首页 > 最新文献

Examples and Counterexamples最新文献

英文 中文
A dispersive dynamical system that is chain transitive 具有链传递性的分散动力系统
Pub Date : 2024-07-16 DOI: 10.1016/j.exco.2024.100153
Eduardo C. Viscovini, Josiney A. Souza

This paper compares the notions of Auslander generalized recurrence and chain recurrence of dynamical systems. Generalized recurrent points are chain recurrent, however, chain recurrent points may not be generalized recurrent of any order. Because of the absence of recursiveness, the dispersive systems have no generalized recurrent point. Examples of systems with generalized recurrent points and systems with no generalized recurrent points are presented. The main example shows a dispersive system that is chain transitive.

本文比较了动力系统的奥斯兰德广义递归和链递归概念。广义递归点是链递归点,然而链递归点可能不是任何阶的广义递归点。由于不存在递归性,分散系统没有广义递归点。本文举例说明了有广义递归点的系统和没有广义递归点的系统。主要示例展示了一个具有链传递性的分散系统。
{"title":"A dispersive dynamical system that is chain transitive","authors":"Eduardo C. Viscovini,&nbsp;Josiney A. Souza","doi":"10.1016/j.exco.2024.100153","DOIUrl":"10.1016/j.exco.2024.100153","url":null,"abstract":"<div><p>This paper compares the notions of Auslander generalized recurrence and chain recurrence of dynamical systems. Generalized recurrent points are chain recurrent, however, chain recurrent points may not be generalized recurrent of any order. Because of the absence of recursiveness, the dispersive systems have no generalized recurrent point. Examples of systems with generalized recurrent points and systems with no generalized recurrent points are presented. The main example shows a dispersive system that is chain transitive.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100153"},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000193/pdfft?md5=b5a91c98f35a5ef489f7935a208858b4&pid=1-s2.0-S2666657X24000193-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Some families of Path-related graphs with their edge metric dimension 论路径相关图的一些族及其边缘度量维度
Pub Date : 2024-07-13 DOI: 10.1016/j.exco.2024.100152
Lianglin Li, Shu Bao, Hassan Raza

Locating the origin of diffusion in complex networks is an interesting but challenging task. It is crucial for anticipating and constraining the epidemic risks. Source localization has been considered under many feasible models. In this paper, we study the localization problem in some path-related graphs and study the edge metric dimension. A subset LEVG is known as an edge metric generator for G if, for any two distinct edges e1,e2E, there exists a vertex aLE such that d(e1,a)d(e2,a). An edge metric generator that contains the minimum number of vertices is termed an edge metric basis for G, and the number of vertices in such a basis is called the edge metric dimension, denoted by dime(G). An edge metric generator with the fewest vertices is called an edge metric basis for G. The number of vertices in such a basis is the edge metric dimension, represented as dime(G). In this paper, the edge metric dimension of some path-related graphs is computed, namely, the middle graph of path M(Pn) and the splitting graph of path S(Pn).

确定复杂网络中的扩散源是一项有趣但极具挑战性的任务。它对于预测和限制流行病风险至关重要。在许多可行的模型中都考虑了源定位问题。本文研究了一些路径相关图中的定位问题,并对边缘度量维度进行了研究。如果对于任意两条不同的边 e1、e2∈E,存在一个顶点 a⊆LE,使得 d(e1,a)≠d(e2,a),则子集 LE⊆VG 称为 G 的边度量生成器。包含最少顶点数的边缘度量生成器称为 G 的边缘度量基,这样的基中的顶点数称为边缘度量维度,用 dime(G) 表示。顶点数量最少的边度量生成器称为 G 的边度量基,这样的基中的顶点数量就是边度量维度,用 dime(G) 表示。本文将计算一些路径相关图的边度量维度,即路径 M(Pn) 的中间图和路径 S(Pn) 的分割图。
{"title":"On Some families of Path-related graphs with their edge metric dimension","authors":"Lianglin Li,&nbsp;Shu Bao,&nbsp;Hassan Raza","doi":"10.1016/j.exco.2024.100152","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100152","url":null,"abstract":"<div><p>Locating the origin of diffusion in complex networks is an interesting but challenging task. It is crucial for anticipating and constraining the epidemic risks. Source localization has been considered under many feasible models. In this paper, we study the localization problem in some path-related graphs and study the edge metric dimension. A subset <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msub></mrow></math></span> is known as an edge metric generator for <span><math><mi>G</mi></math></span> if, for any two distinct edges <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>E</mi></mrow></math></span>, there exists a vertex <span><math><mrow><mi>a</mi><mo>⊆</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>E</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>a</mi><mo>)</mo></mrow><mo>≠</mo><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span>. An edge metric generator that contains the minimum number of vertices is termed an edge metric basis for <span><math><mi>G</mi></math></span>, and the number of vertices in such a basis is called the edge metric dimension, denoted by <span><math><mrow><mi>d</mi><mi>i</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. An edge metric generator with the fewest vertices is called an edge metric basis for <span><math><mi>G</mi></math></span>. The number of vertices in such a basis is the edge metric dimension, represented as <span><math><mrow><mi>d</mi><mi>i</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, the edge metric dimension of some path-related graphs is computed, namely, the middle graph of path <span><math><mrow><mi>M</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and the splitting graph of path <span><math><mrow><mi>S</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100152"},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000181/pdfft?md5=c2a7ee3861dc78370607917771d98ef6&pid=1-s2.0-S2666657X24000181-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadrature based innovative techniques concerning nonlinear equations having unknown multiplicity 基于正交的有关未知倍数非线性方程的创新技术
Pub Date : 2024-07-09 DOI: 10.1016/j.exco.2024.100150
Farooq Ahmed Shah , Muhammad Waseem

Solution of nonlinear equations is one of the most frequently encountered issue in engineering and applied sciences. Most of the intricateed engineering problems are modeled in the frame work of nonlinear equation f(x)=0. The significance of iterative algorithms executed by computers in resolving such functions is of paramount importance and undeniable in contemporary times. If we study the simple roots and the roots having multiplicity greater of any nonlinear equations we come to the point that finding the roots of nonlinear equations having multiplicity greater than one is not trivialvia classical iterative methods. Instability or slow convergence rate is faced by these methods, and also sometimes these methods diverge. In this article, we give some innovative and robust iterative techniques for obtaining the approximate solution of nonlinear equations having multiplicity m>1. Quadrature formulas are implemented to obtain iterative techniques for finding roots of nonlinear equations having unknown multiplicity. The derived methods are the variants of modified Newton method with high order of convergence and better accuracy. The convergence criteria of the new techniques are studied by using Taylor series method. Some examples are tested for the sack of implementations of these techniques. Numerical and graphical comparison shows the performance and efficiency of these new techniques.

非线性方程的求解是工程和应用科学中最常遇到的问题之一。大多数错综复杂的工程问题都是在非线性方程 f(x)=0 的框架内建模的。在当代,计算机执行的迭代算法在求解此类函数方面的重要性是毋庸置疑的。如果我们研究任何非线性方程的简单根和乘数大于 1 的根,我们就会发现,通过经典迭代法找到乘数大于 1 的非线性方程的根并非易事。这些方法会面临不稳定性或收敛速度慢的问题,有时还会出现发散现象。在本文中,我们给出了一些创新而稳健的迭代技术,用于求得乘数为 m>1 的非线性方程的近似解。通过实施正交公式,我们获得了求未知乘数非线性方程根的迭代技术。推导出的方法是修正牛顿法的变种,具有高收敛阶数和更好的精度。利用泰勒级数法研究了新技术的收敛标准。通过一些实例对这些技术的实施进行了测试。数值和图形比较显示了这些新技术的性能和效率。
{"title":"Quadrature based innovative techniques concerning nonlinear equations having unknown multiplicity","authors":"Farooq Ahmed Shah ,&nbsp;Muhammad Waseem","doi":"10.1016/j.exco.2024.100150","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100150","url":null,"abstract":"<div><p>Solution of nonlinear equations is one of the most frequently encountered issue in engineering and applied sciences. Most of the intricateed engineering problems are modeled in the frame work of nonlinear equation <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo></mrow></math></span> The significance of iterative algorithms executed by computers in resolving such functions is of paramount importance and undeniable in contemporary times. If we study the simple roots and the roots having multiplicity greater of any nonlinear equations we come to the point that finding the roots of nonlinear equations having multiplicity greater than one is not trivialvia classical iterative methods. Instability or slow convergence rate is faced by these methods, and also sometimes these methods diverge. In this article, we give some innovative and robust iterative techniques for obtaining the approximate solution of nonlinear equations having multiplicity <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Quadrature formulas are implemented to obtain iterative techniques for finding roots of nonlinear equations having unknown multiplicity. The derived methods are the variants of modified Newton method with high order of convergence and better accuracy. The convergence criteria of the new techniques are studied by using Taylor series method. Some examples are tested for the sack of implementations of these techniques. Numerical and graphical comparison shows the performance and efficiency of these new techniques.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100150"},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000168/pdfft?md5=1401656be5f763d7bc65918548e7c152&pid=1-s2.0-S2666657X24000168-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of time delay functions for design of traffic systems 为设计交通系统估算时延函数
Pub Date : 2024-06-30 DOI: 10.1016/j.exco.2024.100151
N. Hossam, U. Gazder

Main aim of this research was to apply multiple approaches for the development of time delay functions on three highways in Bahrain, namely; Dry Dock Highway, Arad Highway and Zallaq Highway. Four equations were obtained from previous studies and two equations were, additionally, tailored for each of the three highways. The results were used to obtain two parameters that aid in design, optimum flow rate and level of service.

本研究的主要目的是在巴林的三条高速公路(即干船坞高速公路、阿拉德高速公路和扎拉克高速公路)上应用多种方法来开发时间延迟函数。从先前的研究中获得了四个方程,另外还为这三条高速公路各定制了两个方程。研究结果用于获得两个有助于设计的参数,即最佳流速和服务水平。
{"title":"Estimation of time delay functions for design of traffic systems","authors":"N. Hossam,&nbsp;U. Gazder","doi":"10.1016/j.exco.2024.100151","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100151","url":null,"abstract":"<div><p>Main aim of this research was to apply multiple approaches for the development of time delay functions on three highways in Bahrain, namely; Dry Dock Highway, Arad Highway and Zallaq Highway. Four equations were obtained from previous studies and two equations were, additionally, tailored for each of the three highways. The results were used to obtain two parameters that aid in design, optimum flow rate and level of service.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100151"},"PeriodicalIF":0.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X2400017X/pdfft?md5=19e6cddc4e57c5ac2232cf8fa66a6629&pid=1-s2.0-S2666657X2400017X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies in fractal–fractional operators with examples 分形-分数算子研究与实例
Pub Date : 2024-06-29 DOI: 10.1016/j.exco.2024.100148
Rabha W. Ibrahim

By using the generalization of the gamma function (p-gamma function: Γp(.)), we introduce a generalization of the fractal–fractional calculus which is called p-fractal fractional calculus. We extend the proposed operators into the symmetric complex domain, specifically the open unit disk. Normalization for each operator is formulated. This allows us to explore the most important geometric properties. Examples are illustrated including the basic power functions.

利用伽马函数的广义化(p-伽马函数:Γp(.)),我们引入了分形-分形微积分的广义,称为 p 分形-分形微积分。我们将提出的算子扩展到对称复数域,特别是开放单位盘。我们对每个算子进行了归一化处理。这使我们能够探索最重要的几何特性。示例包括基本幂函数。
{"title":"Studies in fractal–fractional operators with examples","authors":"Rabha W. Ibrahim","doi":"10.1016/j.exco.2024.100148","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100148","url":null,"abstract":"<div><p>By using the generalization of the gamma function (<span><math><mi>p</mi></math></span>-gamma function: <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mo>.</mo><mo>)</mo></mrow></mrow></math></span>), we introduce a generalization of the fractal–fractional calculus which is called <span><math><mi>p</mi></math></span>-fractal fractional calculus. We extend the proposed operators into the symmetric complex domain, specifically the open unit disk. Normalization for each operator is formulated. This allows us to explore the most important geometric properties. Examples are illustrated including the basic power functions.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100148"},"PeriodicalIF":0.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000144/pdfft?md5=eb86f085d4d25f908eda02f5243db74c&pid=1-s2.0-S2666657X24000144-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the extension of quadrant dependence 关于象限依存性的扩展
Pub Date : 2024-06-01 DOI: 10.1016/j.exco.2024.100146
João Lita da Silva

In this short note, it is propounded an extension for quadrant dependence, and shown that some of the original proprieties of this popular concept remain valid, while others are necessarily generalized. A second Borel–Cantelli lemma due to Petrov (Statist. Probab. Lett. 58: 283–286, 2002) is revisited for events enjoying this new dependence notion and demonstrated by means of simpler arguments.

在这篇短文中,我们提出了象限依赖性的扩展,并证明了这一流行概念的某些原始特性仍然有效,而另一些特性则必须加以概括。本文还重新探讨了 Petrov 提出的第二个 Borel-Cantelli Lemma (Statist. Probab. Lett. 58: 283-286, 2002),并通过更简单的论证证明了享有这一新依赖性概念的事件。
{"title":"On the extension of quadrant dependence","authors":"João Lita da Silva","doi":"10.1016/j.exco.2024.100146","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100146","url":null,"abstract":"<div><p>In this short note, it is propounded an extension for quadrant dependence, and shown that some of the original proprieties of this popular concept remain valid, while others are necessarily generalized. A second Borel–Cantelli lemma due to Petrov (Statist. Probab. Lett. 58: 283–286, 2002) is revisited for events enjoying this new dependence notion and demonstrated by means of simpler arguments.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100146"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000120/pdfft?md5=7ab76f0ec02449bb41d1ed97e3dbd4c2&pid=1-s2.0-S2666657X24000120-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence conditions for 2-periodic solutions to a non-homogeneous differential equations with piecewise constant argument 带片断常数参数的非均质微分方程 2 周期解的存在条件
Pub Date : 2024-04-29 DOI: 10.1016/j.exco.2024.100145
Mukhiddin I. Muminov , Tirkash A. Radjabov

This paper provides a method of finding 2-periodical solutions for the first-order non-homogeneous differential equations with piecewise constant arguments. All existence conditions are described for 2-periodical solutions and obtained explicit formula for these solutions. An example for the problem that has infinitely many solutions is constructed.

本文提供了一种为具有片常数参数的一阶非均质微分方程寻找 2 周期解的方法。描述了二周期解的所有存在条件,并获得了这些解的明确公式。还构建了一个具有无穷多个解的问题实例。
{"title":"Existence conditions for 2-periodic solutions to a non-homogeneous differential equations with piecewise constant argument","authors":"Mukhiddin I. Muminov ,&nbsp;Tirkash A. Radjabov","doi":"10.1016/j.exco.2024.100145","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100145","url":null,"abstract":"<div><p>This paper provides a method of finding 2-periodical solutions for the first-order non-homogeneous differential equations with piecewise constant arguments. All existence conditions are described for 2-periodical solutions and obtained explicit formula for these solutions. An example for the problem that has infinitely many solutions is constructed.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100145"},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000119/pdfft?md5=fe96a491c51b2a83cd2df8741cd75203&pid=1-s2.0-S2666657X24000119-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140807543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hexagonal finite differences for the two-dimensional variable coefficient Poisson equation 二维变系数泊松方程的六边形有限差分
Pub Date : 2024-04-26 DOI: 10.1016/j.exco.2024.100144
R. Itza Balam , M. Uh Zapata , U. Iturrarán-Viveros

For many years, finite differences in hexagonal grids have been developed to solve elliptic problems such as the Poisson and Helmholtz equations. However, these schemes are limited to constant coefficients, which reduces their usefulness in many applications. The main challenge is accurately approximating the diffusive term. This paper presents examples of both successful and unsuccessful attempts to obtain accurate finite differences based on a hexagonal stencil with equilateral triangles to approximate two-dimensional Poisson equations. Local truncation error analysis reveals that a second-order scheme can be achieved if the derivative of the diffusive coefficient is included. Finally, we provide numerical examples to verify the accuracy of the proposed methods.

多年来,人们开发了六边形网格有限差分法来解决泊松方程和亥姆霍兹方程等椭圆问题。然而,这些方案仅限于常数系数,这降低了它们在许多应用中的实用性。主要的挑战在于精确逼近扩散项。本文举例说明了基于等边三角形的六边形模版逼近二维泊松方程以获得精确有限差分的成功和失败尝试。局部截断误差分析表明,如果包含扩散系数的导数,就可以实现二阶方案。最后,我们提供了数值示例来验证所提方法的准确性。
{"title":"Hexagonal finite differences for the two-dimensional variable coefficient Poisson equation","authors":"R. Itza Balam ,&nbsp;M. Uh Zapata ,&nbsp;U. Iturrarán-Viveros","doi":"10.1016/j.exco.2024.100144","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100144","url":null,"abstract":"<div><p>For many years, finite differences in hexagonal grids have been developed to solve elliptic problems such as the Poisson and Helmholtz equations. However, these schemes are limited to constant coefficients, which reduces their usefulness in many applications. The main challenge is accurately approximating the diffusive term. This paper presents examples of both successful and unsuccessful attempts to obtain accurate finite differences based on a hexagonal stencil with equilateral triangles to approximate two-dimensional Poisson equations. Local truncation error analysis reveals that a second-order scheme can be achieved if the derivative of the diffusive coefficient is included. Finally, we provide numerical examples to verify the accuracy of the proposed methods.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100144"},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000107/pdfft?md5=bd79b118d40b9d2dc1de56be1a5d51b9&pid=1-s2.0-S2666657X24000107-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assemblies as semigroups 作为半群的装配体
Pub Date : 2024-03-20 DOI: 10.1016/j.exco.2024.100143
Ulderico Dardano , Bruno Dinis , Giuseppina Terzo

In this paper we give an algebraic characterization of assemblies in terms of bands of groups. We also consider substructures and homomorphisms of assemblies. We give many examples and counterexamples.

在本文中,我们用群带给出了集合的代数特征。我们还考虑了集合的子结构和同态。我们给出了许多例子和反例。
{"title":"Assemblies as semigroups","authors":"Ulderico Dardano ,&nbsp;Bruno Dinis ,&nbsp;Giuseppina Terzo","doi":"10.1016/j.exco.2024.100143","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100143","url":null,"abstract":"<div><p>In this paper we give an algebraic characterization of assemblies in terms of bands of groups. We also consider substructures and homomorphisms of assemblies. We give many examples and counterexamples.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100143"},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000090/pdfft?md5=cb668f90949bc416ea00c880ec4aa3e0&pid=1-s2.0-S2666657X24000090-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140180647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A closer look at some new lower bounds on the minimum singular value of a matrix 细看矩阵最小奇异值的一些新下限
Pub Date : 2024-02-26 DOI: 10.1016/j.exco.2024.100142
Avleen Kaur , S.H. Lui

There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, P+Q, in relation to the eigenvalues of P and Q. Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, λmin(P+Q), under the conditions that matrices P and Q are symmetric positive semi-definite and their sum P+Q is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices P and Q, which are denoted by R(P) and R(Q), respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on λmin(P+Q) is the distinction of the case where R(P) and R(Q) have no principal angles between 0 and π2. This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace R(Q), which is employed to formulate the lower bounds for λmin(P+Q). At last, an example that showcases the potential for improving these two lower bounds is presented.

最近,作者提出了两个关于最小特征值 λmin(P+Q) 的新下限,条件是矩阵 P 和 Q 是对称正半有穷数,并且它们的和 P+Q 是非奇异值。这些界限依赖于矩阵 P 和 Q 的范围空间之间的弗里德里希角,分别用 R(P) 和 R(Q) 表示。此外,这两个结果还推导出了全秩矩阵最小奇异值的几个新下界。关于 λmin(P+Q) 的两个新下界的一个重要方面是区分了 R(P) 和 R(Q) 在 0 和 π2 之间没有主角的情况。本研究对上述情况进行了解释,并对符合特定标准的所有矩阵进行了分类。此外,我们还深入探讨了为子空间 R(Q) 选择分解方法的原理,并利用该分解方法制定了 λmin(P+Q) 的下限。最后,我们将举例说明改进这两个下界的可能性。
{"title":"A closer look at some new lower bounds on the minimum singular value of a matrix","authors":"Avleen Kaur ,&nbsp;S.H. Lui","doi":"10.1016/j.exco.2024.100142","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100142","url":null,"abstract":"<div><p>There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span>, in relation to the eigenvalues of <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>. Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, under the conditions that matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span> are symmetric positive semi-definite and their sum <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span> is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>, which are denoted by <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> is the distinction of the case where <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> have no principal angles between 0 and <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, which is employed to formulate the lower bounds for <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>. At last, an example that showcases the potential for improving these two lower bounds is presented.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000089/pdfft?md5=0c2ae22f7c329a636b6ee13795d2840d&pid=1-s2.0-S2666657X24000089-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Examples and Counterexamples
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1