that is, electrons to the protected metal and holes to the photoanode/electrolyte interface, leading to largely suppressed charge annihilation and consequently a considerable boost in the overall solar energy conversion efficiency of the PCP system. The as-fabricated photoanode can not only supply sufficient photocurrent to 304 stainless steel to initiate cathodic protection, but also shift the metal potential to the corrosion-free range. Our findings provide a viable design strategy for future high-performance PCP systems based on ferroelectric nanomaterials with enhanced charge flow manipulation.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.51","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lvpeng Yang, Tong Bie, Peiyu Ma, Jin Xin, Tho D. Nguyen, Ming Shao
Despite their excellent intrinsic stability, low-dimensional Ruddlesden-Popper (LDRP) perovskites face challenges with low power conversion efficiency (PCE), primarily due to the widen bandgap and limited charge transport caused by the bulky spacer cation. Herein, we introduce formamidinium chloride (FACl) as an additive into (4-FPEA)2MA4Pb5I16 perovskite. On the one hand, the addition of FACl narrows the bandgap through cation exchange between MA+ and FA+, thereby extending the light absorption range and enhancing photocurrent generation. On the other hand, this MA+/FA+ cation exchange decelerates the sublimation of methylammonium chloride and prolongs the crystallization of LDRP perovskite, leading to higher crystallinity and better film quality with a decreased trap-state density. Consequently, this approach led to a remarkable PCE of 20.46% for <n> = 5 LDRP perovskite solar cells (PSCs), ranking among the highest for MA/FA mixed low dimensional PSCs reported to date. Remarkably, our PSCs maintained 90% and 92% of the initial efficiency even after 1300 h at (60 ± 5)°C and (60 ± 5)% relative humidity, respectively. This work promotes the development of LDRP PSCs with excellent efficiency and environmental stability for potential commercial application.
{"title":"Dual function of formamidinium chloride additive improves the efficiency and stability of low-dimensional perovskite solar cells","authors":"Lvpeng Yang, Tong Bie, Peiyu Ma, Jin Xin, Tho D. Nguyen, Ming Shao","doi":"10.1002/elt2.52","DOIUrl":"https://doi.org/10.1002/elt2.52","url":null,"abstract":"<p>Despite their excellent intrinsic stability, low-dimensional Ruddlesden-Popper (LDRP) perovskites face challenges with low power conversion efficiency (PCE), primarily due to the widen bandgap and limited charge transport caused by the bulky spacer cation. Herein, we introduce formamidinium chloride (FACl) as an additive into (4-FPEA)<sub>2</sub>MA<sub>4</sub>Pb<sub>5</sub>I<sub>16</sub> perovskite. On the one hand, the addition of FACl narrows the bandgap through cation exchange between MA<sup>+</sup> and FA<sup>+</sup>, thereby extending the light absorption range and enhancing photocurrent generation. On the other hand, this MA<sup>+</sup>/FA<sup>+</sup> cation exchange decelerates the sublimation of methylammonium chloride and prolongs the crystallization of LDRP perovskite, leading to higher crystallinity and better film quality with a decreased trap-state density. Consequently, this approach led to a remarkable PCE of 20.46% for <<i>n</i>> = 5 LDRP perovskite solar cells (PSCs), ranking among the highest for MA/FA mixed low dimensional PSCs reported to date. Remarkably, our PSCs maintained 90% and 92% of the initial efficiency even after 1300 h at (60 ± 5)°C and (60 ± 5)% relative humidity, respectively. This work promotes the development of LDRP PSCs with excellent efficiency and environmental stability for potential commercial application.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.52","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zehua Wang, Li Wang, Hao Zhang, Hong Xu, Xiangming He
Conventional approaches for developing new materials may no longer be adequate to meet the urgent needs of humanity's energy transition. The emergence of machine learning (ML) and artificial intelligence (AI) has led materials scientists to recognize the potential of using AI/ML to accelerate the creation of new battery materials. Although fixed material properties have been extensively studied as descriptors to establish the link between AI and materials chemistry, they often lack versatility and accuracy due to a lack of understanding of the underlying mechanisms of AI/ML. Therefore, materials scientists need to have a comprehensive understanding of the operational mechanisms and learning logic of AI/ML to design more accurate descriptors. This paper provides a review of previous research studies conducted on AI, ML, and descriptors, which have been used to address challenges at various levels, ranging from materials development to battery performance prediction. Additionally, it introduces the basics of AI and ML to assist materials and battery developers in comprehending their operational mechanisms. The paper demonstrates the significance of precise and suitable ML descriptors in the creation of new battery materials. It does so by providing examples, summarizing current descriptors and ML algorithms, and examining the potential implications of future AI advancements for the sustainable energy industry.
开发新材料的传统方法可能已无法满足人类能源转型的迫切需求。机器学习(ML)和人工智能(AI)的出现使材料科学家认识到利用 AI/ML 加速创造新型电池材料的潜力。虽然固定的材料属性已被广泛研究,作为建立人工智能与材料化学之间联系的描述符,但由于缺乏对人工智能/ML 潜在机制的了解,这些属性往往缺乏通用性和准确性。因此,材料科学家需要全面了解人工智能/ML 的运行机制和学习逻辑,以设计出更精确的描述符。本文回顾了以往关于人工智能、ML 和描述符的研究,这些研究已被用于应对从材料开发到电池性能预测等不同层面的挑战。此外,论文还介绍了人工智能和 ML 的基础知识,以帮助材料和电池开发人员理解其运行机制。本文展示了精确、合适的 ML 描述符对创造新型电池材料的重要意义。本文通过举例说明、总结当前的描述符和 ML 算法,以及研究未来人工智能进步对可持续能源行业的潜在影响来实现这一目的。
{"title":"The importance of precise and suitable descriptors in data-driven approach to boost development of lithium batteries: A perspective","authors":"Zehua Wang, Li Wang, Hao Zhang, Hong Xu, Xiangming He","doi":"10.1002/elt2.41","DOIUrl":"10.1002/elt2.41","url":null,"abstract":"<p>Conventional approaches for developing new materials may no longer be adequate to meet the urgent needs of humanity's energy transition. The emergence of machine learning (ML) and artificial intelligence (AI) has led materials scientists to recognize the potential of using AI/ML to accelerate the creation of new battery materials. Although fixed material properties have been extensively studied as descriptors to establish the link between AI and materials chemistry, they often lack versatility and accuracy due to a lack of understanding of the underlying mechanisms of AI/ML. Therefore, materials scientists need to have a comprehensive understanding of the operational mechanisms and learning logic of AI/ML to design more accurate descriptors. This paper provides a review of previous research studies conducted on AI, ML, and descriptors, which have been used to address challenges at various levels, ranging from materials development to battery performance prediction. Additionally, it introduces the basics of AI and ML to assist materials and battery developers in comprehending their operational mechanisms. The paper demonstrates the significance of precise and suitable ML descriptors in the creation of new battery materials. It does so by providing examples, summarizing current descriptors and ML algorithms, and examining the potential implications of future AI advancements for the sustainable energy industry.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.41","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141273768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electro-upcycling of plastic provides a new avenue for sustainable plastic waste management and fuel/chemical production in a low-carbon manner. In this review (DOI: 10.1002/elt2.34), we comprehensively examine recent advances in the development of plastic waste electro-upcycling. Key electrooxidation reactions involved in the electrochemical conversion of diverse plastic waste, advanced integrated electrolysis systems, and efficient electrocatalyst design strategies are fully discussed. We also analyze perspectives for guiding further study in this emerging field.