Pub Date : 2024-06-29DOI: 10.1016/j.exco.2024.100148
Rabha W. Ibrahim
By using the generalization of the gamma function (-gamma function: ), we introduce a generalization of the fractal–fractional calculus which is called -fractal fractional calculus. We extend the proposed operators into the symmetric complex domain, specifically the open unit disk. Normalization for each operator is formulated. This allows us to explore the most important geometric properties. Examples are illustrated including the basic power functions.
利用伽马函数的广义化(p-伽马函数:Γp(.)),我们引入了分形-分形微积分的广义,称为 p 分形-分形微积分。我们将提出的算子扩展到对称复数域,特别是开放单位盘。我们对每个算子进行了归一化处理。这使我们能够探索最重要的几何特性。示例包括基本幂函数。
{"title":"Studies in fractal–fractional operators with examples","authors":"Rabha W. Ibrahim","doi":"10.1016/j.exco.2024.100148","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100148","url":null,"abstract":"<div><p>By using the generalization of the gamma function (<span><math><mi>p</mi></math></span>-gamma function: <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mo>.</mo><mo>)</mo></mrow></mrow></math></span>), we introduce a generalization of the fractal–fractional calculus which is called <span><math><mi>p</mi></math></span>-fractal fractional calculus. We extend the proposed operators into the symmetric complex domain, specifically the open unit disk. Normalization for each operator is formulated. This allows us to explore the most important geometric properties. Examples are illustrated including the basic power functions.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100148"},"PeriodicalIF":0.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000144/pdfft?md5=eb86f085d4d25f908eda02f5243db74c&pid=1-s2.0-S2666657X24000144-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.exco.2024.100146
João Lita da Silva
In this short note, it is propounded an extension for quadrant dependence, and shown that some of the original proprieties of this popular concept remain valid, while others are necessarily generalized. A second Borel–Cantelli lemma due to Petrov (Statist. Probab. Lett. 58: 283–286, 2002) is revisited for events enjoying this new dependence notion and demonstrated by means of simpler arguments.
{"title":"On the extension of quadrant dependence","authors":"João Lita da Silva","doi":"10.1016/j.exco.2024.100146","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100146","url":null,"abstract":"<div><p>In this short note, it is propounded an extension for quadrant dependence, and shown that some of the original proprieties of this popular concept remain valid, while others are necessarily generalized. A second Borel–Cantelli lemma due to Petrov (Statist. Probab. Lett. 58: 283–286, 2002) is revisited for events enjoying this new dependence notion and demonstrated by means of simpler arguments.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100146"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000120/pdfft?md5=7ab76f0ec02449bb41d1ed97e3dbd4c2&pid=1-s2.0-S2666657X24000120-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1016/j.exco.2024.100145
Mukhiddin I. Muminov , Tirkash A. Radjabov
This paper provides a method of finding 2-periodical solutions for the first-order non-homogeneous differential equations with piecewise constant arguments. All existence conditions are described for 2-periodical solutions and obtained explicit formula for these solutions. An example for the problem that has infinitely many solutions is constructed.
{"title":"Existence conditions for 2-periodic solutions to a non-homogeneous differential equations with piecewise constant argument","authors":"Mukhiddin I. Muminov , Tirkash A. Radjabov","doi":"10.1016/j.exco.2024.100145","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100145","url":null,"abstract":"<div><p>This paper provides a method of finding 2-periodical solutions for the first-order non-homogeneous differential equations with piecewise constant arguments. All existence conditions are described for 2-periodical solutions and obtained explicit formula for these solutions. An example for the problem that has infinitely many solutions is constructed.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100145"},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000119/pdfft?md5=fe96a491c51b2a83cd2df8741cd75203&pid=1-s2.0-S2666657X24000119-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140807543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1016/j.exco.2024.100144
R. Itza Balam , M. Uh Zapata , U. Iturrarán-Viveros
For many years, finite differences in hexagonal grids have been developed to solve elliptic problems such as the Poisson and Helmholtz equations. However, these schemes are limited to constant coefficients, which reduces their usefulness in many applications. The main challenge is accurately approximating the diffusive term. This paper presents examples of both successful and unsuccessful attempts to obtain accurate finite differences based on a hexagonal stencil with equilateral triangles to approximate two-dimensional Poisson equations. Local truncation error analysis reveals that a second-order scheme can be achieved if the derivative of the diffusive coefficient is included. Finally, we provide numerical examples to verify the accuracy of the proposed methods.
{"title":"Hexagonal finite differences for the two-dimensional variable coefficient Poisson equation","authors":"R. Itza Balam , M. Uh Zapata , U. Iturrarán-Viveros","doi":"10.1016/j.exco.2024.100144","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100144","url":null,"abstract":"<div><p>For many years, finite differences in hexagonal grids have been developed to solve elliptic problems such as the Poisson and Helmholtz equations. However, these schemes are limited to constant coefficients, which reduces their usefulness in many applications. The main challenge is accurately approximating the diffusive term. This paper presents examples of both successful and unsuccessful attempts to obtain accurate finite differences based on a hexagonal stencil with equilateral triangles to approximate two-dimensional Poisson equations. Local truncation error analysis reveals that a second-order scheme can be achieved if the derivative of the diffusive coefficient is included. Finally, we provide numerical examples to verify the accuracy of the proposed methods.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100144"},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000107/pdfft?md5=bd79b118d40b9d2dc1de56be1a5d51b9&pid=1-s2.0-S2666657X24000107-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20DOI: 10.1016/j.exco.2024.100143
Ulderico Dardano , Bruno Dinis , Giuseppina Terzo
In this paper we give an algebraic characterization of assemblies in terms of bands of groups. We also consider substructures and homomorphisms of assemblies. We give many examples and counterexamples.
{"title":"Assemblies as semigroups","authors":"Ulderico Dardano , Bruno Dinis , Giuseppina Terzo","doi":"10.1016/j.exco.2024.100143","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100143","url":null,"abstract":"<div><p>In this paper we give an algebraic characterization of assemblies in terms of bands of groups. We also consider substructures and homomorphisms of assemblies. We give many examples and counterexamples.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100143"},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000090/pdfft?md5=cb668f90949bc416ea00c880ec4aa3e0&pid=1-s2.0-S2666657X24000090-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140180647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1016/j.exco.2024.100142
Avleen Kaur , S.H. Lui
There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, , in relation to the eigenvalues of and . Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, , under the conditions that matrices and are symmetric positive semi-definite and their sum is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices and , which are denoted by and , respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on is the distinction of the case where and have no principal angles between 0 and . This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace , which is employed to formulate the lower bounds for . At last, an example that showcases the potential for improving these two lower bounds is presented.
{"title":"A closer look at some new lower bounds on the minimum singular value of a matrix","authors":"Avleen Kaur , S.H. Lui","doi":"10.1016/j.exco.2024.100142","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100142","url":null,"abstract":"<div><p>There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span>, in relation to the eigenvalues of <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>. Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, under the conditions that matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span> are symmetric positive semi-definite and their sum <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span> is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>, which are denoted by <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> is the distinction of the case where <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> have no principal angles between 0 and <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, which is employed to formulate the lower bounds for <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>. At last, an example that showcases the potential for improving these two lower bounds is presented.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000089/pdfft?md5=0c2ae22f7c329a636b6ee13795d2840d&pid=1-s2.0-S2666657X24000089-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-17DOI: 10.1016/j.exco.2024.100141
Redha Sakri , Moncef Abbas
It was conjectured by Asmiati (2018) that the generalized Petersen graph has a locating chromatic number 4 if and only if or . In this paper, we give a negative answer to the conjecture posed by Asmiati. As a consequence, we are able to exhibit many counterexamples to the recent conjecture proposed, by proving that if and and , then .
{"title":"The locating chromatic number of generalized Petersen graphs with small order","authors":"Redha Sakri , Moncef Abbas","doi":"10.1016/j.exco.2024.100141","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100141","url":null,"abstract":"<div><p>It was conjectured by Asmiati (2018) that the generalized Petersen graph <span><math><mrow><mi>P</mi><mfenced><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></mfenced></mrow></math></span> has a locating chromatic number 4 if and only if <span><math><mrow><mo>(</mo><mi>n</mi><mspace></mspace><mi>o</mi><mi>d</mi><mi>d</mi><mspace></mspace><mi>a</mi><mi>n</mi><mi>d</mi><mspace></mspace><mi>k</mi><mo>=</mo><mn>1</mn><mo>)</mo></mrow></math></span> or <span><math><mrow><mo>(</mo><mi>n</mi><mo>=</mo><mn>4</mn><mspace></mspace><mi>a</mi><mi>n</mi><mi>d</mi><mspace></mspace><mi>k</mi><mo>=</mo><mn>2</mn><mo>)</mo></mrow></math></span>. In this paper, we give a negative answer to the conjecture posed by Asmiati. As a consequence, we are able to exhibit many counterexamples to the recent conjecture proposed, by proving that if <span><math><mrow><mo>(</mo><mn>5</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>12</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>)</mo></mrow></math></span> and <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>≠</mo><mrow><mo>(</mo><mn>12</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span>, then <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>L</mi></mrow></msub></mrow></msub><mfenced><mrow><mi>P</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></mfenced><mo>=</mo><mn>4</mn></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100141"},"PeriodicalIF":0.0,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000077/pdfft?md5=0c1ce0bbc9c76ab3ef2eb212405914a8&pid=1-s2.0-S2666657X24000077-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.1016/j.exco.2024.100139
Sascha Kurz
A code of length is called trifferent if for any three distinct elements of there exists a coordinate in which they all differ. By we denote the maximum cardinality of trifferent codes with length . The values and were recently determined (Fiore et al., 2022). Here we determine , , and . For the latter case there also exist linear codes attaining the maximum possible cardinality 27.
长度为 n 的代码 C⊆{0,1,2}n,如果 C 的任意三个不同元素都存在一个坐标,且它们都不同,则称为三不同代码。T(5)=10 和 T(6)=13 的值是最近确定的(Fiore 等人,2022 年)。在此,我们确定了 T(7)=16、T(8)=20 和 T(9)=27。对于后一种情况 n=9,也存在达到最大可能心数 27 的线性编码。
{"title":"Trifferent codes with small lengths","authors":"Sascha Kurz","doi":"10.1016/j.exco.2024.100139","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100139","url":null,"abstract":"<div><p>A code <span><math><mrow><mi>C</mi><mo>⊆</mo><msup><mrow><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> of length <span><math><mi>n</mi></math></span> is called trifferent if for any three distinct elements of <span><math><mi>C</mi></math></span> there exists a coordinate in which they all differ. By <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> we denote the maximum cardinality of trifferent codes with length <span><math><mi>n</mi></math></span>. The values <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow><mo>=</mo><mn>10</mn></mrow></math></span> and <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mo>=</mo><mn>13</mn></mrow></math></span> were recently determined (Fiore et al., 2022). Here we determine <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow><mo>=</mo><mn>16</mn></mrow></math></span>, <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow><mo>=</mo><mn>20</mn></mrow></math></span>, and <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow><mo>=</mo><mn>27</mn></mrow></math></span>. For the latter case <span><math><mrow><mi>n</mi><mo>=</mo><mn>9</mn></mrow></math></span> there also exist linear codes attaining the maximum possible cardinality 27.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100139"},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000053/pdfft?md5=6d4ca67bb2a4151b63492ee97290bf7c&pid=1-s2.0-S2666657X24000053-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-04DOI: 10.1016/j.exco.2024.100140
Shailesh A. Bhanotar
The research introduces the Modified Sumudu Decomposition Method (MSDM) as a novel approach for solving non-linear ordinary differential equations. Stemming from the Sumudu Transformation (ST), proposed by Watugala in the 1990s, MSDM demonstrates its efficacy through the solution of a specific third-order non-homogeneous nonlinear ordinary differential equation. This method is particularly highlighted for its application in fluid mechanics, specifically addressing a boundary layer problem. Furthermore, the study employs Pade´ Approximants to evaluate a crucial parameter, ρ=φ''(0), and compares the results with other established methods, including Modified Laplace Decomposition Method (MLDM), Modified Adomian Decomposition Method (MADM), Modified Variational Iteration Method (MVIM), and the Homotopy Perturbation Method (HPM). The findings not only contribute to the advancement of mathematical techniques for solving complex differential equations but also provide a comparative analysis, elucidating the strengths and limitations of different methodologies. This research is anticipated to have significant implications for researchers and practitioners in the field, offering a valuable toolkit for tackling a wide range of mathematical modeling challenges.
{"title":"Exploration of novel analytical solutions of boundary layer equation via the modified sumudu transform","authors":"Shailesh A. Bhanotar","doi":"10.1016/j.exco.2024.100140","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100140","url":null,"abstract":"<div><p>The research introduces the Modified Sumudu Decomposition Method (MSDM) as a novel approach for solving non-linear ordinary differential equations. Stemming from the Sumudu Transformation (ST), proposed by Watugala in the 1990s, MSDM demonstrates its efficacy through the solution of a specific third-order non-homogeneous nonlinear ordinary differential equation. This method is particularly highlighted for its application in fluid mechanics, specifically addressing a boundary layer problem. Furthermore, the study employs Pade´ Approximants to evaluate a crucial parameter, ρ=φ''(0), and compares the results with other established methods, including Modified Laplace Decomposition Method (MLDM), Modified Adomian Decomposition Method (MADM), Modified Variational Iteration Method (MVIM), and the Homotopy Perturbation Method (HPM). The findings not only contribute to the advancement of mathematical techniques for solving complex differential equations but also provide a comparative analysis, elucidating the strengths and limitations of different methodologies. This research is anticipated to have significant implications for researchers and practitioners in the field, offering a valuable toolkit for tackling a wide range of mathematical modeling challenges.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100140"},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000065/pdfft?md5=1031fe8a65f66ccd5bb3e0c15042941d&pid=1-s2.0-S2666657X24000065-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139714721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.exco.2024.100136
Mihai Prunescu , Lorenzo Sauras-Altuzarra
As proved by Marchenkov and Mazzanti, every Kalmar function can be represented by arithmetic terms. We display one of such terms to represent the factorial function, and as a consequence, we get an example of an arithmetic term which represents a function whose image is the set of primes.
{"title":"An arithmetic term for the factorial function","authors":"Mihai Prunescu , Lorenzo Sauras-Altuzarra","doi":"10.1016/j.exco.2024.100136","DOIUrl":"https://doi.org/10.1016/j.exco.2024.100136","url":null,"abstract":"<div><p>As proved by Marchenkov and Mazzanti, every Kalmar function can be represented by arithmetic terms. We display one of such terms to represent the factorial function, and as a consequence, we get an example of an arithmetic term which represents a function whose image is the set of primes.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000028/pdfft?md5=14034c2031c53802d6653cf6837b9961&pid=1-s2.0-S2666657X24000028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139674621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}