Pub Date : 2023-12-19DOI: 10.1016/j.engmic.2023.100137
Shuang Zhao , Ruiying Feng , Yuan Gu , Liyuan Han , Xiaomei Cong , Yang Liu , Shuo Liu , Qiyao Shen , Liujie Huo , Fu Yan
Microbial natural products and their derivatives have been developed as a considerable part of clinical drugs and agricultural chemicals. Marine microbial natural products exhibit diverse chemical structures and bioactivities with substantial potential for the development of novel pharmaceuticals. However, discovering compounds with new skeletons from marine microbes remains challenging. In recent decades, multiple approaches have been developed to discover novel marine microbial natural products, among which heterologous expression has proven to be an effective method. Facilitated by large DNA cloning and comparative metabolomic technologies, a few novel bioactive natural products from marine microorganisms have been identified by the expression of their biosynthetic gene clusters (BGCs) in heterologous hosts. Heterologous expression is advantageous for characterizing gene functions and elucidating the biosynthetic mechanisms of natural products. This review provides an overview of recent progress in heterologous expression-guided discovery, biosynthetic mechanism elucidation, and yield optimization of natural products from marine microorganisms and discusses the future directions of the heterologous expression strategy in facilitating novel natural product exploitation.
微生物天然产品及其衍生物已被开发为临床药物和农用化学品的重要组成部分。海洋微生物天然产物表现出多种化学结构和生物活性,具有开发新型药物的巨大潜力。然而,从海洋微生物中发现具有新骨架的化合物仍然具有挑战性。近几十年来,人们开发了多种方法来发现新型海洋微生物天然产物,其中异源表达被证明是一种有效的方法。在大 DNA 克隆和比较代谢组学技术的推动下,通过在异源宿主中表达海洋微生物的生物合成基因簇(BGCs),从海洋微生物中发现了一些新型生物活性天然产物。异源表达有利于鉴定基因功能和阐明天然产物的生物合成机制。本综述概述了在异源表达引导下发现、阐明生物合成机制以及优化海洋微生物天然产物产量方面的最新进展,并探讨了异源表达策略在促进新型天然产物开发方面的未来发展方向。
{"title":"Heterologous expression facilitates the discovery and characterization of marine microbial natural products","authors":"Shuang Zhao , Ruiying Feng , Yuan Gu , Liyuan Han , Xiaomei Cong , Yang Liu , Shuo Liu , Qiyao Shen , Liujie Huo , Fu Yan","doi":"10.1016/j.engmic.2023.100137","DOIUrl":"10.1016/j.engmic.2023.100137","url":null,"abstract":"<div><p>Microbial natural products and their derivatives have been developed as a considerable part of clinical drugs and agricultural chemicals. Marine microbial natural products exhibit diverse chemical structures and bioactivities with substantial potential for the development of novel pharmaceuticals. However, discovering compounds with new skeletons from marine microbes remains challenging. In recent decades, multiple approaches have been developed to discover novel marine microbial natural products, among which heterologous expression has proven to be an effective method. Facilitated by large DNA cloning and comparative metabolomic technologies, a few novel bioactive natural products from marine microorganisms have been identified by the expression of their biosynthetic gene clusters (BGCs) in heterologous hosts. Heterologous expression is advantageous for characterizing gene functions and elucidating the biosynthetic mechanisms of natural products. This review provides an overview of recent progress in heterologous expression-guided discovery, biosynthetic mechanism elucidation, and yield optimization of natural products from marine microorganisms and discusses the future directions of the heterologous expression strategy in facilitating novel natural product exploitation.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 2","pages":"Article 100137"},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000693/pdfft?md5=327efcf30168d96356c4e7af90784416&pid=1-s2.0-S2667370323000693-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138991756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peptaibiotics are linear or cyclic peptide antibiotics characterized by the non-proteinogenic amino acid, alpha-aminoisobutyric acid. They exhibit a wide range of bioactivity against various pathogens. This report presents a comprehensive review of analytical methods for Trichoderma cultivation, production, isolation, screening, purification, and characterization of peptaibiotics, along with their bioactivity. Numerous techniques are currently available for each step, and we focus on describing the most commonly used and recently developed chromatographic and spectroscopic techniques. Investigating peptaibiotics requires efficient culture media, growth conditions, and isolation and purification techniques. The combination of chromatographic and spectroscopic tools offers a better opportunity for characterizing and identifying peptaibiotics. The evaluation of the chemical and biological properties of this compound has also been explored concerning its potential application in pharmaceutical and other industries. This review aims to summarize available data on the techniques and tools used to screen and purify peptaibiotics from Trichoderma fungi and bioactivity against various pathogens.
{"title":"Chromatographic and Mass Spectroscopic Guided Discovery of Trichoderma Peptaibiotics and their Bioactivity","authors":"Adigo Setargie , Chen Wang , Liwen Zhang , Yuquan Xu","doi":"10.1016/j.engmic.2023.100135","DOIUrl":"10.1016/j.engmic.2023.100135","url":null,"abstract":"<div><p>Peptaibiotics are linear or cyclic peptide antibiotics characterized by the non-proteinogenic amino acid, alpha-aminoisobutyric acid. They exhibit a wide range of bioactivity against various pathogens. This report presents a comprehensive review of analytical methods for <em>Trichoderma</em> cultivation, production, isolation, screening, purification, and characterization of peptaibiotics, along with their bioactivity. Numerous techniques are currently available for each step, and we focus on describing the most commonly used and recently developed chromatographic and spectroscopic techniques. Investigating peptaibiotics requires efficient culture media, growth conditions, and isolation and purification techniques. The combination of chromatographic and spectroscopic tools offers a better opportunity for characterizing and identifying peptaibiotics. The evaluation of the chemical and biological properties of this compound has also been explored concerning its potential application in pharmaceutical and other industries. This review aims to summarize available data on the techniques and tools used to screen and purify peptaibiotics from <em>Trichoderma</em> fungi and bioactivity against various pathogens.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 2","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266737032300067X/pdfft?md5=ae89c70326f4df088d4fe03f65e7a184&pid=1-s2.0-S266737032300067X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139026613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1016/j.engmic.2023.100136
Xueshen Wu , Chao Wang , Depeng Wang , Ahmed Tawfik , Ronghua Xu , Zhong Yu , Fangang Meng
In this study, a combined system consisting of an anaerobic membrane bioreactor (AnMBR) and flow-through biofilm reactor/CANON (FTBR/CANON) was developed to simultaneously remove carbon and nitrogen from synthetic livestock wastewater. The average removal efficiencies of total nitrogen (TN) were 64.2 and 76.4% with influent ammonium (NH4+-N) concentrations of approximately 200 and 500 mg/L, respectively. The COD removal efficiencies were higher than 98.0% during the entire operation. Mass balance analysis showed that COD and TN were mainly removed by the AnMBR and FTBR/CANON, respectively. The anammox process was the main nitrogen removal pathway in the combined system, with a contribution of over 80%. High functional bacterial activity was observed in the combined system. Particularly, an increase in the NH4+-N concentration considerably improved the anammox activity of the biofilm in the FTBR/CANON. 16S rRNA high-throughput sequencing revealed that Methanosaeta, Candidatus Methanofastidiosum, and Methanobacterium were the dominant methanogens in the AnMBR granular sludge. In the CANON biofilm, Nitrosomonas and Candidatus Kuenenia were identified as aerobic and anaerobic ammonium-oxidizing bacteria, respectively. In summary, this study proposes a combined AnMBR and FTBR/CANON process targeting COD and nitrogen removal, and provides a potential alternative for treating high-strength wastewater.
{"title":"Achieving simultaneous removal of carbon and nitrogen by an integrated process of anaerobic membrane bioreactor and flow-through biofilm reactor","authors":"Xueshen Wu , Chao Wang , Depeng Wang , Ahmed Tawfik , Ronghua Xu , Zhong Yu , Fangang Meng","doi":"10.1016/j.engmic.2023.100136","DOIUrl":"10.1016/j.engmic.2023.100136","url":null,"abstract":"<div><p>In this study, a combined system consisting of an anaerobic membrane bioreactor (AnMBR) and flow-through biofilm reactor/CANON (FTBR/CANON) was developed to simultaneously remove carbon and nitrogen from synthetic livestock wastewater. The average removal efficiencies of total nitrogen (TN) were 64.2 and 76.4% with influent ammonium (NH<sub>4</sub><sup>+</sup>-N) concentrations of approximately 200 and 500 mg/L, respectively. The COD removal efficiencies were higher than 98.0% during the entire operation. Mass balance analysis showed that COD and TN were mainly removed by the AnMBR and FTBR/CANON, respectively. The anammox process was the main nitrogen removal pathway in the combined system, with a contribution of over 80%. High functional bacterial activity was observed in the combined system. Particularly, an increase in the NH<sub>4</sub><sup>+</sup>-N concentration considerably improved the anammox activity of the biofilm in the FTBR/CANON. 16S rRNA high-throughput sequencing revealed that <em>Methanosaeta, Candidatus Methanofastidiosum</em>, and <em>Methanobacterium</em> were the dominant methanogens in the AnMBR granular sludge. In the CANON biofilm, <em>Nitrosomonas</em> and <em>Candidatus</em> Kuenenia were identified as aerobic and anaerobic ammonium-oxidizing bacteria, respectively. In summary, this study proposes a combined AnMBR and FTBR/CANON process targeting COD and nitrogen removal, and provides a potential alternative for treating high-strength wastewater.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 1","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000681/pdfft?md5=8afe17500f65f7f5888c34f6b953307b&pid=1-s2.0-S2667370323000681-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139018324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-30DOI: 10.1016/j.engmic.2023.100134
Jiangyu Yang , Kun Li , Yongheng Rong , Zhaoxi Liu , Xiaoyu Liu , Yue Yu , Wenjing Shi , Yun Kong , Min Chen
The modularity of carbohydrate-active enzymes facilitates that enzymes with different functions have similar fragments. However, because of the complex structure of the enzyme active sites and the epistatic effects of various mutations on enzyme activity, it is difficult to design enzymes with multiple mutation sites using conventional methods. In this study, we designed multi-point mutants by fragment replacement in the donor-acceptor binding pocket of Actinobacillus pleuropneumoniae N-glycosyltransferase (ApNGT) to obtain novel properties. Candidate fragments were selected from a customized glycosyltransferase database. The stability and substrate-binding energy of the three fragment replacement mutants were calculated in comparison with wild-type ApNGT, and mutants with top-ranking stability and middle-ranking substrate-binding energy were chosen for priority experimental verification. We found that a mutant called F13, which increased the glycosylation efficiency of the natural substrate by 1.44 times, the relative conversion of UDP-galactose by 14.2 times, and the relative conversion of UDP-xylose from almost 0 to 78.6%. Most importantly, F13 mutant acquired an entirely new property, the ability to utilize UDP-glucuronic acid. On one hand, this work shows that replacing similar fragments in the donor-acceptor binding pocket of the enzyme might provide new ideas for designing mutants with new properties; on the other hand, F13 mutant is expected to play an important role in targeted drug delivery.
{"title":"Rational design of a highly active N-glycosyltransferase mutant using fragment replacement approach","authors":"Jiangyu Yang , Kun Li , Yongheng Rong , Zhaoxi Liu , Xiaoyu Liu , Yue Yu , Wenjing Shi , Yun Kong , Min Chen","doi":"10.1016/j.engmic.2023.100134","DOIUrl":"10.1016/j.engmic.2023.100134","url":null,"abstract":"<div><p>The modularity of carbohydrate-active enzymes facilitates that enzymes with different functions have similar fragments. However, because of the complex structure of the enzyme active sites and the epistatic effects of various mutations on enzyme activity, it is difficult to design enzymes with multiple mutation sites using conventional methods. In this study, we designed multi-point mutants by fragment replacement in the donor-acceptor binding pocket of <em>Actinobacillus pleuropneumoniae N</em>-glycosyltransferase (ApNGT) to obtain novel properties. Candidate fragments were selected from a customized glycosyltransferase database. The stability and substrate-binding energy of the three fragment replacement mutants were calculated in comparison with wild-type ApNGT, and mutants with top-ranking stability and middle-ranking substrate-binding energy were chosen for priority experimental verification. We found that a mutant called F13, which increased the glycosylation efficiency of the natural substrate by 1.44 times, the relative conversion of UDP-galactose by 14.2 times, and the relative conversion of UDP-xylose from almost 0 to 78.6%. Most importantly, F13 mutant acquired an entirely new property, the ability to utilize UDP-glucuronic acid. On one hand, this work shows that replacing similar fragments in the donor-acceptor binding pocket of the enzyme might provide new ideas for designing mutants with new properties; on the other hand, F13 mutant is expected to play an important role in targeted drug delivery.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 1","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000668/pdfft?md5=9d882243453dbe21a97fd045b480ba38&pid=1-s2.0-S2667370323000668-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139297743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-04DOI: 10.1016/j.engmic.2023.100124
Muhammad Shoaib , Ruining Bai , Shuai Li , Yan Xie , Yulong Shen , Jinfeng Ni
The fungus-growing termite is considered a distinct ecological niche because it involves a tripartite symbiosis between the termite host, gut microflora, and the in vitro fungus Termitomyces, which has led to the expansion of highly organized and complex societies among termite colonies. Tripartite symbiosis in fungus-growing termites may promote unique microbes with distinctive metabolic pathways that may serve as valuable resources for developing novel antimicrobial therapeutic options. Recent research on complex tripartite symbioses has revealed a plethora of previously unknown natural products that may have ecological roles in signaling, communication, or defense responses. Natural products produced by symbionts may act as crucial intermediaries between termites and their pathogens by providing direct protection through their biological activities. Herein, we review the state-of-the-art research on both microbes and natural products originated from fungus-growing termite tripartite symbiosis, highlighting the diversity of microbes and the uniqueness of natural product classes and their bioactivities. Additionally, we emphasize future research prospects on fungus-growing termite related microorganisms, with a particular focus on their potential roles in bioactive product discovery.
{"title":"Exploring the diversity of microbes and natural products from fungus-growing termite tripartite symbiosis","authors":"Muhammad Shoaib , Ruining Bai , Shuai Li , Yan Xie , Yulong Shen , Jinfeng Ni","doi":"10.1016/j.engmic.2023.100124","DOIUrl":"10.1016/j.engmic.2023.100124","url":null,"abstract":"<div><p>The fungus-growing termite is considered a distinct ecological niche because it involves a tripartite symbiosis between the termite host, gut microflora, and the <em>in vitro</em> fungus <em>Termitomyces</em>, which has led to the expansion of highly organized and complex societies among termite colonies. Tripartite symbiosis in fungus-growing termites may promote unique microbes with distinctive metabolic pathways that may serve as valuable resources for developing novel antimicrobial therapeutic options. Recent research on complex tripartite symbioses has revealed a plethora of previously unknown natural products that may have ecological roles in signaling, communication, or defense responses. Natural products produced by symbionts may act as crucial intermediaries between termites and their pathogens by providing direct protection through their biological activities. Herein, we review the state-of-the-art research on both microbes and natural products originated from fungus-growing termite tripartite symbiosis, highlighting the diversity of microbes and the uniqueness of natural product classes and their bioactivities. Additionally, we emphasize future research prospects on fungus-growing termite related microorganisms, with a particular focus on their potential roles in bioactive product discovery.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 1","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000565/pdfft?md5=626d1e0eddd0b16494e5e73d294b7fe8&pid=1-s2.0-S2667370323000565-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135455640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-02DOI: 10.1016/j.engmic.2023.100123
Xiaohui Lim, Congqiang Zhang, Xixian Chen
The bacterium Escherichia coli (E. coli) is one of the most widely used chassis microbes employed for the biosynthesis of numerous valuable chemical compounds. In the past decade, the metabolic engineering of E. coli has undergone significant advances, although further productivity improvements will require extensive genome modification, multi-dimensional regulation, and multiple metabolic-pathway coordination. In this context, clustered regularly interspaced short palindromic repeats (CRISPR), along with CRISPR-associated protein (Cas) and its inactive variant (dCas), have emerged as notable recombination and transcriptional regulation tools that are particularly useful for multiplex metabolic engineering in E. coli. In this review, we briefly describe the CRISPR/Cas9 technology in E. coli, and then summarize the recent advances in CRISPR/dCas9 interference (CRISPRi) systems in E. coli, particularly the strategies designed to effectively regulate gene repression and overcome retroactivity during multiplexing. Moreover, we discuss recent applications of the CRISPRi system for enhancing metabolite production in E. coli, and finally highlight the major challenges and future perspectives of this technology.
{"title":"Advances and applications of CRISPR/Cas-mediated interference in Escherichia coli","authors":"Xiaohui Lim, Congqiang Zhang, Xixian Chen","doi":"10.1016/j.engmic.2023.100123","DOIUrl":"10.1016/j.engmic.2023.100123","url":null,"abstract":"<div><p>The bacterium <em>Escherichia coli</em> (<em>E. coli</em>) is one of the most widely used chassis microbes employed for the biosynthesis of numerous valuable chemical compounds. In the past decade, the metabolic engineering of <em>E. coli</em> has undergone significant advances, although further productivity improvements will require extensive genome modification, multi-dimensional regulation, and multiple metabolic-pathway coordination. In this context, clustered regularly interspaced short palindromic repeats (CRISPR), along with CRISPR-associated protein (Cas) and its inactive variant (dCas), have emerged as notable recombination and transcriptional regulation tools that are particularly useful for multiplex metabolic engineering in <em>E. coli</em>. In this review, we briefly describe the CRISPR/Cas9 technology in <em>E. coli</em>, and then summarize the recent advances in CRISPR/dCas9 interference (CRISPRi) systems in <em>E. coli</em>, particularly the strategies designed to effectively regulate gene repression and overcome retroactivity during multiplexing. Moreover, we discuss recent applications of the CRISPRi system for enhancing metabolite production in <em>E. coli</em>, and finally highlight the major challenges and future perspectives of this technology.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 1","pages":"Article 100123"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000553/pdfft?md5=4d0cbb9f9fc0584a0733f98e22ad4832&pid=1-s2.0-S2667370323000553-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135371231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.1016/j.engmic.2023.100122
Shuo Yang , Liyun Song , Jing Wang , Jianzhi Zhao , Hongting Tang , Xiaoming Bao
Saccharomyces cerevisiae is an excellent microbial cell factory for producing valuable recombinant proteins because of its fast growth rate, robustness, biosafety, ease of operability via mature genomic modification technologies, and the presence of a conserved post-translational modification pathway among eukaryotic organisms. However, meeting industrial and market requirements with the current low microbial production of recombinant proteins can be challenging. To address this issue, numerous efforts have been made to enhance the ability of yeast cell factories to efficiently produce proteins. In this review, we provide an overview of recent advances in S. cerevisiae engineering to improve recombinant protein production. This review focuses on the strategies that enhance protein production by regulating transcription through promoter engineering, codon optimization, and expression system optimization. Additionally, we describe modifications to the secretory pathway, including engineered protein translocation, protein folding, glycosylation modification, and vesicle trafficking. Furthermore, we discuss global metabolic pathway optimization and other relevant strategies, such as the disruption of protein degradation, cell wall engineering, and random mutagenesis. Finally, we provide an outlook on the developmental trends in this field, offering insights into future directions for improving recombinant protein production in S. cerevisiae.
酿酒酵母具有生长速度快、坚固耐用、生物安全性高、通过成熟的基因组修饰技术易于操作以及在真核生物中存在保守的翻译后修饰途径等特点,是生产有价值的重组蛋白的绝佳微生物细胞工厂。然而,以目前较低的微生物生产重组蛋白来满足工业和市场需求可能具有挑战性。为了解决这个问题,人们做出了许多努力来提高酵母细胞工厂高效生产蛋白质的能力。在这篇综述中,我们概述了为提高重组蛋白产量而进行的酵母工程学研究的最新进展。本综述重点介绍通过启动子工程、密码子优化和表达系统优化来调节转录,从而提高蛋白质产量的策略。此外,我们还介绍了对分泌途径的改造,包括工程化蛋白质转运、蛋白质折叠、糖基化修饰和囊泡运输。此外,我们还讨论了全局代谢途径优化和其他相关策略,如破坏蛋白质降解、细胞壁工程和随机诱变。最后,我们对这一领域的发展趋势进行了展望,为改进 S. cerevisiae 重组蛋白生产的未来方向提供了见解。
{"title":"Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins","authors":"Shuo Yang , Liyun Song , Jing Wang , Jianzhi Zhao , Hongting Tang , Xiaoming Bao","doi":"10.1016/j.engmic.2023.100122","DOIUrl":"10.1016/j.engmic.2023.100122","url":null,"abstract":"<div><p><em>Saccharomyces cerevisiae</em> is an excellent microbial cell factory for producing valuable recombinant proteins because of its fast growth rate, robustness, biosafety, ease of operability via mature genomic modification technologies, and the presence of a conserved post-translational modification pathway among eukaryotic organisms. However, meeting industrial and market requirements with the current low microbial production of recombinant proteins can be challenging. To address this issue, numerous efforts have been made to enhance the ability of yeast cell factories to efficiently produce proteins. In this review, we provide an overview of recent advances in <em>S. cerevisiae</em> engineering to improve recombinant protein production. This review focuses on the strategies that enhance protein production by regulating transcription through promoter engineering, codon optimization, and expression system optimization. Additionally, we describe modifications to the secretory pathway, including engineered protein translocation, protein folding, glycosylation modification, and vesicle trafficking. Furthermore, we discuss global metabolic pathway optimization and other relevant strategies, such as the disruption of protein degradation, cell wall engineering, and random mutagenesis. Finally, we provide an outlook on the developmental trends in this field, offering insights into future directions for improving recombinant protein production in <em>S. cerevisiae</em>.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 1","pages":"Article 100122"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000541/pdfft?md5=09024df4a0818d7b3b48953b72932856&pid=1-s2.0-S2667370323000541-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136118606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natural product biosynthesis is controlled at multiple levels. Characterization of naturally occurring promoters has facilitated the study of the synthetic biology of natural products. Herein, we report the discovery of two high-yield actinomycin D (ActD)-producing streptomycetes and the identification of a strong bidirectional acmN2p promoter from the ActD gene clusters and its application in heterologous expression of three core genes involved in the bacterial alkaloid bohemamine biosynthesis, providing a good example for identification of new promoters for synthetic biological applications.
{"title":"Identification and application of a strong bidirectional acmN2p promoter from actinomycin D-producing streptomycetes","authors":"Sainan Li , Danfeng Tang , Xu Zhao , Manxiang Zhu , Xiangcheng Zhu , Yanwen Duan , Yong Huang","doi":"10.1016/j.engmic.2023.100121","DOIUrl":"10.1016/j.engmic.2023.100121","url":null,"abstract":"<div><p>Natural product biosynthesis is controlled at multiple levels. Characterization of naturally occurring promoters has facilitated the study of the synthetic biology of natural products. Herein, we report the discovery of two high-yield actinomycin D (ActD)-producing streptomycetes and the identification of a strong bidirectional acmN2p promoter from the ActD gene clusters and its application in heterologous expression of three core genes involved in the bacterial alkaloid bohemamine biosynthesis, providing a good example for identification of new promoters for synthetic biological applications.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 1","pages":"Article 100121"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266737032300053X/pdfft?md5=d6c768acda89cc4d3e8c6348084fb5b6&pid=1-s2.0-S266737032300053X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}