首页 > 最新文献

Examples and Counterexamples最新文献

英文 中文
Solving recurrences for Legendre–Bernstein basis transformations 求解legende - bernstein基变换的递归式
Pub Date : 2023-07-25 DOI: 10.1016/j.exco.2023.100117
D.A. Wolfram

The change of basis matrix M from shifted Legendre to Bernstein polynomials and M1 have applications in computer graphics. Algorithms use their properties to find the matrix elements efficiently. We give new functions for the elements of M as a summation, and a complete hypergeometric function. We find that Gosper’s algorithm does not produce closed-form expressions for the elements of either M or M1. Zeilberger’s algorithm produces four second-order recurrences for the elements of the matrices that enable them to be computed in O(n) time, and for the derivation of closed-form functions by row and column for the elements. Two row recurrences are special cases of those found by Woźny (2013) who used a different method. We show that the recurrences for rows of M and columns of M1 are equivalent. The recurrences for columns of M and rows of M1 generate functions that are the Lagrange interpolation polynomials of their elements. These polynomials are equal to hypergeometric functions, which are solutions of the recurrences.

基矩阵M从移位的勒让德多项式到伯恩斯坦多项式和M−1的变化在计算机图形学中有应用。算法利用它们的性质来有效地找到矩阵元素。我们给出了M元素的新函数和一个完全的超几何函数。我们发现,对于M或M - 1的元素,Gosper算法都不能产生封闭形式的表达式。Zeilberger的算法为矩阵的元素产生了四个二阶递归,使它们能够在O(n)时间内计算出来,并为元素的行和列推导出封闭形式的函数。两行递归是Woźny(2013)使用不同方法发现的特殊情况。我们证明了M的行和M−1的列的递归式是等价的。M的列和M−1的行的递归生成的函数是其元素的拉格朗日插值多项式。这些多项式等于超几何函数,它们是递归式的解。
{"title":"Solving recurrences for Legendre–Bernstein basis transformations","authors":"D.A. Wolfram","doi":"10.1016/j.exco.2023.100117","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100117","url":null,"abstract":"<div><p>The change of basis matrix <span><math><mi>M</mi></math></span> from shifted Legendre to Bernstein polynomials and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> have applications in computer graphics. Algorithms use their properties to find the matrix elements efficiently. We give new functions for the elements of <span><math><mi>M</mi></math></span> as a summation, and a complete hypergeometric function. We find that Gosper’s algorithm does not produce closed-form expressions for the elements of either <span><math><mi>M</mi></math></span> or <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Zeilberger’s algorithm produces four second-order recurrences for the elements of the matrices that enable them to be computed in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> time, and for the derivation of closed-form functions by row and column for the elements. Two row recurrences are special cases of those found by Woźny (2013) who used a different method. We show that the recurrences for rows of <span><math><mi>M</mi></math></span> and columns of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> are equivalent. The recurrences for columns of <span><math><mi>M</mi></math></span> and rows of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> generate functions that are the Lagrange interpolation polynomials of their elements. These polynomials are equal to hypergeometric functions, which are solutions of the recurrences.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A new doubly resolvable candelabra quadruple systems 一种新的双可分辨烛台四重系统
Pub Date : 2023-05-19 DOI: 10.1016/j.exco.2023.100116
Zhaoping Meng , Qingling Gao

Two resolutions of the same design are said to be orthogonal when each parallel class of one resolution has at most one block in common with each parallel class of the other resolution. If a candelabra quadruple system has two mutually orthogonal resolutions, the design is called doubly resolvable candelabra quadruple system and denoted by DRCQS. In this paper, we obtain a DRCQS(35:1) by computer search.

当一个分辨率的每个并行类与另一分辨率的每个平行类最多有一个公共块时,相同设计的两个分辨率被称为正交。如果一个烛台四重系统有两个相互正交的分辨率,则该设计被称为双可分辨烛台四重体系,并用DRCQS表示。在本文中,我们通过计算机搜索获得了一个DRCQS(35:1)。
{"title":"A new doubly resolvable candelabra quadruple systems","authors":"Zhaoping Meng ,&nbsp;Qingling Gao","doi":"10.1016/j.exco.2023.100116","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100116","url":null,"abstract":"<div><p>Two resolutions of the same design are said to be orthogonal when each parallel class of one resolution has at most one block in common with each parallel class of the other resolution. If a candelabra quadruple system has two mutually orthogonal resolutions, the design is called doubly resolvable candelabra quadruple system and denoted by DRCQS. In this paper, we obtain a DRCQS<span><math><mrow><mo>(</mo><msup><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></msup><mo>:</mo><mn>1</mn><mo>)</mo></mrow></math></span> by computer search.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sum structures in abelian groups 阿贝尔群中的和结构
Pub Date : 2023-05-13 DOI: 10.1016/j.exco.2023.100101
Robert Haas

Any set S of elements from an abelian group produces a graph with colored edges G(S), with its points the elements of S, and the edge between points P and Q assigned for its “color” the sum P+Q. Since any pair of identically colored edges is equivalent to an equation P+Q=P+Q, the geometric—combinatorial figure G(S) is thus equivalent to a system of linear equations. This article derives elementary properties of such “sum cographs”, including forced or forbidden configurations, and then catalogues the 54 possible sum cographs on up to 6 points. Larger sum cograph structures also exist: Points {Pi} in Zm close up into a “Fibonacci cycle”–i.e. P0=1, P1=k, Pi+2=Pi+Pi+1 for all integers i0, and then Pn=P0 and Pn+1=P1–provided that m=Ln is a Lucas prime, in which case actually Pi=ki for all i0.

阿贝尔群中的任何元素集S都会产生一个图,它有彩色边G(S),它的点是S的元素,点P和Q之间的边为它的“颜色”指定为和P+Q。由于任何一对同色边等价于方程P+Q=P′+Q′,因此几何组合图G(S)等价于线性方程组。本文导出了这类“和图”的基本性质,包括强制或禁止配置,然后对多达6个点上的54个可能的和图进行了编目。更大的和图结构也存在:Zm中的点{Pi}接近于一个“斐波那契循环”——即,对于所有整数i≥0,P0=1,P1=k,Pi+2=Pi+Pi+1,然后Pn=P0和Pn+1=P1——假设m=Ln是Lucas素数,在这种情况下,对于所有i≥0实际上Pi=ki。
{"title":"Sum structures in abelian groups","authors":"Robert Haas","doi":"10.1016/j.exco.2023.100101","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100101","url":null,"abstract":"<div><p>Any set <span><math><mi>S</mi></math></span> of elements from an abelian group produces a graph with colored edges <span><math><mi>G</mi></math></span>(S), with its points the elements of <span><math><mi>S</mi></math></span>, and the edge between points <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span> assigned for its “color” the sum <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span>. Since any pair of identically colored edges is equivalent to an equation <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span>, the geometric—combinatorial figure <span><math><mi>G</mi></math></span>(S) is thus equivalent to a system of linear equations. This article derives elementary properties of such “sum cographs”, including forced or forbidden configurations, and then catalogues the 54 possible sum cographs on up to 6 points. Larger sum cograph structures also exist: Points <span><math><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></math></span> in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> close up into a “Fibonacci cycle”–i.e. <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>k</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span> for all integers <span><math><mrow><mi>i</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, and then <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>–provided that <span><math><mrow><mi>m</mi><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a Lucas prime, in which case actually <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> for all <span><math><mrow><mi>i</mi><mo>≥</mo><mn>0</mn></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100101"},"PeriodicalIF":0.0,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the conjecture of Sombor energy of a graph 关于图的Sombor能量猜想
Pub Date : 2023-05-13 DOI: 10.1016/j.exco.2023.100115
Harishchandra S. Ramane, Deepa V. Kitturmath

The Sombor matrix of a graph G with vertices v1,v2,,vn is defined as ASO(G)=[sij], where sij=di2+dj2 if vi is adjacent to vj and sij=0, otherwise, where di is the degree of a vertex vi. The Sombor energy of a graph is defined as the sum of the absolute values of the eigenvalues of the Sombor matrix. N. Ghanbari (Ghanbari, 2022) conjectured that there is no graph with integer valued Sombor energy. In this paper we give some class of graphs for which this conjecture holds. Further we conjecture that there is no regular graph with adjacency energy equal to 2k2 where k is a positive integer.

具有顶点v1,v2,…,vn的图G的Sombor矩阵被定义为ASO(G)=[sij],其中如果vi与vj相邻并且sij=0,则sij=di2+dj2,否则,其中di是顶点vi的阶。图的Sombor能量被定义为Sombor阵本征值的绝对值之和。N.Ghanbari(Gannbari,2022)推测不存在具有整数值Sombor能量的图。本文给出了这一猜想成立的一类图。此外,我们推测不存在邻接能量等于2k2的正则图,其中k是正整数。
{"title":"On the conjecture of Sombor energy of a graph","authors":"Harishchandra S. Ramane,&nbsp;Deepa V. Kitturmath","doi":"10.1016/j.exco.2023.100115","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100115","url":null,"abstract":"<div><p>The Sombor matrix of a graph <span><math><mi>G</mi></math></span> with vertices <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is defined as <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>S</mi><mi>O</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>[</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msqrt><mrow><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msqrt></mrow></math></span> if <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is adjacent to <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, otherwise, where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the degree of a vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. The Sombor energy of a graph is defined as the sum of the absolute values of the eigenvalues of the Sombor matrix. N. Ghanbari (Ghanbari, 2022) conjectured that there is no graph with integer valued Sombor energy. In this paper we give some class of graphs for which this conjecture holds. Further we conjecture that there is no regular graph with adjacency energy equal to <span><math><mrow><mn>2</mn><mi>k</mi><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></math></span> where <span><math><mi>k</mi></math></span> is a positive integer.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Example of a solution for Dorodnitzyn’s limit formula Dorodnitzyn极限公式解的例子
Pub Date : 2023-05-02 DOI: 10.1016/j.exco.2023.100114
C.V. Valencia-Negrete

In the present paper, we show an example of a solution for Dorodnitzyn’s gaseous boundary layer limit formula. Oleinik’s no back-flow condition ensures the existence and uniqueness of solutions for the Prandtl equations in a rectangular domain RR2. It also allowed us to find a limit formula for Dorodnitzyn’s stationary compressible boundary layer with constant total energy on a bounded convex domain in the plane R2. Under the same assumption, we can give an approximate solution u for the limit formula if |u|<<<1 such that: u(z)δcz+62512i04U23z4+o(z5),that corresponds to an approximate horizontal velocity component when a small parameter ϵ given by the quotient of the maximum height of the domain divided by its length tends to zero. Here, c>0, δ is the boundary layer’s height in Dorodnitzyn’s coordinates, U is the free-stream velocity at the upper boundary of the domain, and T0 is the absolute surface temperature.

本文给出了Dorodnitzyn气体边界层极限公式的一个解的例子。Oleinik的无回流条件保证了矩形域R⊂R2中Prandtl方程解的存在性和唯一性。它还使我们能够在平面R2的有界凸域上找到具有恒定总能量的Dorodnitzyn静止可压缩边界层的极限公式。在相同的假设下,如果|u|<<<;1使得:u(z)Şδ*c*z+625∙12i0∙4U23z4+o(z5),当由域的最大高度除以其长度的商给出的小参数ε趋于零时,这对应于近似的水平速度分量。这里,c>;0,δ是Dorodnitzyn坐标中的边界层高度,U是域上边界的自由流速度,T0是绝对表面温度。
{"title":"Example of a solution for Dorodnitzyn’s limit formula","authors":"C.V. Valencia-Negrete","doi":"10.1016/j.exco.2023.100114","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100114","url":null,"abstract":"<div><p>In the present paper, we show an example of a solution for Dorodnitzyn’s gaseous boundary layer limit formula. Oleinik’s <em>no back-flow</em> condition ensures the existence and uniqueness of solutions for the Prandtl equations in a rectangular domain <span><math><mrow><mi>R</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. It also allowed us to find a limit formula for Dorodnitzyn’s stationary compressible boundary layer with constant total energy on a bounded convex domain in the plane <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Under the same assumption, we can give an approximate solution <span><math><mi>u</mi></math></span> for the limit formula if <span><math><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mo>&lt;</mo><mspace></mspace><mspace></mspace><mo>&lt;</mo><mspace></mspace><mspace></mspace><mo>&lt;</mo><mn>1</mn></mrow></math></span> such that: <span><span><span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>≅</mo><mi>δ</mi><mo>∗</mo><mi>c</mi><mo>∗</mo><mfenced><mrow><mi>z</mi><mo>+</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>25</mn></mrow></mfrac><mi>⋅</mi><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><msub><mrow><mi>i</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac><mi>⋅</mi><mfrac><mrow><mn>4</mn><msup><mrow><mi>U</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mfrac><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></mfenced><mo>+</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>that corresponds to an approximate horizontal velocity component when a small parameter <span><math><mi>ϵ</mi></math></span> given by the quotient of the maximum height of the domain divided by its length tends to zero. Here, <span><math><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><mi>δ</mi></math></span> is the boundary layer’s height in Dorodnitzyn’s coordinates, <span><math><mi>U</mi></math></span> is the <em>free-stream</em> velocity at the upper boundary of the domain, and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the absolute surface temperature.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100114"},"PeriodicalIF":0.0,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A condition for associativity of univariate resultants 单变量结果可结合性的一个条件
Pub Date : 2023-05-02 DOI: 10.1016/j.exco.2023.100113
D.A. Wolfram

We provide a condition on the occurrences of variables in polynomials and show that it ensures associativity of univariate resultants in non-trivial cases. We give examples involving transformations and arithmetic with the zeros of polynomials. Associativity enables the composition of functions on the zeros of a polynomial by using resultants. The result is generalised to finite systems of polynomials.

我们给出了多项式中变量出现的一个条件,并证明了它在非平凡情况下保证了单变量结果的结合性。我们给出了涉及变换和多项式零运算的例子。关联性使函数能够通过使用结果在多项式的零上组合。结果推广到有限多项式系统。
{"title":"A condition for associativity of univariate resultants","authors":"D.A. Wolfram","doi":"10.1016/j.exco.2023.100113","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100113","url":null,"abstract":"<div><p>We provide a condition on the occurrences of variables in polynomials and show that it ensures associativity of univariate resultants in non-trivial cases. We give examples involving transformations and arithmetic with the zeros of polynomials. Associativity enables the composition of functions on the zeros of a polynomial by using resultants. The result is generalised to finite systems of polynomials.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100113"},"PeriodicalIF":0.0,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50169005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Number of terms in the group determinant 群行列式中的项数
Pub Date : 2023-04-26 DOI: 10.1016/j.exco.2023.100112
Naoya Yamaguchi, Yuka Yamaguchi

In this paper, we prove that when the number of terms in the group determinant of order odd prime p is divided by p, the remainder is 1. In addition, we give a table of the number of terms in kth power of the group determinant of the cyclic group of order n for n10 and k6, and also give a table of one for every group of order at most 15. These tables raise some questions for us about the number of terms in the group determinants.

在本文中,我们证明了当阶奇素数p的群行列式中的项数除以p时,余数为1。此外,对于n≤10和k≤6,我们给出了n阶循环群的群行列式的k次方项数的表,并且对于至多15阶的每个群,我们也给出了一个1的表。这些表格为我们提出了一些关于群行列式中的项数的问题。
{"title":"Number of terms in the group determinant","authors":"Naoya Yamaguchi,&nbsp;Yuka Yamaguchi","doi":"10.1016/j.exco.2023.100112","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100112","url":null,"abstract":"<div><p>In this paper, we prove that when the number of terms in the group determinant of order odd prime <span><math><mi>p</mi></math></span> is divided by <span><math><mi>p</mi></math></span>, the remainder is 1. In addition, we give a table of the number of terms in <span><math><mi>k</mi></math></span>th power of the group determinant of the cyclic group of order <span><math><mi>n</mi></math></span> for <span><math><mrow><mi>n</mi><mo>≤</mo><mn>10</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≤</mo><mn>6</mn></mrow></math></span>, and also give a table of one for every group of order at most 15. These tables raise some questions for us about the number of terms in the group determinants.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100112"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50169006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Some counterexamples for (strong) persistence property and (nearly) normally torsion-freeness (强)持久性和(几乎)正态无扭性的几个反例
Pub Date : 2023-04-26 DOI: 10.1016/j.exco.2023.100111
Mehrdad Nasernejad

In this article, we present some rare counterexamples, which are related to (strong) persistence property and (nearly) normally torsion-freeness of monomial ideals. They may be useful for researchers in this field to construct the other counterexamples refuting some conjectures.

在这篇文章中,我们给出了一些罕见的反例,它们与单理想的(强)持久性和(几乎)正态无扭性有关。它们可能有助于该领域的研究人员构建反驳某些猜测的其他反例。
{"title":"Some counterexamples for (strong) persistence property and (nearly) normally torsion-freeness","authors":"Mehrdad Nasernejad","doi":"10.1016/j.exco.2023.100111","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100111","url":null,"abstract":"<div><p>In this article, we present some rare counterexamples, which are related to (strong) persistence property and (nearly) normally torsion-freeness of monomial ideals. They may be useful for researchers in this field to construct the other counterexamples refuting some conjectures.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100111"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ulam–Hyers stability of some linear differential equations of second order 一类二阶线性微分方程的Ulam–Hyers稳定性
Pub Date : 2023-04-14 DOI: 10.1016/j.exco.2023.100110
Idriss Ellahiani, Belaid Bouikhalene

In this work we prove the Ulam–Hyers stability of the following equation (E)ϕ(x)+(γ1)ϕ(x)γϕ(x)=0,where γ is a real number. The main purpose is to find a solution ϕ of (E) satisfying |ϕ(x)f(x)|Kɛ, where K is Ulam–Hyers-Stability constant and f is an exact solution of the associated inequality |f(x)+(γ1)f(x)γf(x)|ɛ,for any ɛ>0.

在这项工作中,我们证明了以下方程(E)Γ′′(x)+(γ−1)Γ’(x)-γΓ(x)=0的Ulam–Hyers稳定性,其中γ是实数。主要目的是找到(E)满足|Γ(x)−f(x)|⩽K的解,其中K是Ulam–Hyers稳定性常数,f是相关不等式|f′′′(x)+(γ−1)f′(x;0
{"title":"Ulam–Hyers stability of some linear differential equations of second order","authors":"Idriss Ellahiani,&nbsp;Belaid Bouikhalene","doi":"10.1016/j.exco.2023.100110","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100110","url":null,"abstract":"<div><p>In this work we prove the Ulam–Hyers stability of the following equation <span><span><span><math><mrow><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mi>γ</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>γ</mi><mi>ϕ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>γ</mi></math></span> is a real number. The main purpose is to find a solution <span><math><mi>ϕ</mi></math></span> of (E) satisfying <span><math><mrow><mrow><mo>|</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>⩽</mo><mi>K</mi><mi>ɛ</mi></mrow></math></span>, where <span><math><mi>K</mi></math></span> is Ulam–Hyers-Stability constant and <span><math><mi>f</mi></math></span> is an exact solution of the associated inequality <span><span><span><math><mrow><mrow><mo>|</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mi>γ</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>γ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>⩽</mo><mi>ɛ</mi><mo>,</mo></mrow></math></span></span></span>for any <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A family of examples of harmonic maps into the sphere with one point singularity 具有单点奇异性的球面调和映射的一组例子
Pub Date : 2023-04-11 DOI: 10.1016/j.exco.2023.100107
Nobumitsu Nakauchi

The radial map u(x)=xx is a well-known example of a harmonic map into the spheres with a point singularity at x=0. In our previous paper (Misawa and Nakauchi, 2022) we give two examples of harmonic maps into the standard spheres of higher dimension with a singularity of a polynomial of x1x,xmx of degree 2 and degree 3 respectively. In Fujioka (2020) uses our arguments to give an example of a harmonic map into the sphere with a singularity of a polynomial of degree 4. In this paper we give a family of examples of harmonic maps with a point singularity of a polynomial of higher degree.

径向映射u(x)=x‖x‖是一个众所周知的例子,它将调和映射映射到在x=0处具有点奇异性的球体中。在我们之前的论文(Misawa和Nakauchi,2022)中,我们给出了两个调和映射到高维标准球面的例子,其多项式的奇异性分别为2次和3次的x1、…xm、。在Fujioka(2020)中,使用我们的论点给出了一个例子,将调和映射到具有4次多项式奇异性的球体中。本文给出了一类具有高阶多项式点奇异性的调和映射的例子。
{"title":"A family of examples of harmonic maps into the sphere with one point singularity","authors":"Nobumitsu Nakauchi","doi":"10.1016/j.exco.2023.100107","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100107","url":null,"abstract":"<div><p>The radial map <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow></mfrac></mrow></math></span> is a well-known example of a harmonic map into the spheres with a point singularity at <span><math><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></math></span>. In our previous paper (Misawa and Nakauchi, 2022) we give two examples of harmonic maps into the standard spheres of higher dimension with a singularity of a polynomial of <span><math><mrow><mfrac><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow></mfrac><mo>,</mo><mspace></mspace><mo>⋯</mo><mspace></mspace><mfrac><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow></mfrac></mrow></math></span> of degree 2 and degree 3 respectively. In Fujioka (2020) uses our arguments to give an example of a harmonic map into the sphere with a singularity of a polynomial of degree 4. In this paper we give a family of examples of harmonic maps with a point singularity of a polynomial of higher degree.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Examples and Counterexamples
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1