首页 > 最新文献

Examples and Counterexamples最新文献

英文 中文
An upper bound for difference of energies of a graph and its complement 图及其补码能量差的上界
Pub Date : 2023-01-21 DOI: 10.1016/j.exco.2023.100100
Harishchandra S. Ramane , B. Parvathalu , K. Ashoka

The A-energy of a graph G, denoted by EA(G), is defined as sum of the absolute values of eigenvalues of adjacency matrix of G. Nikiforov in Nikiforov (2016) proved that EA(G¯)EA(G)2μ¯1 and EA(G)EA(G¯)2μ1 for any graph G and posed a problem to find best possible upper bound for EA(G)EA(G¯), where μ1 and μ1¯ are the largest adjacency eigenvalues of G and its complement G¯ respectively. We attempt to provide an answer by giving an improved upper bound on a class of graphs where regular graphs become particular case. As a consequence, it is proved that there is no strongly regular graph with negative eigenvalues greater than 1. The obtained results also improves some of the other existing results.

图G的A能量,表示为EA(G),定义为G.Nikiforov(2016)中邻接矩阵的特征值的绝对值之和。证明了任何图G的EA(G’)−EA(G)≤2μ1和EA(G’)−EA(G)≤2µ1,并提出了一个问题,即寻找EA(G”−EA(G)的最佳可能上界,其中μ1和μ1分别是G及其补码G的最大邻接特征值。我们试图通过给出一类图的改进上界来提供答案,其中正则图成为特例。因此,证明了不存在负特征值大于−1的强正则图。所获得的结果还改进了其他一些现有结果。
{"title":"An upper bound for difference of energies of a graph and its complement","authors":"Harishchandra S. Ramane ,&nbsp;B. Parvathalu ,&nbsp;K. Ashoka","doi":"10.1016/j.exco.2023.100100","DOIUrl":"https://doi.org/10.1016/j.exco.2023.100100","url":null,"abstract":"<div><p>The <span><math><mi>A</mi></math></span>-energy of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is defined as sum of the absolute values of eigenvalues of adjacency matrix of <span><math><mi>G</mi></math></span>. Nikiforov in Nikiforov (2016) proved that <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mrow><mover><mrow><mi>μ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> for any graph <span><math><mi>G</mi></math></span> and posed a problem to find best possible upper bound for <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mover><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>¯</mo></mover></math></span> are the largest adjacency eigenvalues of <span><math><mi>G</mi></math></span> and its complement <span><math><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover></math></span> respectively. We attempt to provide an answer by giving an improved upper bound on a class of graphs where regular graphs become particular case. As a consequence, it is proved that there is no strongly regular graph with negative eigenvalues greater than <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span>. The obtained results also improves some of the other existing results.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial - Recent Fails and Findings of Numerical Methods in Mechanics 编辑-力学数值方法的最新失败与发现
Pub Date : 2022-12-31 DOI: 10.1016/j.exco.2022.100098
Fleurianne Bertrand, Katrin Mang
{"title":"Editorial - Recent Fails and Findings of Numerical Methods in Mechanics","authors":"Fleurianne Bertrand,&nbsp;Katrin Mang","doi":"10.1016/j.exco.2022.100098","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100098","url":null,"abstract":"","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All minimal [9,4]2-codes are hyperbolic quadrics 所有极小[9,4]2-码都是双曲二次曲面
Pub Date : 2022-12-22 DOI: 10.1016/j.exco.2022.100097
Valentino Smaldore

Minimal codes are being intensively studied in last years. [n,k]q-minimal linear codes are in bijection with strong blocking sets of size n in PG(k1,q) and a lower bound for the size of strong blocking sets is given by (k1)(q+1)n. In this note we show that all strong blocking sets of length 9 in PG(3,2) are the hyperbolic quadrics Q+(3,2).

在过去的几年里,人们对最小编码进行了深入的研究。在PG(k−1,q)中,[n,k]q-极小线性码与大小为n的强阻塞集是双射的,并且强阻塞集大小的下界由(k−l)(q+1)≤n给出。在这个注记中,我们证明了PG(3,2)中所有长度为9的强阻塞集都是双曲二次曲面Q+(3,2)。
{"title":"All minimal [9,4]2-codes are hyperbolic quadrics","authors":"Valentino Smaldore","doi":"10.1016/j.exco.2022.100097","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100097","url":null,"abstract":"<div><p>Minimal codes are being intensively studied in last years. <span><math><msub><mrow><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow></mrow><mrow><mi>q</mi></mrow></msub></math></span>-minimal linear codes are in bijection with strong blocking sets of size <span><math><mi>n</mi></math></span> in <span><math><mrow><mi>P</mi><mi>G</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and a lower bound for the size of strong blocking sets is given by <span><math><mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>≤</mo><mi>n</mi></mrow></math></span>. In this note we show that all strong blocking sets of length 9 in <span><math><mrow><mi>P</mi><mi>G</mi><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> are the hyperbolic quadrics <span><math><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Families of finite sets in which no set is covered by the union of the others 有限集族,其中没有集被其他集的并集覆盖
Pub Date : 2022-12-10 DOI: 10.1016/j.exco.2022.100095
Guillermo Alesandroni

Let be a finite nonempty family of finite nonempty sets. We prove the following: (1) satisfies the condition of the title if and only if for every pair of distinct subfamilies {A1,,Ar}, {B1,,Bs} of , i=1rAii=1sBi. (2) If satisfies the condition of the title, then the number of subsets of AA containing at least one set of is odd. We give two applications of these results, one to number theory and one to commutative algebra.

允许ℱ 是有限非空集的有限非空族。我们证明如下:(1)ℱ 满足标题的条件当且仅当对于的每一对不同的亚家族{A1,…,Ar},{B1,…,Bs}ℱ, ⋃i=1rAi≠i=1sBi。(2) 如果ℱ 满足标题的条件,则⋃A∈ℱ包含至少一组ℱ 很奇怪。我们给出了这些结果的两个应用,一个应用于数论,一个用于交换代数。
{"title":"Families of finite sets in which no set is covered by the union of the others","authors":"Guillermo Alesandroni","doi":"10.1016/j.exco.2022.100095","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100095","url":null,"abstract":"<div><p>Let <span><math><mi>ℱ</mi></math></span> be a finite nonempty family of finite nonempty sets. We prove the following: (1) <span><math><mi>ℱ</mi></math></span> satisfies the condition of the title if and only if for every pair of distinct subfamilies <span><math><mrow><mo>{</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></mrow></math></span>, <span><math><mrow><mo>{</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>}</mo></mrow></math></span> of <span><math><mi>ℱ</mi></math></span>, <span><math><mrow><munderover><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></munderover><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><munderover><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>. (2) If <span><math><mi>ℱ</mi></math></span> satisfies the condition of the title, then the number of subsets of <span><math><mrow><munder><mrow><mo>⋃</mo></mrow><mrow><mi>A</mi><mo>∈</mo><mi>ℱ</mi></mrow></munder><mi>A</mi></mrow></math></span> containing at least one set of <span><math><mi>ℱ</mi></math></span> is odd. We give two applications of these results, one to number theory and one to commutative algebra.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100095"},"PeriodicalIF":0.0,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Augmentation of magnetohydrodynamic nanofluid flow through a permeable stretching sheet employing Machine learning algorithm 利用机器学习算法增强磁流体力学纳米流体通过可渗透拉伸片的流动
Pub Date : 2022-12-09 DOI: 10.1016/j.exco.2022.100093
P. Priyadharshini, M. Vanitha Archana

An incompressible MHD nanofluid boundary layer flow over a vertical stretching permeable surface employing Buongiorno’s design investigated by considering the convective states. The Brownian motion and thermophoresis effects are used to implement the nanofluid model. Operating the similarity transmutations, to transform the governing partial differential equations into ordinary differential equations consisting of the momentum, energy, and concentration fields and later worked by using a program written together with the stiffness shifting in Wolfram Language. The consequences of various physical parameters on the velocity, temperature, and concentration fields are analyzed, such as magnetic parameter M, Brownian motion parameter Nb, thermophoresis parameter Nt, Lewis number Le, temperature Biot number Biθ, concentration Biot number Biϕ, and suction parameter fw. Furthermore, the Skin friction coefficient, local Nusselt, and local Sherwood numbers concerning magnetic parameter for various values of physical parameters (i.e. fw, Nb) are obtained graphically, then the outcome is validated with other recent works. Finally, introduced a new environment to employ machine learning by performing the sensitivity analysis based on the iterative method for predicting the Skin friction coefficient, reduced Nusselt number, and Sherwood number with respect to magnetic parameter for suction parameter and Brownian motion parameter. Machine learning algorithms provide a strong and quick data processing structure to enhance the actual research procedures and industrial application of fluid mechanics. These techniques have been upgraded and organized for fluid flow characteristics. The present optimization process has the potential for a new perspective on the metallurgical process, heat exchangers in electronics, and some medicinal applications.

采用Buongiorno的设计,通过考虑对流状态,研究了垂直拉伸可渗透表面上不可压缩的MHD纳米流体边界层流动。布朗运动和热泳效应被用来实现纳米流体模型。操作相似性嬗变,将控制偏微分方程转化为由动量场、能量场和浓度场组成的常微分方程,然后使用Wolfram语言编写的与刚度偏移一起编写的程序进行处理。分析了各种物理参数对速度场、温度场和浓度场的影响,如磁参数M、布朗运动参数Nb、热泳参数Nt、路易斯数Le、温度Biot数Biθ、浓度Biot数铋和吸力参数fw。此外,图形化地获得了各种物理参数值(即fw、Nb)的与磁性参数有关的皮肤摩擦系数、局部Nusselt和局部Sherwood数,然后用其他最近的工作验证了结果。最后,介绍了一种使用机器学习的新环境,通过基于迭代方法的灵敏度分析来预测吸力参数和布朗运动参数的Skin摩擦系数、Nusselt数和Sherwood数。机器学习算法提供了一种强大而快速的数据处理结构,以增强流体力学的实际研究程序和工业应用。这些技术已经针对流体流动特性进行了升级和组织。目前的优化工艺有可能为冶金工艺、电子换热器和一些医学应用提供新的视角。
{"title":"Augmentation of magnetohydrodynamic nanofluid flow through a permeable stretching sheet employing Machine learning algorithm","authors":"P. Priyadharshini,&nbsp;M. Vanitha Archana","doi":"10.1016/j.exco.2022.100093","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100093","url":null,"abstract":"<div><p>An incompressible MHD nanofluid boundary layer flow over a vertical stretching permeable surface employing Buongiorno’s design investigated by considering the convective states. The Brownian motion and thermophoresis effects are used to implement the nanofluid model. Operating the similarity transmutations, to transform the governing partial differential equations into ordinary differential equations consisting of the momentum, energy, and concentration fields and later worked by using a program written together with the stiffness shifting in Wolfram Language. The consequences of various physical parameters on the velocity, temperature, and concentration fields are analyzed, such as magnetic parameter <span><math><mi>M</mi></math></span>, Brownian motion parameter <span><math><mrow><mi>N</mi><mi>b</mi></mrow></math></span>, thermophoresis parameter <span><math><mrow><mi>N</mi><mi>t</mi></mrow></math></span>, Lewis number <span><math><mrow><mi>L</mi><mi>e</mi></mrow></math></span>, temperature Biot number <span><math><mrow><mi>B</mi><msub><mrow><mi>i</mi></mrow><mrow><mi>θ</mi></mrow></msub></mrow></math></span>, concentration Biot number <span><math><mrow><mi>B</mi><msub><mrow><mi>i</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></math></span>, and suction parameter <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>. Furthermore, the Skin friction coefficient, local Nusselt, and local Sherwood numbers concerning magnetic parameter for various values of physical parameters (i.e. <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>, <span><math><mrow><mi>N</mi><mi>b</mi></mrow></math></span>) are obtained graphically, then the outcome is validated with other recent works. Finally, introduced a new environment to employ machine learning by performing the sensitivity analysis based on the iterative method for predicting the Skin friction coefficient, reduced Nusselt number, and Sherwood number with respect to magnetic parameter for suction parameter and Brownian motion parameter. Machine learning algorithms provide a strong and quick data processing structure to enhance the actual research procedures and industrial application of fluid mechanics. These techniques have been upgraded and organized for fluid flow characteristics. The present optimization process has the potential for a new perspective on the metallurgical process, heat exchangers in electronics, and some medicinal applications.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Algebraic constructions of group divisible designs 群可分设计的代数构造
Pub Date : 2022-12-07 DOI: 10.1016/j.exco.2022.100094
Shyam Saurabh , Kishore Sinha

Some series of Group divisible designs using generalized Bhaskar Rao designs over Dihedral, Symmetric and Alternating groups are obtained.

利用二面体群、对称群和交替群上的广义Bhaskar-Rao设计,得到了一系列群可分设计。
{"title":"Algebraic constructions of group divisible designs","authors":"Shyam Saurabh ,&nbsp;Kishore Sinha","doi":"10.1016/j.exco.2022.100094","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100094","url":null,"abstract":"<div><p>Some series of Group divisible designs using generalized Bhaskar Rao designs over Dihedral, Symmetric and Alternating groups are obtained.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The perils of automated fitting of datasets: The case of a wind turbine cost model 自动拟合数据集的危险:以风力涡轮机成本模型为例
Pub Date : 2022-11-01 DOI: 10.1016/j.exco.2022.100059
Claude Klöckl, Katharina Gruber, Peter Regner, Sebastian Wehrle, Johannes Schmidt

Rinne et al. (2018) conduct a detailed analysis of the impact of wind turbine technology and land-use on wind power potentials, which allows important insights into each factor’s contribution to overall potentials. The paper presents a detailed and very valuable model of site-specific wind turbine investment cost (i.e. road- and grid access costs), complemented by a model used to estimate site-independent costs.

However, the site-independent cost model is flawed in our opinion. This flaw most likely does not impact the results on cost supply-curves of wind power presented in the paper. However, we expect a considerable generalization error. Thus the application of the wind turbine cost model in other contexts may lead to unreasonable results. More generally, the derivation of the wind turbine cost model serves as an example of how applications of automated regression analysis can go wrong.

Rinne等人。(2018)对风力涡轮机技术和土地使用对风力发电潜力的影响进行了详细分析,从而可以深入了解每个因素对整体潜力的贡献。本文提出了一个详细且非常有价值的现场风机投资成本模型(即道路和电网接入成本),并辅以一个用于估计现场独立成本的模型。然而,在我们看来,独立于站点的成本模型是有缺陷的。这一缺陷很可能不会影响本文提出的风电成本供应曲线的结果。然而,我们预计会出现相当大的泛化错误。因此,在其他情况下应用风力涡轮机成本模型可能会导致不合理的结果。更一般地说,风力涡轮机成本模型的推导是自动回归分析的应用如何出错的一个例子。
{"title":"The perils of automated fitting of datasets: The case of a wind turbine cost model","authors":"Claude Klöckl,&nbsp;Katharina Gruber,&nbsp;Peter Regner,&nbsp;Sebastian Wehrle,&nbsp;Johannes Schmidt","doi":"10.1016/j.exco.2022.100059","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100059","url":null,"abstract":"<div><p>Rinne et al. (2018) conduct a detailed analysis of the impact of wind turbine technology and land-use on wind power potentials, which allows important insights into each factor’s contribution to overall potentials. The paper presents a detailed and very valuable model of site-specific wind turbine investment cost (i.e. road- and grid access costs), complemented by a model used to estimate site-independent costs.</p><p>However, the site-independent cost model is flawed in our opinion. This flaw most likely does not impact the results on cost supply-curves of wind power presented in the paper. However, we expect a considerable generalization error. Thus the application of the wind turbine cost model in other contexts may lead to unreasonable results. More generally, the derivation of the wind turbine cost model serves as an example of how applications of automated regression analysis can go wrong.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100059"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000064/pdfft?md5=fdac94d105872fd1eb33da6ecfceea1a&pid=1-s2.0-S2666657X22000064-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71828286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Numerical treatment of fractal boundary value problems for heat conduction in polar bear with spatial variation of thermal conductivity 考虑热导率空间变化的北极熊热传导分形边值问题的数值处理
Pub Date : 2022-11-01 DOI: 10.1016/j.exco.2022.100088
Navnit Jha

A high-resolution compact discretization scheme for the numerical approximation of two-point nonlinear fractal boundary value problems is presented to study the stationary anomalous diffusion process. Hausdorff derivative is applied to derive the models in fractal media. The proposed scheme solves the nonlinear fractal model and achieves an accuracy of order four by employing only three mesh points in a stencil and consumes short computing time. Numerical simulations with heat conduction in polar bear, convection–diffusion, boundary layer, Bessel’s and Burgers equation in a fractal medium are carried out to illustrate the utility of the scheme and their numerical rate of convergence.

为了研究平稳异常扩散过程,提出了一种用于两点非线性分形边值问题数值逼近的高分辨率紧致离散化方案。应用Hausdorff导数导出分形介质中的模型。该方案解决了非线性分形模型,在一个模板中只使用三个网格点,精度达到四阶,计算时间短。对分形介质中的北极熊热传导、对流-扩散、边界层、贝塞尔方程和Burgers方程进行了数值模拟,以说明该格式的实用性及其数值收敛速度。
{"title":"Numerical treatment of fractal boundary value problems for heat conduction in polar bear with spatial variation of thermal conductivity","authors":"Navnit Jha","doi":"10.1016/j.exco.2022.100088","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100088","url":null,"abstract":"<div><p>A high-resolution compact discretization scheme for the numerical approximation of two-point nonlinear fractal boundary value problems is presented to study the stationary anomalous diffusion process. Hausdorff derivative is applied to derive the models in fractal media. The proposed scheme solves the nonlinear fractal model and achieves an accuracy of order four by employing only three mesh points in a stencil and consumes short computing time. Numerical simulations with heat conduction in polar bear, convection–diffusion, boundary layer, Bessel’s and Burgers equation in a fractal medium are carried out to illustrate the utility of the scheme and their numerical rate of convergence.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000210/pdfft?md5=072080d010ecc5a7c70a88203588807f&pid=1-s2.0-S2666657X22000210-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71828825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On robust discretization methods for poroelastic problems: Numerical examples and counter-examples 多孔弹性问题的鲁棒离散化方法:数值实例和反例
Pub Date : 2022-11-01 DOI: 10.1016/j.exco.2022.100087
Fleurianne Bertrand , Maximilian Brodbeck , Tim Ricken

Finite element approximations of poroelastic materials are nowadays used within multiple applications. Due to wide variation of possible material parameters, robustness of the considered discretization is important. Within this contribution robust of discretization schemes, initially developed for Biot’s theory, will be applied within the Theory of Porous Media. Selected numerical test-cases, special attention will be paid to incompressible and impermeable regimes, are conducted.

多孔弹性材料的有限元近似现在被用于多种应用中。由于可能的材料参数变化很大,所考虑的离散化的稳健性很重要。在这一贡献中,最初为Biot理论开发的稳健离散化方案将应用于多孔介质理论。进行了选定的数值试验案例,将特别注意不可压缩和不可渗透状态。
{"title":"On robust discretization methods for poroelastic problems: Numerical examples and counter-examples","authors":"Fleurianne Bertrand ,&nbsp;Maximilian Brodbeck ,&nbsp;Tim Ricken","doi":"10.1016/j.exco.2022.100087","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100087","url":null,"abstract":"<div><p>Finite element approximations of poroelastic materials are nowadays used within multiple applications. Due to wide variation of possible material parameters, robustness of the considered discretization is important. Within this contribution robust of discretization schemes, initially developed for Biot’s theory, will be applied within the Theory of Porous Media. Selected numerical test-cases, special attention will be paid to incompressible and impermeable regimes, are conducted.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100087"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000209/pdfft?md5=34ba4d9728edf7f37992d4a62b749171&pid=1-s2.0-S2666657X22000209-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71828819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Some examples of Swift–Hohenberg equation Swift-Hohenberg方程的一些例子
Pub Date : 2022-11-01 DOI: 10.1016/j.exco.2022.100090
Haresh P. Jani, Twinkle R. Singh

In this work, we solve partial differential equations using the Aboodh transform and the homotopy perturbation method (HPM). The Swift–Hohenberg equation accurately describes pattern development and evolution. The Swift–Hohenberg (S–H) model is linked to fluid dynamics, temperature, and thermal convection, and it can be used to describe how liquid surfaces with a horizontally well-conducting boundary form.

在这项工作中,我们使用Aboodh变换和同位微扰方法(HPM)求解偏微分方程。Swift–Hohenberg方程准确地描述了模式的发展和演变。Swift–Hohenberg(S–H)模型与流体动力学、温度和热对流有关,可用于描述具有水平良好导电边界的液体表面是如何形成的。
{"title":"Some examples of Swift–Hohenberg equation","authors":"Haresh P. Jani,&nbsp;Twinkle R. Singh","doi":"10.1016/j.exco.2022.100090","DOIUrl":"https://doi.org/10.1016/j.exco.2022.100090","url":null,"abstract":"<div><p>In this work, we solve partial differential equations using the Aboodh transform and the homotopy perturbation method (HPM). The Swift–Hohenberg equation accurately describes pattern development and evolution. The Swift–Hohenberg (S–H) model is linked to fluid dynamics, temperature, and thermal convection, and it can be used to describe how liquid surfaces with a horizontally well-conducting boundary form.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"2 ","pages":"Article 100090"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X22000234/pdfft?md5=858850a7e53372b937f273f5a13392f6&pid=1-s2.0-S2666657X22000234-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71828824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Examples and Counterexamples
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1