The progress of aqueous zinc-ion batteries faces several challenges in zinc electrode technologies. Nevertheless, MXenes exhibit versatile functionalities, such as tunable terminal groups, excellent conductivity, and diverse chemical composition, making them highly suitable for integration into aqueous zinc-ion batteries. This review highlights recent breakthroughs in employing MXenes to enhance the stability of zinc anodes, encompassing strategies such as protective coatings, incorporation of MXenes into zinc frameworks, and electrolyte enhancements. By employing these novel methods, researchers seek to tackle crucial issues concerning the stability and efficiency of zinc electrodes, thus promoting the commercial viability of aqueous zinc-ion batteries.
{"title":"MXenes for the zinc anode protection of aqueous zinc-ion batteries","authors":"Xiaoyu Dong, Ao Liu, Cong Peng, Yan Huang","doi":"10.1002/elt2.44","DOIUrl":"10.1002/elt2.44","url":null,"abstract":"<p>The progress of aqueous zinc-ion batteries faces several challenges in zinc electrode technologies. Nevertheless, MXenes exhibit versatile functionalities, such as tunable terminal groups, excellent conductivity, and diverse chemical composition, making them highly suitable for integration into aqueous zinc-ion batteries. This review highlights recent breakthroughs in employing MXenes to enhance the stability of zinc anodes, encompassing strategies such as protective coatings, incorporation of MXenes into zinc frameworks, and electrolyte enhancements. By employing these novel methods, researchers seek to tackle crucial issues concerning the stability and efficiency of zinc electrodes, thus promoting the commercial viability of aqueous zinc-ion batteries.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.44","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141798710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cobalt phosphides attract broad attention as alternatives to platinum-based materials towards hydrogen evolution reaction (HER). The catalytic performance of cobalt phosphides largely depends on the phase structure, but figuring out the optimal phase towards HER remains challenging due to their diverse stoichiometries. In our work, a series of cobalt phosphide nanoparticles with different phase structures but similar particle sizes (CoP-Co2P, Co2P-Co, Co2P, and CoP) on a porous carbon network (PC) were accurately synthesized. The CoP-Co2P/PC heterostructure demonstrates upgraded HER catalytic activity with a low overpotential of 96.7 and 162.1 mV at 10 mA cm−2 in 1 M KOH and 1 M phosphate-buffered saline solution, respectively, with a long-term (120 h) durability. In addition, the CoP-Co2P/PC exhibits good HER performance in alkaline seawater, with a small overpotential of 111.2 mV at 10 mA cm−2 and a low Tafel slope of 64.2 mV dec−1, as well as promising stability. Density functional theory results show that the Co2P side of the CoP-Co2P/PC heterostructure has the best Gibbs free energy of each step for HER, which contributes to the high HER activity. This study sets the stage for the advancement of high-performance HER electrocatalysts and the implementation of large-scale seawater electrolysis.
磷化钴作为铂基材料的替代品,在氢进化反应(HER)中备受关注。磷化钴的催化性能在很大程度上取决于相结构,但由于磷化钴的化学计量学各不相同,因此找出氢进化反应的最佳相仍然具有挑战性。在我们的工作中,我们在多孔碳网络(PC)上精确合成了一系列具有不同相结构但粒径相似的磷化钴纳米颗粒(CoP-Co2P、Co2P-Co、Co2P 和 CoP)。CoP-Co2P/PC 异质结构表现出更高的 HER 催化活性,在 1 M KOH 和 1 M 磷酸盐缓冲盐溶液中,10 mA cm-2 的过电位分别为 96.7 和 162.1 mV,且具有长期(120 h)的耐久性。此外,CoP-Co2P/PC 在碱性海水中表现出良好的 HER 性能,在 10 mA cm-2 时过电位小(111.2 mV),塔菲尔斜率低(64.2 mV dec-1),并且具有良好的稳定性。密度泛函理论结果表明,CoP-Co2P/PC 异质结构的 Co2P 侧在 HER 的每个步骤中都具有最佳的吉布斯自由能,这有助于提高 HER 活性。这项研究为开发高性能 HER 电催化剂和实现大规模海水电解奠定了基础。
{"title":"Phase-controllable cobalt phosphide heterostructure for efficient electrocatalytic hydrogen evolution in water and seawater","authors":"Guo Huang, Yujin Huang, Asad Ali, Zhijie Chen, Pei Kang Shen, Bing-Jie Ni, Jinliang Zhu","doi":"10.1002/elt2.58","DOIUrl":"10.1002/elt2.58","url":null,"abstract":"<p>Cobalt phosphides attract broad attention as alternatives to platinum-based materials towards hydrogen evolution reaction (HER). The catalytic performance of cobalt phosphides largely depends on the phase structure, but figuring out the optimal phase towards HER remains challenging due to their diverse stoichiometries. In our work, a series of cobalt phosphide nanoparticles with different phase structures but similar particle sizes (CoP-Co<sub>2</sub>P, Co<sub>2</sub>P-Co, Co<sub>2</sub>P, and CoP) on a porous carbon network (PC) were accurately synthesized. The CoP-Co<sub>2</sub>P/PC heterostructure demonstrates upgraded HER catalytic activity with a low overpotential of 96.7 and 162.1 mV at 10 mA cm<sup>−2</sup> in 1 M KOH and 1 M phosphate-buffered saline solution, respectively, with a long-term (120 h) durability. In addition, the CoP-Co<sub>2</sub>P/PC exhibits good HER performance in alkaline seawater, with a small overpotential of 111.2 mV at 10 mA cm<sup>−2</sup> and a low Tafel slope of 64.2 mV dec<sup>−1</sup>, as well as promising stability. Density functional theory results show that the Co<sub>2</sub>P side of the CoP-Co<sub>2</sub>P/PC heterostructure has the best Gibbs free energy of each step for HER, which contributes to the high HER activity. This study sets the stage for the advancement of high-performance HER electrocatalysts and the implementation of large-scale seawater electrolysis.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.58","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141805956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yage Wu, Jiqing Zhang, Ling Li, Jian Zhao, Peng Yang
Flexible electronic devices have garnered increasing attention for their applications in wearable devices, biomedical systems, soft robots, and flexible displays. However, the current sensors face limitations regarding low sensitivity, poor stability, and inadequate adhesion bonding between stimuli-responsive functional materials and flexible substrates. To overcome these challenges and enable the further development of sensor devices, surface modification of stimuli-responsive materials with amyloid aggregates has emerged as a promising approach to enhance functionality and create superior multifunctional sensors. This review presents recent research advancements in the flexible sensors based on protein amyloid aggregation. The article begins by explaining the basic principles of protein amyloid aggregation, followed by outlining the process of preparing 1D to 3D amyloid-based composite materials. Finally, it discusses the utilization of protein amyloid aggregation as a surface modification technique for developing flexible sensors. Based on this foundation, we identify the shortcomings associated with protein amyloid aggregate composites and propose possible solutions to address them. We believe that comprehensive investigations in this area will expedite the development of high-performance flexible sensors with high sensitivity, high structural stability, and strong interface adhesion, especially the implantable flexible sensors for health monitoring.
{"title":"Amyloid-based functional materials and their application in flexible sensors","authors":"Yage Wu, Jiqing Zhang, Ling Li, Jian Zhao, Peng Yang","doi":"10.1002/elt2.59","DOIUrl":"10.1002/elt2.59","url":null,"abstract":"<p>Flexible electronic devices have garnered increasing attention for their applications in wearable devices, biomedical systems, soft robots, and flexible displays. However, the current sensors face limitations regarding low sensitivity, poor stability, and inadequate adhesion bonding between stimuli-responsive functional materials and flexible substrates. To overcome these challenges and enable the further development of sensor devices, surface modification of stimuli-responsive materials with amyloid aggregates has emerged as a promising approach to enhance functionality and create superior multifunctional sensors. This review presents recent research advancements in the flexible sensors based on protein amyloid aggregation. The article begins by explaining the basic principles of protein amyloid aggregation, followed by outlining the process of preparing 1D to 3D amyloid-based composite materials. Finally, it discusses the utilization of protein amyloid aggregation as a surface modification technique for developing flexible sensors. Based on this foundation, we identify the shortcomings associated with protein amyloid aggregate composites and propose possible solutions to address them. We believe that comprehensive investigations in this area will expedite the development of high-performance flexible sensors with high sensitivity, high structural stability, and strong interface adhesion, especially the implantable flexible sensors for health monitoring.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.59","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141812129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiajie Zhang, Yonghui Zhang, Jie Fu, Xianfeng Li, Changkun Zhang
The environmental challenges and growing energy demand have promoted the development of renewable energy, including solar, tidal, and wind. The next-generation electrochemical energy storage (EES), incorporating flow battery (FB) and metal-based battery (MB, Li, Na, Zn, Mg, etc.) received more attention. The flammable electrolytes in nonaqueous batteries have raised serious safety hazards and more unconventional electrolyte systems have been proposed recently. An emerging class of electrolytes, eutectic electrolytes have been reported in many batteries due to the facile preparation, concentrated states, and unique ion transport properties. In FB, eutectic electrolytes can significantly increase the energy density by promoting the molar ratio of redox active materials. In MB, eutectic electrolytes reduce the vapor pressure and toxicity, inhibit metal dendrites growth, and enlarge the electrochemical window. In this review, we summarize the progress status of different eutectic electrolytes on both FBs and MBs. We expect this review can supply the guidance for the application of eutectic electrolytes in EES.
{"title":"Perspective on eutectic electrolytes for next-generation batteries","authors":"Jiajie Zhang, Yonghui Zhang, Jie Fu, Xianfeng Li, Changkun Zhang","doi":"10.1002/elt2.57","DOIUrl":"10.1002/elt2.57","url":null,"abstract":"<p>The environmental challenges and growing energy demand have promoted the development of renewable energy, including solar, tidal, and wind. The next-generation electrochemical energy storage (EES), incorporating flow battery (FB) and metal-based battery (MB, Li, Na, Zn, Mg, etc.) received more attention. The flammable electrolytes in nonaqueous batteries have raised serious safety hazards and more unconventional electrolyte systems have been proposed recently. An emerging class of electrolytes, eutectic electrolytes have been reported in many batteries due to the facile preparation, concentrated states, and unique ion transport properties. In FB, eutectic electrolytes can significantly increase the energy density by promoting the molar ratio of redox active materials. In MB, eutectic electrolytes reduce the vapor pressure and toxicity, inhibit metal dendrites growth, and enlarge the electrochemical window. In this review, we summarize the progress status of different eutectic electrolytes on both FBs and MBs. We expect this review can supply the guidance for the application of eutectic electrolytes in EES.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.57","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141655926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the miniaturization and integration of electronic devices, developing advanced multifunctional phase change materials (PCMs) integrating thermal storage, thermal conduction, and microwave absorption to address electromagnetic interference, thermal dissipation, and instantaneous thermal shock is imperative. Herein, we proposed an extensible strategy to synthesize MOF-derived Co/C-anchored MoS2-based PCMs using high-temperature carbonation of flower-like MoS2 grown in situ by ZIF67 and vacuum impregnation of paraffin. The resulting MoS2@Co/C-paraffin composite PCMs exhibited good thermal storage density, thermal cycling stability, and long-term durability. The thermal conductivity of composite PCMs was 44% higher than that of pristine paraffin due to the construction of low interfacial thermal resistance. More attractively, our designed composite PCMs also possessed −57.15 dB minimum reflection loss at 9.2 GHz with a thickness of 3.0 mm, corresponding to an effective absorption bandwidth of 3.86 GHz. The excellent microwave absorption was attributed to the multicomponent synergy of magnetic loss from Co nanoparticles and conductive loss from MOF-derived carbon layers, and multiple reflection of MoS2 nanowrinkle, along with good impedance matching. This study provided a meaningful reference for the widespread application of composite PCMs combining thermal storage, thermal conduction, and microwave absorption in high-power miniaturized electronic devices.
{"title":"MOF-derived Co/C-anchored MoS2-based phase change materials toward thermal management and microwave absorption","authors":"Yang Li, Xukang Han, Jiaying Zhu, Yuhao Feng, Panpan Liu, Xiao Chen","doi":"10.1002/elt2.56","DOIUrl":"10.1002/elt2.56","url":null,"abstract":"<p>With the miniaturization and integration of electronic devices, developing advanced multifunctional phase change materials (PCMs) integrating thermal storage, thermal conduction, and microwave absorption to address electromagnetic interference, thermal dissipation, and instantaneous thermal shock is imperative. Herein, we proposed an extensible strategy to synthesize MOF-derived Co/C-anchored MoS<sub>2</sub>-based PCMs using high-temperature carbonation of flower-like MoS<sub>2</sub> grown in situ by ZIF67 and vacuum impregnation of paraffin. The resulting MoS<sub>2</sub>@Co/C-paraffin composite PCMs exhibited good thermal storage density, thermal cycling stability, and long-term durability. The thermal conductivity of composite PCMs was 44% higher than that of pristine paraffin due to the construction of low interfacial thermal resistance. More attractively, our designed composite PCMs also possessed −57.15 dB minimum reflection loss at 9.2 GHz with a thickness of 3.0 mm, corresponding to an effective absorption bandwidth of 3.86 GHz. The excellent microwave absorption was attributed to the multicomponent synergy of magnetic loss from Co nanoparticles and conductive loss from MOF-derived carbon layers, and multiple reflection of MoS<sub>2</sub> nanowrinkle, along with good impedance matching. This study provided a meaningful reference for the widespread application of composite PCMs combining thermal storage, thermal conduction, and microwave absorption in high-power miniaturized electronic devices.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.56","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141680343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to properly utilize the abundant CO2 and water resources, various catalytic materials have been developed to convert them into valuable chemicals as renewable fuels electrochemically or photochemically. Currently, most studies are conducted under mild laboratory conditions, but for some extreme environments, such as Mars and space stations, there is an urgent need to develop new catalysts satisfying such special requirements. Conventional catalytic materials mainly focus on metals and narrow bandgap semiconductor materials, while the research on wide and ultrawide bandgap materials that can inherently withstand extreme conditions has not received enough attention. Given the robust stability and excellent physico-chemical properties of diamond, it can be expected to perform in harsh environments for electrocatalysis or photocatalysis that has not been investigated thoroughly. Here, this review summarizes the catalytic functionality of diamond-based electrodes with various but tunable product selectivity to obtain the varied C1 or C2+ products, and discusses some important factors playing a key role in manipulating the catalytic activity. Moreover, the unique solvation electron effect of diamond gives it a significant advantage in photocatalytic conversions which is also summarized in this mini-review. In the end, prospects are made for the application of diamond-based catalysts under various extreme conditions. The challenges that may be faced in practical applications are also summarized and future breakthrough directions are proposed at the end.
{"title":"Multifunctional diamond-based catalysts: Promising candidates for energy conversions in extreme environments—A mini-review","authors":"Ziwei Zhao, Xiaowu Gao, Hansong Zhang, Keran Jiao, Pengfei Song, Yumin Zhang, Yongjie Wang, Jiaqi Zhu","doi":"10.1002/elt2.45","DOIUrl":"10.1002/elt2.45","url":null,"abstract":"<p>In order to properly utilize the abundant CO<sub>2</sub> and water resources, various catalytic materials have been developed to convert them into valuable chemicals as renewable fuels electrochemically or photochemically. Currently, most studies are conducted under mild laboratory conditions, but for some extreme environments, such as Mars and space stations, there is an urgent need to develop new catalysts satisfying such special requirements. Conventional catalytic materials mainly focus on metals and narrow bandgap semiconductor materials, while the research on wide and ultrawide bandgap materials that can inherently withstand extreme conditions has not received enough attention. Given the robust stability and excellent physico-chemical properties of diamond, it can be expected to perform in harsh environments for electrocatalysis or photocatalysis that has not been investigated thoroughly. Here, this review summarizes the catalytic functionality of diamond-based electrodes with various but tunable product selectivity to obtain the varied C<sub>1</sub> or C<sub>2+</sub> products, and discusses some important factors playing a key role in manipulating the catalytic activity. Moreover, the unique solvation electron effect of diamond gives it a significant advantage in photocatalytic conversions which is also summarized in this mini-review. In the end, prospects are made for the application of diamond-based catalysts under various extreme conditions. The challenges that may be faced in practical applications are also summarized and future breakthrough directions are proposed at the end.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.45","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photocathodic protection (PCP) is arguably an ideal alternative technology to the conventional electrochemical cathodic protection methods for corrosion mitigation of metallic infrastructure due to its eco-friendliness and low-energy-consumption, but the construction of highly-efficient PCP systems still remains challenging, caused primarily by the lack of driving force to guide the charge flow through the whole PCP photoanodes. Here, we tackle this key issue by equipping the PCP photoanode with ferroelectric single-domain PbTiO3 nanoplates, which can form a directional “macroscopic electric field” throughout the entire photoanode controllable by external polarization. The properly poled PCP photoanode allows the photogenerated electrons and holes to migrate in opposite directions, that is, electrons to the protected metal and holes to the photoanode/electrolyte interface, leading to largely suppressed charge annihilation and consequently a considerable boost in the overall solar energy conversion efficiency of the PCP system. The as-fabricated photoanode can not only supply sufficient photocurrent to 304 stainless steel to initiate cathodic protection, but also shift the metal potential to the corrosion-free range. Our findings provide a viable design strategy for future high-performance PCP systems based on ferroelectric nanomaterials with enhanced charge flow manipulation.
{"title":"Directing the photogenerated charge flow in a photocathodic metal protection system with single-domain ferroelectric PbTiO3 nanoplates","authors":"Hui Xie, Jianyou Yu, Yuchen Fang, Zhijun Wang, Shihe Yang, Zheng Xing","doi":"10.1002/elt2.51","DOIUrl":"https://doi.org/10.1002/elt2.51","url":null,"abstract":"<p>Photocathodic protection (PCP) is arguably an ideal alternative technology to the conventional electrochemical cathodic protection methods for corrosion mitigation of metallic infrastructure due to its eco-friendliness and low-energy-consumption, but the construction of highly-efficient PCP systems still remains challenging, caused primarily by the lack of driving force to guide the charge flow through the whole PCP photoanodes. Here, we tackle this key issue by equipping the PCP photoanode with ferroelectric single-domain PbTiO<sub>3</sub> nanoplates, which can form a directional “macroscopic electric field” throughout the entire photoanode controllable by external polarization. The properly poled PCP photoanode allows the photogenerated electrons and holes to migrate in opposite directions, that is, electrons to the protected metal and holes to the photoanode/electrolyte interface, leading to largely suppressed charge annihilation and consequently a considerable boost in the overall solar energy conversion efficiency of the PCP system. The as-fabricated photoanode can not only supply sufficient photocurrent to 304 stainless steel to initiate cathodic protection, but also shift the metal potential to the corrosion-free range. Our findings provide a viable design strategy for future high-performance PCP systems based on ferroelectric nanomaterials with enhanced charge flow manipulation.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.51","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lvpeng Yang, Tong Bie, Peiyu Ma, Jin Xin, Tho D. Nguyen, Ming Shao
Despite their excellent intrinsic stability, low-dimensional Ruddlesden-Popper (LDRP) perovskites face challenges with low power conversion efficiency (PCE), primarily due to the widen bandgap and limited charge transport caused by the bulky spacer cation. Herein, we introduce formamidinium chloride (FACl) as an additive into (4-FPEA)2MA4Pb5I16 perovskite. On the one hand, the addition of FACl narrows the bandgap through cation exchange between MA+ and FA+, thereby extending the light absorption range and enhancing photocurrent generation. On the other hand, this MA+/FA+ cation exchange decelerates the sublimation of methylammonium chloride and prolongs the crystallization of LDRP perovskite, leading to higher crystallinity and better film quality with a decreased trap-state density. Consequently, this approach led to a remarkable PCE of 20.46% for <n> = 5 LDRP perovskite solar cells (PSCs), ranking among the highest for MA/FA mixed low dimensional PSCs reported to date. Remarkably, our PSCs maintained 90% and 92% of the initial efficiency even after 1300 h at (60 ± 5)°C and (60 ± 5)% relative humidity, respectively. This work promotes the development of LDRP PSCs with excellent efficiency and environmental stability for potential commercial application.
{"title":"Dual function of formamidinium chloride additive improves the efficiency and stability of low-dimensional perovskite solar cells","authors":"Lvpeng Yang, Tong Bie, Peiyu Ma, Jin Xin, Tho D. Nguyen, Ming Shao","doi":"10.1002/elt2.52","DOIUrl":"https://doi.org/10.1002/elt2.52","url":null,"abstract":"<p>Despite their excellent intrinsic stability, low-dimensional Ruddlesden-Popper (LDRP) perovskites face challenges with low power conversion efficiency (PCE), primarily due to the widen bandgap and limited charge transport caused by the bulky spacer cation. Herein, we introduce formamidinium chloride (FACl) as an additive into (4-FPEA)<sub>2</sub>MA<sub>4</sub>Pb<sub>5</sub>I<sub>16</sub> perovskite. On the one hand, the addition of FACl narrows the bandgap through cation exchange between MA<sup>+</sup> and FA<sup>+</sup>, thereby extending the light absorption range and enhancing photocurrent generation. On the other hand, this MA<sup>+</sup>/FA<sup>+</sup> cation exchange decelerates the sublimation of methylammonium chloride and prolongs the crystallization of LDRP perovskite, leading to higher crystallinity and better film quality with a decreased trap-state density. Consequently, this approach led to a remarkable PCE of 20.46% for <<i>n</i>> = 5 LDRP perovskite solar cells (PSCs), ranking among the highest for MA/FA mixed low dimensional PSCs reported to date. Remarkably, our PSCs maintained 90% and 92% of the initial efficiency even after 1300 h at (60 ± 5)°C and (60 ± 5)% relative humidity, respectively. This work promotes the development of LDRP PSCs with excellent efficiency and environmental stability for potential commercial application.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.52","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chalcogenide glass has a unique volatile transition between high- and low-resistance states under an electric field, a phenomenon termed ovonic threshold switching (OTS). This characteristic is extensively utilized in various electronic memory and computational devices, particularly as selectors for cross-point memory architectures. Despite its advantages, the material is susceptible to glass relaxation, which can result in substantial drifts in threshold voltage and a decline in off-current performance over successive operational cycles or long storage time. In this study, we introduce an OTS device made from stoichiometric Sb2Se3 glass, which retains an octahedral local structure within its amorphous matrix. This innovative material exhibits outstanding OTS capabilities, maintaining minimal degradation despite undergoing over 107 operating cycles. Via comprehensive first-principles calculations, our findings indicate that the mid-gap states in amorphous Sb2Se3 predominantly stem from the atomic chains characterized by heteropolar Sb-Se bonds. These bonds exhibit remarkable stability, showing minimal alteration over time, thereby contributing to the overall durability and consistent performance of the material. Our findings not only shed light on the complex physical origins that govern the OTS behavior but also lay the groundwork for creating or optimizing innovative electrical switching materials.
{"title":"Sb-Se-based electrical switching device with fast transition speed and minimized performance degradation due to stable mid-gap states","authors":"Xianliang Mai, Qundao Xu, Zhe Yang, Huan Wang, Yongpeng Liu, Yinghua Shen, Hengyi Hu, Meng Xu, Zhongrui Wang, Hao Tong, Chengliang Wang, Xiangshui Miao, Ming Xu","doi":"10.1002/elt2.46","DOIUrl":"10.1002/elt2.46","url":null,"abstract":"<p>Chalcogenide glass has a unique volatile transition between high- and low-resistance states under an electric field, a phenomenon termed ovonic threshold switching (OTS). This characteristic is extensively utilized in various electronic memory and computational devices, particularly as selectors for cross-point memory architectures. Despite its advantages, the material is susceptible to glass relaxation, which can result in substantial drifts in threshold voltage and a decline in off-current performance over successive operational cycles or long storage time. In this study, we introduce an OTS device made from stoichiometric Sb<sub>2</sub>Se<sub>3</sub> glass, which retains an octahedral local structure within its amorphous matrix. This innovative material exhibits outstanding OTS capabilities, maintaining minimal degradation despite undergoing over 10<sup>7</sup> operating cycles. Via comprehensive first-principles calculations, our findings indicate that the mid-gap states in amorphous Sb<sub>2</sub>Se<sub>3</sub> predominantly stem from the atomic chains characterized by heteropolar Sb-Se bonds. These bonds exhibit remarkable stability, showing minimal alteration over time, thereby contributing to the overall durability and consistent performance of the material. Our findings not only shed light on the complex physical origins that govern the OTS behavior but also lay the groundwork for creating or optimizing innovative electrical switching materials.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.46","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minting Lei, Peijian Wang, Xiaofeng Ke, Jun Xie, Min Yue, Mei Zhao, Kenan Zhang, Youqing Dong, Quanlong Xu, Chao Zou, Shun Wang, Lijie Zhang
Two-dimensional (2D) materials have atomic thickness, and thickness-dependent electronic transport, optical and thermal properties, highlighting great promise applications in future semiconductor devices. Chemical vapor deposition (CVD) is considered as an industry-oriented method for macro-synthesis of 2D materials. In conventional CVD, high temperatures are required for the synthesis of high-quality large-size 2D materials, which is incompatible with of back-end-of-line of the complementary metal oxide semiconductor (CMOS) techniques. Therefore, low-temperature synthesis of 2D materials is of critical importance for the advancement toward practical applications of 2D materials with the CMOS technologies. In this review, we focus on strategies for the low-temperature growth of 2D materials, including the use of low-melting-point precursors, metal-organic CVD, plasma-enhanced CVD, van der Waals-substrate vapor phase epitaxy, tellurium-assisted CVD, salt-assisted CVD, etc., with discussions of their reaction mechanisms, applications, associated advantages, and limitations. We also provide an outlook and perspectives of future low-temperature chemical vapor deposition growth of 2D materials.
{"title":"Low-temperature chemical vapor deposition growth of 2D materials","authors":"Minting Lei, Peijian Wang, Xiaofeng Ke, Jun Xie, Min Yue, Mei Zhao, Kenan Zhang, Youqing Dong, Quanlong Xu, Chao Zou, Shun Wang, Lijie Zhang","doi":"10.1002/elt2.43","DOIUrl":"10.1002/elt2.43","url":null,"abstract":"<p>Two-dimensional (2D) materials have atomic thickness, and thickness-dependent electronic transport, optical and thermal properties, highlighting great promise applications in future semiconductor devices. Chemical vapor deposition (CVD) is considered as an industry-oriented method for macro-synthesis of 2D materials. In conventional CVD, high temperatures are required for the synthesis of high-quality large-size 2D materials, which is incompatible with of back-end-of-line of the complementary metal oxide semiconductor (CMOS) techniques. Therefore, low-temperature synthesis of 2D materials is of critical importance for the advancement toward practical applications of 2D materials with the CMOS technologies. In this review, we focus on strategies for the low-temperature growth of 2D materials, including the use of low-melting-point precursors, metal-organic CVD, plasma-enhanced CVD, van der Waals-substrate vapor phase epitaxy, tellurium-assisted CVD, salt-assisted CVD, etc., with discussions of their reaction mechanisms, applications, associated advantages, and limitations. We also provide an outlook and perspectives of future low-temperature chemical vapor deposition growth of 2D materials.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.43","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141354348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}