首页 > 最新文献

FlexMat最新文献

英文 中文
3D printing of hydrogels for flexible micro-supercapacitors 用于柔性微型超级电容器的水凝胶三维打印技术
Pub Date : 2024-04-26 DOI: 10.1002/flm2.14
Mutawara Mahmood Baig, Suhail Ayoub Khan, Hamza Ahmad, Jin Liang, Guoyin Zhu, Huan Pang, Yizhou Zhang

Advances in hydrogel technology have paved the way for novel and valuable capabilities that are being applied to a diverse spectrum of energy storage applications. Hydrogels, originally renowned for their biomedical applications, are now finding translation into the energy storage domain. These versatile materials exhibit promising potential for various energy-related applications, including but not limited to acting as highly flexible electrolytes, facilitating the development of flexible supercapacitors, and contributing to advancements in energy conversion devices. The tunable properties of hydrogels, their high ion accessibility, and desirable mechanical characteristics position them as promising candidates for enhancing the performance and efficiency of energy storage systems. In this review, we emphasize the integration of hydrogels into flexible micro-supercapacitors through 3D printing technology, unraveling the charge transport mechanisms inherent in hydrogels. We discuss methods for developing hydrogels with enhanced physicochemical properties, such as improved mechanical strength, flexibility, and charge transport, offering new prospects for next-generation energy storage devices. With a deeper understanding of gelation chemistry, we showcase significant progress in fabricating stimuli-responsive, self-healing, and highly stretchable hydrogels. Furthermore, we present compelling examples highlighting the versatility of hydrogels, including tailorable architectures, conductive nanostructures, 3D frameworks, and multifunctionalities. The application of innovative 3D printing techniques in hydrogel design is poised to yield materials with immense potential in the realm of energy storage.

水凝胶技术的进步为新颖而有价值的功能铺平了道路,这些功能正被应用于各种不同的储能应用中。水凝胶最初因其生物医学应用而闻名,如今正被应用于能源存储领域。这些用途广泛的材料在各种能源相关应用中展现出巨大的潜力,包括但不限于作为高度灵活的电解质、促进灵活的超级电容器的开发以及推动能源转换设备的进步。水凝胶的可调特性、高离子可及性和理想的机械特性使其成为提高储能系统性能和效率的理想候选材料。在这篇综述中,我们强调通过三维打印技术将水凝胶整合到柔性微型超级电容器中,揭示水凝胶固有的电荷传输机制。我们讨论了开发具有更强物理化学特性(如更好的机械强度、柔韧性和电荷传输)的水凝胶的方法,为下一代储能设备提供了新的前景。通过加深对凝胶化学的理解,我们展示了在制造刺激响应型、自愈合型和高伸展性水凝胶方面取得的重大进展。此外,我们还介绍了一些引人注目的实例,突出了水凝胶的多功能性,包括可定制的结构、导电纳米结构、三维框架和多功能性。在水凝胶设计中应用创新的三维打印技术,有望产生在能量存储领域具有巨大潜力的材料。
{"title":"3D printing of hydrogels for flexible micro-supercapacitors","authors":"Mutawara Mahmood Baig,&nbsp;Suhail Ayoub Khan,&nbsp;Hamza Ahmad,&nbsp;Jin Liang,&nbsp;Guoyin Zhu,&nbsp;Huan Pang,&nbsp;Yizhou Zhang","doi":"10.1002/flm2.14","DOIUrl":"https://doi.org/10.1002/flm2.14","url":null,"abstract":"<p>Advances in hydrogel technology have paved the way for novel and valuable capabilities that are being applied to a diverse spectrum of energy storage applications. Hydrogels, originally renowned for their biomedical applications, are now finding translation into the energy storage domain. These versatile materials exhibit promising potential for various energy-related applications, including but not limited to acting as highly flexible electrolytes, facilitating the development of flexible supercapacitors, and contributing to advancements in energy conversion devices. The tunable properties of hydrogels, their high ion accessibility, and desirable mechanical characteristics position them as promising candidates for enhancing the performance and efficiency of energy storage systems. In this review, we emphasize the integration of hydrogels into flexible micro-supercapacitors through 3D printing technology, unraveling the charge transport mechanisms inherent in hydrogels. We discuss methods for developing hydrogels with enhanced physicochemical properties, such as improved mechanical strength, flexibility, and charge transport, offering new prospects for next-generation energy storage devices. With a deeper understanding of gelation chemistry, we showcase significant progress in fabricating stimuli-responsive, self-healing, and highly stretchable hydrogels. Furthermore, we present compelling examples highlighting the versatility of hydrogels, including tailorable architectures, conductive nanostructures, 3D frameworks, and multifunctionalities. The application of innovative 3D printing techniques in hydrogel design is poised to yield materials with immense potential in the realm of energy storage.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140648129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible UV photodetector based on copper tetraiodogallate (CuGaI4) film 基于四碘镓酸铜(CuGaI4)薄膜的柔性紫外线光电探测器
Pub Date : 2024-04-26 DOI: 10.1002/flm2.13
Haoyu Chen, Bingxu Liu, Jiupeng Cao, Lian Ji, Jiankai Xie, Yuting Shu, Jingjin Dong, Aifei Wang, Fangfang Wang, Feng Yan, Tianshi Qin

The Cu-based halide semiconductor CuGaI4 was prepared by a high-temperature melting method. Optoelectronic characterization and density functional theory calculations of CuGaI4 reveal a direct bandgap of 2.9 eV. The corresponding UV photodetector (PD) based on CuGaI4 demonstrates excellent UV response and rapid response time. In addition, a flexible PD based on CuGaI4 is prepared, which also displays excellent photoresponse characteristics and mechanical stability. This work provides a systematic study of this novel Cu-based halide semiconductor and demonstrates the great potential of CuGaI4 for future UV optoelectronic devices.

通过高温熔融法制备了铜基卤化物半导体 CuGaI4。CuGaI4 的光电特性和密度泛函理论计算显示其直接带隙为 2.9 eV。基于 CuGaI4 的相应紫外线光电探测器(PD)具有出色的紫外线响应能力和快速响应时间。此外,基于 CuGaI4 制备的柔性光电探测器也显示出优异的光响应特性和机械稳定性。这项工作系统地研究了这种新型铜基卤化物半导体,并证明了 CuGaI4 在未来紫外光电子器件中的巨大潜力。
{"title":"Flexible UV photodetector based on copper tetraiodogallate (CuGaI4) film","authors":"Haoyu Chen,&nbsp;Bingxu Liu,&nbsp;Jiupeng Cao,&nbsp;Lian Ji,&nbsp;Jiankai Xie,&nbsp;Yuting Shu,&nbsp;Jingjin Dong,&nbsp;Aifei Wang,&nbsp;Fangfang Wang,&nbsp;Feng Yan,&nbsp;Tianshi Qin","doi":"10.1002/flm2.13","DOIUrl":"https://doi.org/10.1002/flm2.13","url":null,"abstract":"<p>The Cu-based halide semiconductor CuGaI<sub>4</sub> was prepared by a high-temperature melting method. Optoelectronic characterization and density functional theory calculations of CuGaI<sub>4</sub> reveal a direct bandgap of 2.9 eV. The corresponding UV photodetector (PD) based on CuGaI<sub>4</sub> demonstrates excellent UV response and rapid response time. In addition, a flexible PD based on CuGaI<sub>4</sub> is prepared, which also displays excellent photoresponse characteristics and mechanical stability. This work provides a systematic study of this novel Cu-based halide semiconductor and demonstrates the great potential of CuGaI<sub>4</sub> for future UV optoelectronic devices.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.13","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in triboelectric nanogenerators for self-powered wearable respiratory monitoring 用于自供电可穿戴式呼吸监测的三电纳米发电机的研究进展
Pub Date : 2024-04-26 DOI: 10.1002/flm2.10
William Kwak, Junyi Yin, Shaolei Wang, Jun Chen

Triboelectric nanogenerators (TENGs) have recently gained attention as a compelling platform technology for building wearable bioelectronics. Aside from being self-powered, TENGs are lightweight, low in cost, rich in material choice, comfortable to wear, and increasingly versatile with advances in sensitivity and efficiency. Due to these features, TENGs have become appealing in biomedical sensing applications, especially for human respiration monitoring. A wealth of information can be collected by breath-induced electrical signals, which are crucial in the analysis of a patient's respiratory condition and the early detection of harmful respiratory-linked diseases. TENGs have thus been used to continuously collect important respiratory data, from the breathing patterns, flow rate, and intensity of an individual's respiratory cycle to the chemicals that may be present in their breath. This review paper provides an overview of recent developments in TENG-based wearable respiratory monitoring as well as future opportunities and challenges for respiratory healthcare.

三电纳米发电机(TENGs)作为构建可穿戴生物电子学的一项引人注目的平台技术,近来备受关注。除了自供电外,TENG 重量轻、成本低、材料选择丰富、佩戴舒适,而且随着灵敏度和效率的提高,其用途也越来越广泛。由于这些特点,TENGs 在生物医学传感应用中,尤其是在人体呼吸监测方面具有吸引力。呼吸引起的电信号可以收集大量信息,这些信息对于分析病人的呼吸状况和早期发现与呼吸有关的有害疾病至关重要。因此,TENGs 已被用于持续收集重要的呼吸数据,包括呼吸模式、流速、个人呼吸周期的强度以及呼吸中可能存在的化学物质。本综述文件概述了基于 TENG 的可穿戴呼吸监测技术的最新发展,以及呼吸保健领域未来的机遇和挑战。
{"title":"Advances in triboelectric nanogenerators for self-powered wearable respiratory monitoring","authors":"William Kwak,&nbsp;Junyi Yin,&nbsp;Shaolei Wang,&nbsp;Jun Chen","doi":"10.1002/flm2.10","DOIUrl":"https://doi.org/10.1002/flm2.10","url":null,"abstract":"<p>Triboelectric nanogenerators (TENGs) have recently gained attention as a compelling platform technology for building wearable bioelectronics. Aside from being self-powered, TENGs are lightweight, low in cost, rich in material choice, comfortable to wear, and increasingly versatile with advances in sensitivity and efficiency. Due to these features, TENGs have become appealing in biomedical sensing applications, especially for human respiration monitoring. A wealth of information can be collected by breath-induced electrical signals, which are crucial in the analysis of a patient's respiratory condition and the early detection of harmful respiratory-linked diseases. TENGs have thus been used to continuously collect important respiratory data, from the breathing patterns, flow rate, and intensity of an individual's respiratory cycle to the chemicals that may be present in their breath. This review paper provides an overview of recent developments in TENG-based wearable respiratory monitoring as well as future opportunities and challenges for respiratory healthcare.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.10","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inkjet printing for smart electrochromic devices 用于智能电致变色设备的喷墨打印技术
Pub Date : 2024-04-26 DOI: 10.1002/flm2.11
Yingxin Zhang, Bing Xu, Feifei Zhao, Haizeng Li, Jingwei Chen, Huanlei Wang, William W. Yu

Electrochromic technology has recently made many achievements in research and commercialization. Electrochromic devices are being developed based on various coating and printing methods for multipronged applications, and have great potential for next-generation flexible electronics. Compared to other coating and printing techniques, inkjet printing (IJP) enables non-contact patterning on a variety of substrates by programming the movement of the printing nozzle. IJP has great advantages in printing smart electrochromic devices because of its low cost, high resolution, high material utilization rate, and applicability to various large-size substrates. In this review, the principles and process of IJP and the latest progress of IJP in electrochromic devices are summarized in detail. IJP of electrochromic materials, conductive contacts, and blocking layers are discussed. IJP assisted fabrication of smart electrochromic displays, flexible and stretchable electrochromic devices, electrochromic-energy storage, smart windows, and others are also demonstrated. The problems and challenges faced by IJP electrochromic devices are emphasized, and the future development trends are prospected. This review aims at further promoting the development of IJP for smart electrochromic devices and encouraging future applications of IJP and electrochromic devices in the era of Internet of Things.

电致变色技术最近在研究和商业化方面取得了许多成果。基于各种涂层和印刷方法开发的电致变色器件应用领域广泛,在下一代柔性电子产品领域具有巨大潜力。与其他涂层和印刷技术相比,喷墨印刷(IJP)可通过对印刷喷嘴的移动进行编程,在各种基底上实现非接触图案化。IJP 具有成本低、分辨率高、材料利用率高以及适用于各种大尺寸基板等优点,因此在打印智能电致变色器件方面具有很大优势。在这篇综述中,将详细总结 IJP 的原理和工艺,以及 IJP 在电致变色器件中的最新进展。讨论了电致变色材料、导电触点和阻挡层的 IJP。还展示了 IJP 辅助制造智能电致变色显示器、柔性和可拉伸电致变色器件、电致变色储能、智能窗户等。文中强调了 IJP 电致变色器件所面临的问题和挑战,并展望了未来的发展趋势。本综述旨在进一步推动 IJP 在智能电致变色设备中的发展,并鼓励 IJP 和电致变色设备在物联网时代的未来应用。
{"title":"Inkjet printing for smart electrochromic devices","authors":"Yingxin Zhang,&nbsp;Bing Xu,&nbsp;Feifei Zhao,&nbsp;Haizeng Li,&nbsp;Jingwei Chen,&nbsp;Huanlei Wang,&nbsp;William W. Yu","doi":"10.1002/flm2.11","DOIUrl":"https://doi.org/10.1002/flm2.11","url":null,"abstract":"<p>Electrochromic technology has recently made many achievements in research and commercialization. Electrochromic devices are being developed based on various coating and printing methods for multipronged applications, and have great potential for next-generation flexible electronics. Compared to other coating and printing techniques, inkjet printing (IJP) enables non-contact patterning on a variety of substrates by programming the movement of the printing nozzle. IJP has great advantages in printing smart electrochromic devices because of its low cost, high resolution, high material utilization rate, and applicability to various large-size substrates. In this review, the principles and process of IJP and the latest progress of IJP in electrochromic devices are summarized in detail. IJP of electrochromic materials, conductive contacts, and blocking layers are discussed. IJP assisted fabrication of smart electrochromic displays, flexible and stretchable electrochromic devices, electrochromic-energy storage, smart windows, and others are also demonstrated. The problems and challenges faced by IJP electrochromic devices are emphasized, and the future development trends are prospected. This review aims at further promoting the development of IJP for smart electrochromic devices and encouraging future applications of IJP and electrochromic devices in the era of Internet of Things.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding and modulating the horizontal orientations and short-range charge transfer excited states for high-performance narrowband emitters 了解并调节水平方向和短程电荷转移激发态,实现高性能窄带发射器
Pub Date : 2024-04-26 DOI: 10.1002/flm2.15
Mingxu Du, Yang Chen, Minqiang Mai, Tianjiao Fan, Qian Jin, Yuewei Zhang, Lian Duan

Recently, a novel paradigm of boron- and nitrogen-embedded polycyclic nanographites featuring multiple resonance thermally activated delayed fluorescence (MR-TADF) has garnered substantial interest due to their extraordinary attributes of efficient narrowband emissions with small full width at half maxima (FWHMs). Despite an array of diverse color tuning strategies, it remains elusive how to effectively manipulate device efficiencies without altering the materials' intrinsic MR-TADF characteristics. Here, an advanced ‘non-conjugate fusion’ design methodology was proposed, aimed at dramatically amplifying the horizontal orientations of MR-TADF emitters while preserving the short-range charge-transfer properties. As envisioned, when compared to the classical BCz-BN mother core, the proof-of-concept emitter mICz-BN achieved an impressively enhanced horizontal dipole ratio (83% vs. 75%) at analogous emission wavelengths (∼486 nm), FWHMs (∼26 nm) and photoluminescence quantum yields (∼93%). Consequently, the external quantum efficiency of the optimized device yielded a performance enhancement of 1.2-fold (30.5% vs. 25.3%) whilst keeping the spectrum almost unchanged.

最近,一种具有多重共振热激活延迟荧光(MR-TADF)特性的硼氮嵌入式多环纳米石墨新范例引起了人们的极大兴趣,因为这种材料具有高效窄带发射、半最大值全宽(FWHM)小的非凡特性。尽管有一系列不同的颜色调节策略,但如何在不改变材料固有的 MR-TADF 特性的情况下有效地操纵器件效率仍然是一个难题。在此,我们提出了一种先进的 "非共轭融合 "设计方法,旨在显著放大 MR-TADF 发射器的水平方向,同时保留短程电荷转移特性。正如设想的那样,与经典的 BCz-BN 母核相比,概念验证发射器 mICz-BN 在类似的发射波长(486 nm)、FWHM(26 nm)和光致发光量子产率(93%)条件下实现了令人印象深刻的增强水平偶极比(83% 对 75%)。因此,在保持光谱几乎不变的情况下,优化器件的外部量子效率提高了 1.2 倍(30.5% 对 25.3%)。
{"title":"Understanding and modulating the horizontal orientations and short-range charge transfer excited states for high-performance narrowband emitters","authors":"Mingxu Du,&nbsp;Yang Chen,&nbsp;Minqiang Mai,&nbsp;Tianjiao Fan,&nbsp;Qian Jin,&nbsp;Yuewei Zhang,&nbsp;Lian Duan","doi":"10.1002/flm2.15","DOIUrl":"https://doi.org/10.1002/flm2.15","url":null,"abstract":"<p>Recently, a novel paradigm of boron- and nitrogen-embedded polycyclic nanographites featuring multiple resonance thermally activated delayed fluorescence (MR-TADF) has garnered substantial interest due to their extraordinary attributes of efficient narrowband emissions with small full width at half maxima (FWHMs). Despite an array of diverse color tuning strategies, it remains elusive how to effectively manipulate device efficiencies without altering the materials' intrinsic MR-TADF characteristics. Here, an advanced ‘non-conjugate fusion’ design methodology was proposed, aimed at dramatically amplifying the horizontal orientations of MR-TADF emitters while preserving the short-range charge-transfer properties. As envisioned, when compared to the classical BCz-BN mother core, the proof-of-concept emitter mICz-BN achieved an impressively enhanced horizontal dipole ratio (<b>83%</b> vs. 75%) at analogous emission wavelengths (∼486 nm), FWHMs (∼26 nm) and photoluminescence quantum yields (∼93%). Consequently, the external quantum efficiency of the optimized device yielded a performance enhancement of 1.2-fold (<b>30.5%</b> vs. 25.3%) whilst keeping the spectrum almost unchanged.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.15","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140648127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FlexMat
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1