首页 > 最新文献

Examples and Counterexamples最新文献

英文 中文
Studies in fractal–fractional operators with examples 分形-分数算子研究与实例
Pub Date : 2024-06-29 DOI: 10.1016/j.exco.2024.100148
Rabha W. Ibrahim

By using the generalization of the gamma function (p-gamma function: Γp(.)), we introduce a generalization of the fractal–fractional calculus which is called p-fractal fractional calculus. We extend the proposed operators into the symmetric complex domain, specifically the open unit disk. Normalization for each operator is formulated. This allows us to explore the most important geometric properties. Examples are illustrated including the basic power functions.

利用伽马函数的广义化(p-伽马函数:Γp(.)),我们引入了分形-分形微积分的广义,称为 p 分形-分形微积分。我们将提出的算子扩展到对称复数域,特别是开放单位盘。我们对每个算子进行了归一化处理。这使我们能够探索最重要的几何特性。示例包括基本幂函数。
{"title":"Studies in fractal–fractional operators with examples","authors":"Rabha W. Ibrahim","doi":"10.1016/j.exco.2024.100148","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100148","url":null,"abstract":"<div><p>By using the generalization of the gamma function (<span><math><mi>p</mi></math></span>-gamma function: <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mo>.</mo><mo>)</mo></mrow></mrow></math></span>), we introduce a generalization of the fractal–fractional calculus which is called <span><math><mi>p</mi></math></span>-fractal fractional calculus. We extend the proposed operators into the symmetric complex domain, specifically the open unit disk. Normalization for each operator is formulated. This allows us to explore the most important geometric properties. Examples are illustrated including the basic power functions.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100148"},"PeriodicalIF":0.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000144/pdfft?md5=eb86f085d4d25f908eda02f5243db74c&pid=1-s2.0-S2666657X24000144-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the extension of quadrant dependence 关于象限依存性的扩展
Pub Date : 2024-06-01 DOI: 10.1016/j.exco.2024.100146
João Lita da Silva

In this short note, it is propounded an extension for quadrant dependence, and shown that some of the original proprieties of this popular concept remain valid, while others are necessarily generalized. A second Borel–Cantelli lemma due to Petrov (Statist. Probab. Lett. 58: 283–286, 2002) is revisited for events enjoying this new dependence notion and demonstrated by means of simpler arguments.

在这篇短文中,我们提出了象限依赖性的扩展,并证明了这一流行概念的某些原始特性仍然有效,而另一些特性则必须加以概括。本文还重新探讨了 Petrov 提出的第二个 Borel-Cantelli Lemma (Statist. Probab. Lett. 58: 283-286, 2002),并通过更简单的论证证明了享有这一新依赖性概念的事件。
{"title":"On the extension of quadrant dependence","authors":"João Lita da Silva","doi":"10.1016/j.exco.2024.100146","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100146","url":null,"abstract":"<div><p>In this short note, it is propounded an extension for quadrant dependence, and shown that some of the original proprieties of this popular concept remain valid, while others are necessarily generalized. A second Borel–Cantelli lemma due to Petrov (Statist. Probab. Lett. 58: 283–286, 2002) is revisited for events enjoying this new dependence notion and demonstrated by means of simpler arguments.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100146"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000120/pdfft?md5=7ab76f0ec02449bb41d1ed97e3dbd4c2&pid=1-s2.0-S2666657X24000120-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence conditions for 2-periodic solutions to a non-homogeneous differential equations with piecewise constant argument 带片断常数参数的非均质微分方程 2 周期解的存在条件
Pub Date : 2024-04-29 DOI: 10.1016/j.exco.2024.100145
Mukhiddin I. Muminov , Tirkash A. Radjabov

This paper provides a method of finding 2-periodical solutions for the first-order non-homogeneous differential equations with piecewise constant arguments. All existence conditions are described for 2-periodical solutions and obtained explicit formula for these solutions. An example for the problem that has infinitely many solutions is constructed.

本文提供了一种为具有片常数参数的一阶非均质微分方程寻找 2 周期解的方法。描述了二周期解的所有存在条件,并获得了这些解的明确公式。还构建了一个具有无穷多个解的问题实例。
{"title":"Existence conditions for 2-periodic solutions to a non-homogeneous differential equations with piecewise constant argument","authors":"Mukhiddin I. Muminov ,&nbsp;Tirkash A. Radjabov","doi":"10.1016/j.exco.2024.100145","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100145","url":null,"abstract":"<div><p>This paper provides a method of finding 2-periodical solutions for the first-order non-homogeneous differential equations with piecewise constant arguments. All existence conditions are described for 2-periodical solutions and obtained explicit formula for these solutions. An example for the problem that has infinitely many solutions is constructed.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100145"},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000119/pdfft?md5=fe96a491c51b2a83cd2df8741cd75203&pid=1-s2.0-S2666657X24000119-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140807543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hexagonal finite differences for the two-dimensional variable coefficient Poisson equation 二维变系数泊松方程的六边形有限差分
Pub Date : 2024-04-26 DOI: 10.1016/j.exco.2024.100144
R. Itza Balam , M. Uh Zapata , U. Iturrarán-Viveros

For many years, finite differences in hexagonal grids have been developed to solve elliptic problems such as the Poisson and Helmholtz equations. However, these schemes are limited to constant coefficients, which reduces their usefulness in many applications. The main challenge is accurately approximating the diffusive term. This paper presents examples of both successful and unsuccessful attempts to obtain accurate finite differences based on a hexagonal stencil with equilateral triangles to approximate two-dimensional Poisson equations. Local truncation error analysis reveals that a second-order scheme can be achieved if the derivative of the diffusive coefficient is included. Finally, we provide numerical examples to verify the accuracy of the proposed methods.

多年来,人们开发了六边形网格有限差分法来解决泊松方程和亥姆霍兹方程等椭圆问题。然而,这些方案仅限于常数系数,这降低了它们在许多应用中的实用性。主要的挑战在于精确逼近扩散项。本文举例说明了基于等边三角形的六边形模版逼近二维泊松方程以获得精确有限差分的成功和失败尝试。局部截断误差分析表明,如果包含扩散系数的导数,就可以实现二阶方案。最后,我们提供了数值示例来验证所提方法的准确性。
{"title":"Hexagonal finite differences for the two-dimensional variable coefficient Poisson equation","authors":"R. Itza Balam ,&nbsp;M. Uh Zapata ,&nbsp;U. Iturrarán-Viveros","doi":"10.1016/j.exco.2024.100144","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100144","url":null,"abstract":"<div><p>For many years, finite differences in hexagonal grids have been developed to solve elliptic problems such as the Poisson and Helmholtz equations. However, these schemes are limited to constant coefficients, which reduces their usefulness in many applications. The main challenge is accurately approximating the diffusive term. This paper presents examples of both successful and unsuccessful attempts to obtain accurate finite differences based on a hexagonal stencil with equilateral triangles to approximate two-dimensional Poisson equations. Local truncation error analysis reveals that a second-order scheme can be achieved if the derivative of the diffusive coefficient is included. Finally, we provide numerical examples to verify the accuracy of the proposed methods.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100144"},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000107/pdfft?md5=bd79b118d40b9d2dc1de56be1a5d51b9&pid=1-s2.0-S2666657X24000107-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assemblies as semigroups 作为半群的装配体
Pub Date : 2024-03-20 DOI: 10.1016/j.exco.2024.100143
Ulderico Dardano , Bruno Dinis , Giuseppina Terzo

In this paper we give an algebraic characterization of assemblies in terms of bands of groups. We also consider substructures and homomorphisms of assemblies. We give many examples and counterexamples.

在本文中,我们用群带给出了集合的代数特征。我们还考虑了集合的子结构和同态。我们给出了许多例子和反例。
{"title":"Assemblies as semigroups","authors":"Ulderico Dardano ,&nbsp;Bruno Dinis ,&nbsp;Giuseppina Terzo","doi":"10.1016/j.exco.2024.100143","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100143","url":null,"abstract":"<div><p>In this paper we give an algebraic characterization of assemblies in terms of bands of groups. We also consider substructures and homomorphisms of assemblies. We give many examples and counterexamples.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100143"},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000090/pdfft?md5=cb668f90949bc416ea00c880ec4aa3e0&pid=1-s2.0-S2666657X24000090-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140180647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A closer look at some new lower bounds on the minimum singular value of a matrix 细看矩阵最小奇异值的一些新下限
Pub Date : 2024-02-26 DOI: 10.1016/j.exco.2024.100142
Avleen Kaur , S.H. Lui

There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, P+Q, in relation to the eigenvalues of P and Q. Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, λmin(P+Q), under the conditions that matrices P and Q are symmetric positive semi-definite and their sum P+Q is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices P and Q, which are denoted by R(P) and R(Q), respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on λmin(P+Q) is the distinction of the case where R(P) and R(Q) have no principal angles between 0 and π2. This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace R(Q), which is employed to formulate the lower bounds for λmin(P+Q). At last, an example that showcases the potential for improving these two lower bounds is presented.

最近,作者提出了两个关于最小特征值 λmin(P+Q) 的新下限,条件是矩阵 P 和 Q 是对称正半有穷数,并且它们的和 P+Q 是非奇异值。这些界限依赖于矩阵 P 和 Q 的范围空间之间的弗里德里希角,分别用 R(P) 和 R(Q) 表示。此外,这两个结果还推导出了全秩矩阵最小奇异值的几个新下界。关于 λmin(P+Q) 的两个新下界的一个重要方面是区分了 R(P) 和 R(Q) 在 0 和 π2 之间没有主角的情况。本研究对上述情况进行了解释,并对符合特定标准的所有矩阵进行了分类。此外,我们还深入探讨了为子空间 R(Q) 选择分解方法的原理,并利用该分解方法制定了 λmin(P+Q) 的下限。最后,我们将举例说明改进这两个下界的可能性。
{"title":"A closer look at some new lower bounds on the minimum singular value of a matrix","authors":"Avleen Kaur ,&nbsp;S.H. Lui","doi":"10.1016/j.exco.2024.100142","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100142","url":null,"abstract":"<div><p>There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span>, in relation to the eigenvalues of <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>. Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, under the conditions that matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span> are symmetric positive semi-definite and their sum <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span> is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>, which are denoted by <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> is the distinction of the case where <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> have no principal angles between 0 and <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, which is employed to formulate the lower bounds for <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>. At last, an example that showcases the potential for improving these two lower bounds is presented.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000089/pdfft?md5=0c2ae22f7c329a636b6ee13795d2840d&pid=1-s2.0-S2666657X24000089-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The locating chromatic number of generalized Petersen graphs with small order 小阶广义彼得森图的定位色度数
Pub Date : 2024-02-17 DOI: 10.1016/j.exco.2024.100141
Redha Sakri , Moncef Abbas

It was conjectured by Asmiati (2018) that the generalized Petersen graph Pn,k has a locating chromatic number 4 if and only if (noddandk=1) or (n=4andk=2). In this paper, we give a negative answer to the conjecture posed by Asmiati. As a consequence, we are able to exhibit many counterexamples to the recent conjecture proposed, by proving that if (5n12) and (2kn12) and (n,k)(12,5), then χLP(n,k)=4.

Asmiati(2018)猜想,广义彼得森图Pn,k的定位色度数为4,且仅当(noddandk=1)或(n=4andk=2)。在本文中,我们对阿斯米亚蒂提出的猜想给出了否定的答案。因此,我们能够通过证明如果(5≤n≤12)和(2≤k≤⌊n-12⌋)并且(n,k)≠(12,5),那么χLP(n,k)=4,来展示最近提出的猜想的许多反例。
{"title":"The locating chromatic number of generalized Petersen graphs with small order","authors":"Redha Sakri ,&nbsp;Moncef Abbas","doi":"10.1016/j.exco.2024.100141","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100141","url":null,"abstract":"<div><p>It was conjectured by Asmiati (2018) that the generalized Petersen graph <span><math><mrow><mi>P</mi><mfenced><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></mfenced></mrow></math></span> has a locating chromatic number 4 if and only if <span><math><mrow><mo>(</mo><mi>n</mi><mspace></mspace><mi>o</mi><mi>d</mi><mi>d</mi><mspace></mspace><mi>a</mi><mi>n</mi><mi>d</mi><mspace></mspace><mi>k</mi><mo>=</mo><mn>1</mn><mo>)</mo></mrow></math></span> or <span><math><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>4</mn><mspace></mspace><mi>a</mi><mi>n</mi><mi>d</mi><mspace></mspace><mi>k</mi><mo>=</mo><mn>2</mn><mo>)</mo></mrow></math></span>. In this paper, we give a negative answer to the conjecture posed by Asmiati. As a consequence, we are able to exhibit many counterexamples to the recent conjecture proposed, by proving that if <span><math><mrow><mo>(</mo><mn>5</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>12</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>)</mo></mrow></math></span> and <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>≠</mo><mrow><mo>(</mo><mn>12</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span>, then <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>L</mi></mrow></msub></mrow></msub><mfenced><mrow><mi>P</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></mfenced><mo>=</mo><mn>4</mn></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100141"},"PeriodicalIF":0.0,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000077/pdfft?md5=0c1ce0bbc9c76ab3ef2eb212405914a8&pid=1-s2.0-S2666657X24000077-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trifferent codes with small lengths 长度较小的不同代码
Pub Date : 2024-02-07 DOI: 10.1016/j.exco.2024.100139
Sascha Kurz

A code C{0,1,2}n of length n is called trifferent if for any three distinct elements of C there exists a coordinate in which they all differ. By T(n) we denote the maximum cardinality of trifferent codes with length n. The values T(5)=10 and T(6)=13 were recently determined (Fiore et al., 2022). Here we determine T(7)=16, T(8)=20, and T(9)=27. For the latter case n=9 there also exist linear codes attaining the maximum possible cardinality 27.

长度为 n 的代码 C⊆{0,1,2}n,如果 C 的任意三个不同元素都存在一个坐标,且它们都不同,则称为三不同代码。T(5)=10 和 T(6)=13 的值是最近确定的(Fiore 等人,2022 年)。在此,我们确定了 T(7)=16、T(8)=20 和 T(9)=27。对于后一种情况 n=9,也存在达到最大可能心数 27 的线性编码。
{"title":"Trifferent codes with small lengths","authors":"Sascha Kurz","doi":"10.1016/j.exco.2024.100139","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100139","url":null,"abstract":"<div><p>A code <span><math><mrow><mi>C</mi><mo>⊆</mo><msup><mrow><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> of length <span><math><mi>n</mi></math></span> is called trifferent if for any three distinct elements of <span><math><mi>C</mi></math></span> there exists a coordinate in which they all differ. By <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> we denote the maximum cardinality of trifferent codes with length <span><math><mi>n</mi></math></span>. The values <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow><mo>=</mo><mn>10</mn></mrow></math></span> and <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mo>=</mo><mn>13</mn></mrow></math></span> were recently determined (Fiore et al., 2022). Here we determine <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow><mo>=</mo><mn>16</mn></mrow></math></span>, <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow><mo>=</mo><mn>20</mn></mrow></math></span>, and <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow><mo>=</mo><mn>27</mn></mrow></math></span>. For the latter case <span><math><mrow><mi>n</mi><mo>=</mo><mn>9</mn></mrow></math></span> there also exist linear codes attaining the maximum possible cardinality 27.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100139"},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000053/pdfft?md5=6d4ca67bb2a4151b63492ee97290bf7c&pid=1-s2.0-S2666657X24000053-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of novel analytical solutions of boundary layer equation via the modified sumudu transform 通过修正的苏木杜变换探索边界层方程的新型解析解
Pub Date : 2024-02-04 DOI: 10.1016/j.exco.2024.100140
Shailesh A. Bhanotar

The research introduces the Modified Sumudu Decomposition Method (MSDM) as a novel approach for solving non-linear ordinary differential equations. Stemming from the Sumudu Transformation (ST), proposed by Watugala in the 1990s, MSDM demonstrates its efficacy through the solution of a specific third-order non-homogeneous nonlinear ordinary differential equation. This method is particularly highlighted for its application in fluid mechanics, specifically addressing a boundary layer problem. Furthermore, the study employs Pade´ Approximants to evaluate a crucial parameter, ρ=φ''(0), and compares the results with other established methods, including Modified Laplace Decomposition Method (MLDM), Modified Adomian Decomposition Method (MADM), Modified Variational Iteration Method (MVIM), and the Homotopy Perturbation Method (HPM). The findings not only contribute to the advancement of mathematical techniques for solving complex differential equations but also provide a comparative analysis, elucidating the strengths and limitations of different methodologies. This research is anticipated to have significant implications for researchers and practitioners in the field, offering a valuable toolkit for tackling a wide range of mathematical modeling challenges.

本研究介绍了修正苏木杜分解法(MSDM),这是一种求解非线性常微分方程的新方法。MSDM 源自 Watugala 于 20 世纪 90 年代提出的 Sumudu 变换 (ST),通过求解特定的三阶非均质非线性常微分方程证明了其功效。该方法在流体力学中的应用尤为突出,特别是在解决边界层问题时。此外,研究还采用帕德近似法来评估关键参数 ρ=φ''(0),并将结果与其他成熟方法进行比较,包括修正拉普拉斯分解法 (MLDM)、修正阿多米分解法 (MADM)、修正变异迭代法 (MVIM) 和同调扰动法 (HPM)。研究结果不仅有助于提高解决复杂微分方程的数学技术,还提供了比较分析,阐明了不同方法的优势和局限性。预计这项研究将对该领域的研究人员和从业人员产生重大影响,为应对各种数学建模挑战提供宝贵的工具包。
{"title":"Exploration of novel analytical solutions of boundary layer equation via the modified sumudu transform","authors":"Shailesh A. Bhanotar","doi":"10.1016/j.exco.2024.100140","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100140","url":null,"abstract":"<div><p>The research introduces the Modified Sumudu Decomposition Method (MSDM) as a novel approach for solving non-linear ordinary differential equations. Stemming from the Sumudu Transformation (ST), proposed by Watugala in the 1990s, MSDM demonstrates its efficacy through the solution of a specific third-order non-homogeneous nonlinear ordinary differential equation. This method is particularly highlighted for its application in fluid mechanics, specifically addressing a boundary layer problem. Furthermore, the study employs Pade´ Approximants to evaluate a crucial parameter, ρ=φ''(0), and compares the results with other established methods, including Modified Laplace Decomposition Method (MLDM), Modified Adomian Decomposition Method (MADM), Modified Variational Iteration Method (MVIM), and the Homotopy Perturbation Method (HPM). The findings not only contribute to the advancement of mathematical techniques for solving complex differential equations but also provide a comparative analysis, elucidating the strengths and limitations of different methodologies. This research is anticipated to have significant implications for researchers and practitioners in the field, offering a valuable toolkit for tackling a wide range of mathematical modeling challenges.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100140"},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000065/pdfft?md5=1031fe8a65f66ccd5bb3e0c15042941d&pid=1-s2.0-S2666657X24000065-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139714721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An arithmetic term for the factorial function 阶乘函数的算术项
Pub Date : 2024-02-01 DOI: 10.1016/j.exco.2024.100136
Mihai Prunescu , Lorenzo Sauras-Altuzarra

As proved by Marchenkov and Mazzanti, every Kalmar function can be represented by arithmetic terms. We display one of such terms to represent the factorial function, and as a consequence, we get an example of an arithmetic term which represents a function whose image is the set of primes.

正如马琴科夫和马赞提所证明的,每个卡尔马函数都可以用算术项来表示。我们用其中一个算术项来表示阶乘函数,从而得到一个算术项的例子,它表示的函数的图像是素数集。
{"title":"An arithmetic term for the factorial function","authors":"Mihai Prunescu ,&nbsp;Lorenzo Sauras-Altuzarra","doi":"10.1016/j.exco.2024.100136","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100136","url":null,"abstract":"<div><p>As proved by Marchenkov and Mazzanti, every Kalmar function can be represented by arithmetic terms. We display one of such terms to represent the factorial function, and as a consequence, we get an example of an arithmetic term which represents a function whose image is the set of primes.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000028/pdfft?md5=14034c2031c53802d6653cf6837b9961&pid=1-s2.0-S2666657X24000028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139674621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Examples and Counterexamples
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1