首页 > 最新文献

FlexMat最新文献

英文 中文
Revolutionizing sensing technologies: A comprehensive review of flexible acceleration sensors 革命性的传感技术:柔性加速度传感器的全面回顾
Pub Date : 2025-02-04 DOI: 10.1002/flm2.38
Bozhi Wu, Ke Li, Lei Wang, Kuibo Yin, Meng Nie, Litao Sun

Flexible sensing technologies are pivotal for achieving multidimensional spatial freedom in sensing capabilities. Within this domain, flexible acceleration sensors stand out as innovative devices capable of accurately monitoring acceleration signals, even amidst deformation scenarios such as bending, compression, or stretching. These sensors are increasingly recognized for their transformative potential across various sectors, including health monitoring, industrial machinery, soft robotics, and so on. This review delves into the recent progress in the field of flexible acceleration sensors, examining their operational mechanisms, the materials used for the sensing layers, and their performance characteristics based on different operational principles. Moreover, we explore the diverse applications of these sensors in areas such as wearable devices, infrastructure surveillance, and automotive safety, providing a comprehensive overview of their current uses. Additionally, we assess the advantages and limitations of flexible acceleration sensors and propose potential directions for their advancement. Through this review, we aim to highlight the significant role that flexible acceleration sensors play in the ongoing evolution of sensing technologies, underscoring their importance in a wide array of applications.

柔性传感技术是实现多维空间自由传感能力的关键。在这一领域,柔性加速度传感器作为一种创新设备脱颖而出,能够准确监测加速度信号,即使在弯曲、压缩或拉伸等变形情况下也是如此。这些传感器因其在各个领域的变革潜力而日益受到认可,包括健康监测、工业机械、软机器人等。本文综述了近年来柔性加速度传感器领域的研究进展,研究了其工作机理、传感层材料以及基于不同工作原理的柔性加速度传感器的性能特点。此外,我们还探讨了这些传感器在可穿戴设备、基础设施监控和汽车安全等领域的各种应用,全面概述了它们当前的用途。此外,我们评估了柔性加速度传感器的优点和局限性,并提出了其发展的潜在方向。通过这篇综述,我们的目标是强调柔性加速度传感器在传感技术不断发展中的重要作用,强调它们在广泛应用中的重要性。
{"title":"Revolutionizing sensing technologies: A comprehensive review of flexible acceleration sensors","authors":"Bozhi Wu,&nbsp;Ke Li,&nbsp;Lei Wang,&nbsp;Kuibo Yin,&nbsp;Meng Nie,&nbsp;Litao Sun","doi":"10.1002/flm2.38","DOIUrl":"https://doi.org/10.1002/flm2.38","url":null,"abstract":"<p>Flexible sensing technologies are pivotal for achieving multidimensional spatial freedom in sensing capabilities. Within this domain, flexible acceleration sensors stand out as innovative devices capable of accurately monitoring acceleration signals, even amidst deformation scenarios such as bending, compression, or stretching. These sensors are increasingly recognized for their transformative potential across various sectors, including health monitoring, industrial machinery, soft robotics, and so on. This review delves into the recent progress in the field of flexible acceleration sensors, examining their operational mechanisms, the materials used for the sensing layers, and their performance characteristics based on different operational principles. Moreover, we explore the diverse applications of these sensors in areas such as wearable devices, infrastructure surveillance, and automotive safety, providing a comprehensive overview of their current uses. Additionally, we assess the advantages and limitations of flexible acceleration sensors and propose potential directions for their advancement. Through this review, we aim to highlight the significant role that flexible acceleration sensors play in the ongoing evolution of sensing technologies, underscoring their importance in a wide array of applications.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"2 1","pages":"55-81"},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.38","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combinatorial discovery of small molecule-doped afterglow polymer composites for anti-counterfeiting 小分子掺杂余辉聚合物防伪复合材料的组合发现
Pub Date : 2024-12-23 DOI: 10.1002/flm2.37
Yeqing Lu, Xue Chen, Yung Doug Suh, Xiaowang Liu

The exploration of afterglow in small molecule-doped polymer composites, rooted in a nuanced understanding of structure-properties relationships, holds paramount importance for optoelectronics. However, conventional strategies face challenges in achieving high-throughput discovery of these polymers. This study introduces a novel combinatorial approach, employing photoinitiated solvent-free polymerization, to craft afterglow aromatic boronic acid-doped polymer composites. The afterglow activation results from stabilizing the triplet states of doped small molecules through a synergy of chemical and physical fixation effects. Aromatic boronic acids emerge as crucial dopants, exhibiting versatility in afterglow development across the visible spectrum. Notably, the influence of functional groups and the number of non-fused benzene rings on afterglow wavelengths is minimal, while significantly impacting afterglow lifetimes. Besides conjugation degrees, the optimal size and doping concentrations of dopants play a pivotal role in extending afterglow lifetimes. This strategy not only facilitates exploration of small molecule-based afterglow materials but also enables the feasible fabrication of intricate, multicolor afterglow polymeric objects via a step-polymerization strategy for anti-counterfeiting.

对小分子掺杂聚合物复合材料余辉的探索,植根于对结构-性能关系的细致理解,对光电子学至关重要。然而,传统的策略在实现这些聚合物的高通量发现方面面临挑战。本研究介绍了一种新的组合方法,利用光引发无溶剂聚合,制备了余辉芳香族硼酸掺杂聚合物复合材料。余辉活化是通过化学和物理固定效应的协同作用稳定掺杂小分子的三重态。芳香硼酸作为关键的掺杂剂出现,在可见光谱中表现出余辉发展的多功能性。值得注意的是,官能团和非熔融苯环数量对余辉波长的影响很小,但对余辉寿命有显著影响。除了共轭度外,最佳掺杂尺寸和掺杂浓度对延长余辉寿命也起着关键作用。这一策略不仅促进了小分子余辉材料的探索,而且通过防伪的步聚策略,使复杂的、多色的余辉聚合物物体的制造成为可能。
{"title":"Combinatorial discovery of small molecule-doped afterglow polymer composites for anti-counterfeiting","authors":"Yeqing Lu,&nbsp;Xue Chen,&nbsp;Yung Doug Suh,&nbsp;Xiaowang Liu","doi":"10.1002/flm2.37","DOIUrl":"https://doi.org/10.1002/flm2.37","url":null,"abstract":"<p>The exploration of afterglow in small molecule-doped polymer composites, rooted in a nuanced understanding of structure-properties relationships, holds paramount importance for optoelectronics. However, conventional strategies face challenges in achieving high-throughput discovery of these polymers. This study introduces a novel combinatorial approach, employing photoinitiated solvent-free polymerization, to craft afterglow aromatic boronic acid-doped polymer composites. The afterglow activation results from stabilizing the triplet states of doped small molecules through a synergy of chemical and physical fixation effects. Aromatic boronic acids emerge as crucial dopants, exhibiting versatility in afterglow development across the visible spectrum. Notably, the influence of functional groups and the number of non-fused benzene rings on afterglow wavelengths is minimal, while significantly impacting afterglow lifetimes. Besides conjugation degrees, the optimal size and doping concentrations of dopants play a pivotal role in extending afterglow lifetimes. This strategy not only facilitates exploration of small molecule-based afterglow materials but also enables the feasible fabrication of intricate, multicolor afterglow polymeric objects via a step-polymerization strategy for anti-counterfeiting.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"2 1","pages":"107-114"},"PeriodicalIF":0.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.37","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible ionic-gel synapse devices and their applications in neuromorphic system 柔性离子凝胶突触装置及其在神经形态系统中的应用
Pub Date : 2024-12-16 DOI: 10.1002/flm2.36
Fengchang Huang, Xidi Sun, Yi Shi, Lijia Pan

Biological neural systems, composed of neurons and synaptic networks, exhibit exceptional capabilities in signal transmission, processing, and integration. Inspired by the mechanisms of these systems, researchers have been dedicated to developing artificial neural systems based on flexible synaptic devices that effectively mimic the functions of biological synapses, providing hardware support for the advancement of artificial intelligence. In recent years, ionic gels, known for their high ionic conductivity and intuitive synaptic mimicry, have been utilized in the development of ionic-gel synapses (IGSs). They are considered ideal materials for the next wearable generation of neuromorphic systems. This review introduces IGS devices and summarizes the recent progress in flexible IGS-based neuromorphic systems. Additionally, key challenges and future development prospects related to flexible IGSs are outlined, and potential suggestions are provided.

生物神经系统由神经元和突触网络组成,在信号传输、处理和整合方面表现出非凡的能力。受这些系统机制的启发,研究人员一直致力于开发基于柔性突触装置的人工神经系统,有效地模仿生物突触的功能,为人工智能的进步提供硬件支持。近年来,离子凝胶以其高离子电导率和直观的突触拟态性被广泛应用于离子凝胶突触(IGSs)的研究。它们被认为是下一代可穿戴神经形态系统的理想材料。本文综述了基于IGS的柔性神经形态系统的研究进展。此外,还概述了与灵活IGSs相关的主要挑战和未来发展前景,并提出了可能的建议。
{"title":"Flexible ionic-gel synapse devices and their applications in neuromorphic system","authors":"Fengchang Huang,&nbsp;Xidi Sun,&nbsp;Yi Shi,&nbsp;Lijia Pan","doi":"10.1002/flm2.36","DOIUrl":"https://doi.org/10.1002/flm2.36","url":null,"abstract":"<p>Biological neural systems, composed of neurons and synaptic networks, exhibit exceptional capabilities in signal transmission, processing, and integration. Inspired by the mechanisms of these systems, researchers have been dedicated to developing artificial neural systems based on flexible synaptic devices that effectively mimic the functions of biological synapses, providing hardware support for the advancement of artificial intelligence. In recent years, ionic gels, known for their high ionic conductivity and intuitive synaptic mimicry, have been utilized in the development of ionic-gel synapses (IGSs). They are considered ideal materials for the next wearable generation of neuromorphic systems. This review introduces IGS devices and summarizes the recent progress in flexible IGS-based neuromorphic systems. Additionally, key challenges and future development prospects related to flexible IGSs are outlined, and potential suggestions are provided.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"2 1","pages":"30-54"},"PeriodicalIF":0.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.36","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight and conformal acousto-ultrasonic sensing network for multi-scale structural health monitoring: A review 用于多尺度结构健康监测的轻量化保形声超声传感网络研究进展
Pub Date : 2024-10-25 DOI: 10.1002/flm2.35
Yehai Li, Shifeng Guo, Zhongqing Su, Keqin Ding, Xian Jun Loh

Structural health monitoring (SHM) has been increasingly investigated for decades. Different physical principles have been developed for damage identification, such as electronics, mechanics, magnetics, etc., with different coverage (i.e., global, large-area, and local monitoring) and sensitivity. Mechanical acousto-ultrasonic-based methods have formed a big family in SHM technologies. Multiple wave/resonance modes have been utilized for versatile SHM tasks. The permanently integrated sensing networks play a significant role in achieving a cost-effective and reliable SHM system, with major concerns including weight increase for large-scale deployment and conformity for complex geometry structures. In this review, typical acousto-ultrasonic sensors made of different material systems are discussed, along with advantages and limitations. Moreover, advanced network installation methods have been introduced, including surface-mounting with pre-integrated networks on substrates and in situ printing, and embedding with composite layup and metal additive manufacturing. Sensor versatility and usage in multi-scale SHM techniques are then highlighted. Different wave/resonance modes are transmitted and received with corresponding elements and network designs. In conclusion, this systematic review mainly covers a collection of acousto-ultrasonic sensors, two modalities of network installation, and their employment with various SHM methods, hopefully providing a useful guide to building lightweight and conformal networks with passive or active-passive sensors, and developing complete and reliable SHM strategies by integrating different damage identification methods on multiple scales.

几十年来,结构健康监测(SHM)得到了越来越多的研究。不同的物理原理已经发展用于损伤识别,如电子学、力学、磁学等,具有不同的覆盖范围(即全球、大面积和局部监测)和灵敏度。基于机械声-超声的方法在SHM技术中形成了一个大家族。多种波/共振模式已被用于多种SHM任务。永久集成传感网络在实现具有成本效益和可靠的SHM系统方面发挥着重要作用,主要问题包括大规模部署的重量增加和复杂几何结构的一致性。本文讨论了不同材料系统制成的典型声-超声传感器,以及它们的优点和局限性。此外,还介绍了先进的网络安装方法,包括在基板上使用预集成网络进行表面安装和原位印刷,以及使用复合层叠和金属增材制造进行嵌入。然后强调了传感器的通用性和多尺度SHM技术的使用。不同的波/共振模式发射和接收与相应的元件和网络设计。综上所述,本文主要综述了声-超声传感器的集合、两种网络安装方式以及它们与各种SHM方法的应用,以期为构建无源或主动式无源传感器的轻量化保形网络,以及在多尺度上整合不同的损伤识别方法,制定完整可靠的SHM策略提供有益的指导。
{"title":"Lightweight and conformal acousto-ultrasonic sensing network for multi-scale structural health monitoring: A review","authors":"Yehai Li,&nbsp;Shifeng Guo,&nbsp;Zhongqing Su,&nbsp;Keqin Ding,&nbsp;Xian Jun Loh","doi":"10.1002/flm2.35","DOIUrl":"https://doi.org/10.1002/flm2.35","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>Structural health monitoring (SHM) has been increasingly investigated for decades. Different physical principles have been developed for damage identification, such as electronics, mechanics, magnetics, etc., with different coverage (i.e., global, large-area, and local monitoring) and sensitivity. Mechanical acousto-ultrasonic-based methods have formed a big family in SHM technologies. Multiple wave/resonance modes have been utilized for versatile SHM tasks. The permanently integrated sensing networks play a significant role in achieving a cost-effective and reliable SHM system, with major concerns including weight increase for large-scale deployment and conformity for complex geometry structures. In this review, typical acousto-ultrasonic sensors made of different material systems are discussed, along with advantages and limitations. Moreover, advanced network installation methods have been introduced, including surface-mounting with pre-integrated networks on substrates and in situ printing, and embedding with composite layup and metal additive manufacturing. Sensor versatility and usage in multi-scale SHM techniques are then highlighted. Different wave/resonance modes are transmitted and received with corresponding elements and network designs. In conclusion, this systematic review mainly covers a collection of acousto-ultrasonic sensors, two modalities of network installation, and their employment with various SHM methods, hopefully providing a useful guide to building lightweight and conformal networks with passive or active-passive sensors, and developing complete and reliable SHM strategies by integrating different damage identification methods on multiple scales.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"2 1","pages":"4-29"},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.35","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143893004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of experiments with the support of machine learning for process parameter optimization of all-small-molecule organic solar cells 在机器学习的支持下进行实验设计,优化全小分子有机太阳能电池的工艺参数
Pub Date : 2024-09-24 DOI: 10.1002/flm2.34
Kuo Wang, Jiaojiao Liang, Zhennan Li, Haixin Zhou, Cong Nie, Jiahao Deng, Xiaojie Zhao, Xinyu Peng, Ziye Chen, Zhiyan Peng, Di Huang, Hun Soo Jang, Jaemin Kong, Yingping Zou

Traditionally, squaraine dyes have been studied and employed in biomedical research due to their excellent optical properties, and the molecules are being adopted in different research fields such as organic solar cells. In this study, we investigate correlations between solar cell performance and processing parameters of all-small-molecule bulk heterojunction solar cells comprising squaraine (SQ) as electron donor (D) and non-fullerene small molecules (e.g., ITIC) as electron acceptor (A) with the help of machine learning (ML) and design of experiment (DoE) methods. Among the five predictive ML models tested with the selected parameters, the eXtreme gradient boosting model shows the satisfactory results with quite high coefficient of determination of 0.999 and 0.997 in training and testing sets, respectively. By measuring the contribution of each input variable to solar cell efficiency, four process parameters, that is, the total concentration, the ratio of D/A, the rotational speed of spin coating, and the annealing temperature, are found to be the key features strongly correlated to solar cell efficiency. From contour plots in DoE, the highest solar cell efficiency of approximately 5% can be predicted under the conditions of 15 mg mL−1 in solution concentration, a 1:2 mix ratio of D and A, rotational speeds ranging from 800 to 900 rpm, and annealing temperatures within 100–110°C. Using the suggested parameter conditions, we fabricated solar cells, achieving a quite high efficiency of approximately 4%. Besides the global optimization conditions, we also employ the solvent vapor annealing combination to the thermal annealing to facilitate further mobilization of molecules and more optimized microstructure of bulk heterojunction films, resulting in a further enhancement in solar cell efficiency of more than 20%.

传统上,方碱染料因其优异的光学特性而一直被研究和应用于生物医学研究,而有机太阳能电池等不同研究领域也正在采用这种分子。在本研究中,我们借助机器学习(ML)和实验设计(DoE)方法,研究了由方卡因(SQ)作为电子给体(D)、非富勒烯小分子(如 ITIC)作为电子受体(A)的全小分子体异质结太阳能电池的性能与加工参数之间的相关性。在利用所选参数测试的五个预测性 ML 模型中,eXtreme 梯度提升模型显示出令人满意的结果,在训练集和测试集上的决定系数分别为 0.999 和 0.997,相当高。通过测量各输入变量对太阳能电池效率的贡献,发现总浓度、D/A 比率、旋涂转速和退火温度这四个工艺参数是与太阳能电池效率密切相关的关键特征。根据 DoE 中的等值线图,在溶液浓度为 15 mg mL-1、D 和 A 的混合比为 1:2、旋转速度为 800 至 900 rpm、退火温度为 100 至 110°C 的条件下,太阳能电池的最高效率可达 5%左右。利用建议的参数条件,我们制造出了太阳能电池,实现了相当高的效率,约为 4%。除了全局优化条件外,我们还在热退火的基础上结合使用了溶剂气相退火,以促进分子的进一步迁移,并优化了体异质结薄膜的微观结构,从而使太阳能电池的效率进一步提高了 20% 以上。
{"title":"Design of experiments with the support of machine learning for process parameter optimization of all-small-molecule organic solar cells","authors":"Kuo Wang,&nbsp;Jiaojiao Liang,&nbsp;Zhennan Li,&nbsp;Haixin Zhou,&nbsp;Cong Nie,&nbsp;Jiahao Deng,&nbsp;Xiaojie Zhao,&nbsp;Xinyu Peng,&nbsp;Ziye Chen,&nbsp;Zhiyan Peng,&nbsp;Di Huang,&nbsp;Hun Soo Jang,&nbsp;Jaemin Kong,&nbsp;Yingping Zou","doi":"10.1002/flm2.34","DOIUrl":"https://doi.org/10.1002/flm2.34","url":null,"abstract":"<p>Traditionally, squaraine dyes have been studied and employed in biomedical research due to their excellent optical properties, and the molecules are being adopted in different research fields such as organic solar cells. In this study, we investigate correlations between solar cell performance and processing parameters of all-small-molecule bulk heterojunction solar cells comprising squaraine (SQ) as electron donor (D) and non-fullerene small molecules (e.g., ITIC) as electron acceptor (A) with the help of machine learning (ML) and design of experiment (DoE) methods. Among the five predictive ML models tested with the selected parameters, the eXtreme gradient boosting model shows the satisfactory results with quite high coefficient of determination of 0.999 and 0.997 in training and testing sets, respectively. By measuring the contribution of each input variable to solar cell efficiency, four process parameters, that is, the total concentration, the ratio of D/A, the rotational speed of spin coating, and the annealing temperature, are found to be the key features strongly correlated to solar cell efficiency. From contour plots in DoE, the highest solar cell efficiency of approximately 5% can be predicted under the conditions of 15 mg mL<sup>−1</sup> in solution concentration, a 1:2 mix ratio of D and A, rotational speeds ranging from 800 to 900 rpm, and annealing temperatures within 100–110°C. Using the suggested parameter conditions, we fabricated solar cells, achieving a quite high efficiency of approximately 4%. Besides the global optimization conditions, we also employ the solvent vapor annealing combination to the thermal annealing to facilitate further mobilization of molecules and more optimized microstructure of bulk heterojunction films, resulting in a further enhancement in solar cell efficiency of more than 20%.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"234-247"},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.34","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinspired ultrathin photonic color convertors for highly efficient micro-light-emitting diodes 用于高效微型发光二极管的生物启发超薄光子色彩转换器
Pub Date : 2024-09-12 DOI: 10.1002/flm2.33
Jiexin Li, Xinrui Ding, Yuzhi Shi, Jiasheng Li, Zihao Deng, Jiayong Qiu, Jinhui Zhang, Wei Luo, Guanwei Liang, Long Zhao, Yong Tang, Ai Qun Liu, Zongtao Li

Pixelated color convertor plays an immensely important role in next-generation display technologies. However, the inherent randomness of light propagation within the convertor presents a formidable challenge to reconcile the huge contradiction between excitation and outcoupling. Here, we demonstrate a bioinspired photonic waveguide pixelated color convertor (BPW-PCC) to realize directional excitation and outcoupling, which is inspired by an insect visual system. The lens array of BPW-PCC enables a focusing photonic waveguide that guides the excitation light and converges it on colloidal quantum dots; the directional channel provides a splitting photonic waveguide to enhance the outcoupling of photoluminescence light. Consequently, the excitation and outcoupling efficiency can be simultaneously improved at this judiciously designed pixelated color convertor with a thickness of 50 μm. By this strategy, ultrathin BPW-PCCs with 4.4-fold enhanced photoluminescence intensity have been demonstrated in micro-light-emitting diode devices and achieved a record-high luminous efficacy of 1600 lm W−1 mm−1, opening a new avenue for efficient miniaturized displays.

像素化色彩转换器在下一代显示技术中扮演着极其重要的角色。然而,光在转换器内传播的固有随机性给调和激发和耦合之间的巨大矛盾带来了严峻挑战。在这里,我们展示了一种生物启发光子波导像素化色彩转换器(BPW-PCC),它实现了定向激发和外耦合,其灵感来自昆虫视觉系统。BPW-PCC 的透镜阵列实现了聚焦光子波导,可引导激发光并将其汇聚到胶体量子点上;定向通道提供了分光光子波导,可增强光致发光的外耦合。因此,在这种设计合理、厚度为 50 微米的像素化色彩转换器中,激发和耦合效率可同时得到提高。通过这种策略,超薄 BPW-PCC 的光致发光强度提高了 4.4 倍,并在微型发光二极管器件中实现了 1600 lm W-1 mm-1 的创纪录高光效,为高效微型显示器开辟了一条新途径。
{"title":"Bioinspired ultrathin photonic color convertors for highly efficient micro-light-emitting diodes","authors":"Jiexin Li,&nbsp;Xinrui Ding,&nbsp;Yuzhi Shi,&nbsp;Jiasheng Li,&nbsp;Zihao Deng,&nbsp;Jiayong Qiu,&nbsp;Jinhui Zhang,&nbsp;Wei Luo,&nbsp;Guanwei Liang,&nbsp;Long Zhao,&nbsp;Yong Tang,&nbsp;Ai Qun Liu,&nbsp;Zongtao Li","doi":"10.1002/flm2.33","DOIUrl":"https://doi.org/10.1002/flm2.33","url":null,"abstract":"<p>Pixelated color convertor plays an immensely important role in next-generation display technologies. However, the inherent randomness of light propagation within the convertor presents a formidable challenge to reconcile the huge contradiction between excitation and outcoupling. Here, we demonstrate a bioinspired photonic waveguide pixelated color convertor (BPW-PCC) to realize directional excitation and outcoupling, which is inspired by an insect visual system. The lens array of BPW-PCC enables a focusing photonic waveguide that guides the excitation light and converges it on colloidal quantum dots; the directional channel provides a splitting photonic waveguide to enhance the outcoupling of photoluminescence light. Consequently, the excitation and outcoupling efficiency can be simultaneously improved at this judiciously designed pixelated color convertor with a thickness of 50 μm. By this strategy, ultrathin BPW-PCCs with 4.4-fold enhanced photoluminescence intensity have been demonstrated in micro-light-emitting diode devices and achieved a record-high luminous efficacy of 1600 lm W<sup>−1</sup> mm<sup>−1</sup>, opening a new avenue for efficient miniaturized displays.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"258-268"},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.33","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bimetallic ions modified 2-methylimidazolium functionalized polypyrrole/graphene oxide for the improved supercapacitor 双金属离子修饰的 2-甲基咪唑鎓功能化聚吡咯/氧化石墨烯,用于改良超级电容器
Pub Date : 2024-09-07 DOI: 10.1002/flm2.32
Hui Mao, Shuai Zhang, Jinchi Liu, Shuyao Wu, Daliang Liu, Hui Li, Lei Zhang, Yusheng Zhang, Qiong Wu, Tianyi Ma

Thin films with two-dimensional (2D) nanostructures possess good environmental stability, thinner thickness and large surface area, which are widely used as a promising modified electrode material in the field of energy storage, supercapacitors, electrochemical sensors and biosensors. Herein, unique bimetallic ions modified polypyrrole/graphene oxide (PPy/GO) nanosheets, including Co2+-Zr4+/(2-MeIm)x@PPy/GO and Co2+-Run+/(2-MeIm)x@PPy/GO (n = 0, 4), are prepared by using 2-methylimidazolium (2-MeIm) as the linkers between PPy/GO and metal ions. The obtained electrodes constructed by Co2+-Run+/(2-MeIm)x@PPy/GO (n = 0, 4) and Co2+-Zr4+/(2-MeIm)x@PPy/GO exhibit improved capacitor electrochemical properties due to the reversible redox reaction, the large specific surface area and the high theoretical specific capacitance value of the metal ions compared to the unmodified PPy/GO. Especially, the specific capacitance value of Co2+-Run+/(2-MeIm)x@PPy/GO (n = 0, 4) electrode reaches 321.78 F g−1 at a current density of 1 A g−1 and the capacitance retention rate is achieved to 100% in the long cycle charge/discharge test after 10 000 cycles (10 A g−1). It will provide a practical experience for the design and preparation of supercapacitors based on bimetallic ions modified PPy/GO.

具有二维(2D)纳米结构的薄膜具有良好的环境稳定性、更薄的厚度和更大的比表面积,被广泛用作储能、超级电容器、电化学传感器和生物传感器等领域前景广阔的改性电极材料。本文以2-甲基咪唑(2-MeIm)作为聚吡咯/氧化石墨烯(PPy/GO)与金属离子的连接体,制备了独特的双金属离子修饰聚吡咯/氧化石墨烯(PPy/GO)纳米片,包括Co2+-Zr4+/(2-MeIm)x@PPy/GO和Co2+-Run+/(2-MeIm)x@PPy/GO(n = 0,4)。与未改性的 PPy/GO 相比,Co2+-Run+/(2-MeIm)x@PPy/GO(n = 0, 4)和 Co2+-Zr4+/(2-MeIm)x@PPy/GO 所制备的电极具有可逆的氧化还原反应、较大的比表面积和较高的金属离子理论比电容值,从而改善了电容器的电化学性能。特别是 Co2+-Run+/(2-MeIm)x@PPy/GO (n = 0, 4) 电极,在电流密度为 1 A g-1 时,比电容值达到 321.78 F g-1,在长周期充放电测试中,经过 10 000 次循环(10 A g-1)后,电容保持率达到 100%。这将为设计和制备基于双金属离子改性 PPy/GO 的超级电容器提供实践经验。
{"title":"Bimetallic ions modified 2-methylimidazolium functionalized polypyrrole/graphene oxide for the improved supercapacitor","authors":"Hui Mao,&nbsp;Shuai Zhang,&nbsp;Jinchi Liu,&nbsp;Shuyao Wu,&nbsp;Daliang Liu,&nbsp;Hui Li,&nbsp;Lei Zhang,&nbsp;Yusheng Zhang,&nbsp;Qiong Wu,&nbsp;Tianyi Ma","doi":"10.1002/flm2.32","DOIUrl":"https://doi.org/10.1002/flm2.32","url":null,"abstract":"<p>Thin films with two-dimensional (2D) nanostructures possess good environmental stability, thinner thickness and large surface area, which are widely used as a promising modified electrode material in the field of energy storage, supercapacitors, electrochemical sensors and biosensors. Herein, unique bimetallic ions modified polypyrrole/graphene oxide (PPy/GO) nanosheets, including Co<sup>2+</sup>-Zr<sup>4+</sup>/(2-MeIm)<sub><i>x</i></sub>@PPy/GO and Co<sup>2+</sup>-Ru<sup>n+</sup>/(2-MeIm)<sub><i>x</i></sub>@PPy/GO (<i>n</i> = 0, 4), are prepared by using 2-methylimidazolium (2-MeIm) as the linkers between PPy/GO and metal ions. The obtained electrodes constructed by Co<sup>2+</sup>-Ru<sup>n+</sup>/(2-MeIm)<sub><i>x</i></sub>@PPy/GO (<i>n</i> = 0, 4) and Co<sup>2+</sup>-Zr<sup>4+</sup>/(2-MeIm)<sub><i>x</i></sub>@PPy/GO exhibit improved capacitor electrochemical properties due to the reversible redox reaction, the large specific surface area and the high theoretical specific capacitance value of the metal ions compared to the unmodified PPy/GO. Especially, the specific capacitance value of Co<sup>2+</sup>-Ru<sup>n+</sup>/(2-MeIm)<sub><i>x</i></sub>@PPy/GO (<i>n</i> = 0, 4) electrode reaches 321.78 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup> and the capacitance retention rate is achieved to 100% in the long cycle charge/discharge test after 10 000 cycles (10 A g<sup>−1</sup>). It will provide a practical experience for the design and preparation of supercapacitors based on bimetallic ions modified PPy/GO.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"302-310"},"PeriodicalIF":0.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.32","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroconductive hydrogels for bioelectronics: Challenges and opportunities 用于生物电子学的导电水凝胶:挑战与机遇
Pub Date : 2024-08-29 DOI: 10.1002/flm2.31
Nian Liu, Huifang Ma, Maorui Li, Rongrong Qin, Peng Li

Electroconductive hydrogels (ECHs) have been extensively explored as promising flexible materials for bioelectronics because of their tunable conductivity and tissue-like biological and mechanical properties. ECHs can interact intimately with biosystems, transmit physiological signals, and are expected to revolutionize the convergence between organisms and electronics. However, there are still some challenges in utilizing ECHs as flexible materials for bioelectronics, such as mismatched stretchability with tissues, a lack of environmental adaptability, susceptibility to mechanical damage, inferior interface compatibility, and vulnerability to bacterial contamination. This review categorizes these challenges encountered in the bioelectronic applications of ECHs and elaborates on the strategies and theories for improving their performance. Furthermore, we present an overview of the recent advancements in ECHs for bioelectronic applications, specifically focusing on their contributions to healthcare monitoring, treatment of diseases, and human–machine interfaces. The scope of future research on ECHs in bioelectronics is also proposed. Overall, this review offers a comprehensive exposition of difficult issues and potential opportunities for ECHs in bioelectronics, offering valuable insights for the design and fabrication of ECH-based bioelectronic devices.

导电水凝胶(ECHs)具有可调的导电性以及类似组织的生物和机械特性,因此被广泛认为是有前途的生物电子学柔性材料。ECH 可与生物系统密切互动,传输生理信号,有望彻底改变生物与电子之间的融合。然而,将 ECHs 用作生物电子学柔性材料仍面临一些挑战,如与组织的伸展性不匹配、缺乏环境适应性、易受机械损伤、界面兼容性差以及易受细菌污染等。本综述对 ECHs 在生物电子应用中遇到的这些挑战进行了分类,并详细阐述了提高其性能的策略和理论。此外,我们还概述了电子镇流器在生物电子应用方面的最新进展,特别关注其在医疗保健监测、疾病治疗和人机界面方面的贡献。此外,还提出了生物电子学中电子镇流器的未来研究范围。总之,本综述全面阐述了生物电子学中电子镇流器的难题和潜在机遇,为设计和制造基于电子镇流器的生物电子器件提供了宝贵的见解。
{"title":"Electroconductive hydrogels for bioelectronics: Challenges and opportunities","authors":"Nian Liu,&nbsp;Huifang Ma,&nbsp;Maorui Li,&nbsp;Rongrong Qin,&nbsp;Peng Li","doi":"10.1002/flm2.31","DOIUrl":"https://doi.org/10.1002/flm2.31","url":null,"abstract":"<p>Electroconductive hydrogels (ECHs) have been extensively explored as promising flexible materials for bioelectronics because of their tunable conductivity and tissue-like biological and mechanical properties. ECHs can interact intimately with biosystems, transmit physiological signals, and are expected to revolutionize the convergence between organisms and electronics. However, there are still some challenges in utilizing ECHs as flexible materials for bioelectronics, such as mismatched stretchability with tissues, a lack of environmental adaptability, susceptibility to mechanical damage, inferior interface compatibility, and vulnerability to bacterial contamination. This review categorizes these challenges encountered in the bioelectronic applications of ECHs and elaborates on the strategies and theories for improving their performance. Furthermore, we present an overview of the recent advancements in ECHs for bioelectronic applications, specifically focusing on their contributions to healthcare monitoring, treatment of diseases, and human–machine interfaces. The scope of future research on ECHs in bioelectronics is also proposed. Overall, this review offers a comprehensive exposition of difficult issues and potential opportunities for ECHs in bioelectronics, offering valuable insights for the design and fabrication of ECH-based bioelectronic devices.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"269-301"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.31","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realizing record efficiencies for ultra-thin organic photovoltaics through step-by-step optimizations of silver nanowire transparent electrodes 通过逐步优化银纳米线透明电极,实现创纪录的超薄有机光伏效率
Pub Date : 2024-08-18 DOI: 10.1002/flm2.30
Xiangjun Zheng, Yiming Wang, Tianyi Chen, Yibo Kong, Xiaoling Wu, Cun Zhou, Qun Luo, Chang-Qi Ma, Lijian Zuo, Minmin Shi, Hongzheng Chen

Ultra-thin (also known as ultra-flexible) organic photovoltaics (OPVs) represent a strong contender among emerging photovoltaic technologies. However, due to the imbalance between the optical and electrical properties of indium tin oxide (ITO)-free transparent electrodes, the ultra-thin OPVs often exhibit lower efficiency compared to the brittle yet more balanced rigid ITO counterparts. Here, we design and fabricate an advanced ultra-thin OPV, which involves a thoroughly optimized silver nanowires (AgNWs) transparent electrode (named AZAT) with excellent optical, electrical and mechanical properties. Specifically, the high-kinetic energy spray-coating method successfully yields a curve-shaped, tightly connected and uniformly distributed AgNWs film, complemented by a capping layer of zinc oxide:aluminum-doped zinc oxide (ZnO:AZO) to improve charge collection capability. Simultaneously, the transparency of the electrode is enhanced through precise optical optimization. Thus, we implant the AZAT-based devices on 1.3 μm polyimide substrates and demonstrate ultra-thin OPVs with a record efficiency of 18.46% and a power density of 40.31 W g−1, which is the highest value for PV technologies. Encouragingly, the AZAT electrode also enables the 10.0 cm2 device to exhibit a high efficiency of 15.67%. These results provide valuable insights for the development of ultra-thin OPVs with high efficiency, low cost, superior flexibility, and up-scaling capacity.

超薄(又称超柔性)有机光伏(OPV)是新兴光伏技术的有力竞争者。然而,由于无铟锡氧化物(ITO)透明电极的光学和电学特性不平衡,超薄 OPV 的效率往往低于脆性但更平衡的刚性 ITO 同类产品。在这里,我们设计并制造了一种先进的超薄 OPV,它采用了经过全面优化的银纳米线(AgNWs)透明电极(命名为 AZAT),具有优异的光学、电学和机械性能。具体来说,高动能喷涂方法成功地生成了一层曲线形、紧密连接且分布均匀的银纳米线薄膜,并辅以氧化锌:掺铝氧化锌(ZnO:AZO)封端层,以提高电荷收集能力。同时,通过精确的光学优化提高了电极的透明度。因此,我们在 1.3 μm 聚酰亚胺衬底上植入了基于 AZAT 的器件,并展示了超薄 OPV,其效率达到创纪录的 18.46%,功率密度达到 40.31 W g-1,这是光伏技术的最高值。令人鼓舞的是,AZAT 电极还使 10.0 平方厘米的设备实现了 15.67% 的高效率。这些结果为开发具有高效率、低成本、优越灵活性和升级能力的超薄 OPV 提供了宝贵的启示。
{"title":"Realizing record efficiencies for ultra-thin organic photovoltaics through step-by-step optimizations of silver nanowire transparent electrodes","authors":"Xiangjun Zheng,&nbsp;Yiming Wang,&nbsp;Tianyi Chen,&nbsp;Yibo Kong,&nbsp;Xiaoling Wu,&nbsp;Cun Zhou,&nbsp;Qun Luo,&nbsp;Chang-Qi Ma,&nbsp;Lijian Zuo,&nbsp;Minmin Shi,&nbsp;Hongzheng Chen","doi":"10.1002/flm2.30","DOIUrl":"https://doi.org/10.1002/flm2.30","url":null,"abstract":"<p>Ultra-thin (also known as ultra-flexible) organic photovoltaics (OPVs) represent a strong contender among emerging photovoltaic technologies. However, due to the imbalance between the optical and electrical properties of indium tin oxide (ITO)-free transparent electrodes, the ultra-thin OPVs often exhibit lower efficiency compared to the brittle yet more balanced rigid ITO counterparts. Here, we design and fabricate an advanced ultra-thin OPV, which involves a thoroughly optimized silver nanowires (AgNWs) transparent electrode (named AZAT) with excellent optical, electrical and mechanical properties. Specifically, the high-kinetic energy spray-coating method successfully yields a curve-shaped, tightly connected and uniformly distributed AgNWs film, complemented by a capping layer of zinc oxide:aluminum-doped zinc oxide (ZnO:AZO) to improve charge collection capability. Simultaneously, the transparency of the electrode is enhanced through precise optical optimization. Thus, we implant the AZAT-based devices on 1.3 μm polyimide substrates and demonstrate ultra-thin OPVs with a record efficiency of 18.46% and a power density of 40.31 W g<sup>−1</sup>, which is the highest value for PV technologies. Encouragingly, the AZAT electrode also enables the 10.0 cm<sup>2</sup> device to exhibit a high efficiency of 15.67%. These results provide valuable insights for the development of ultra-thin OPVs with high efficiency, low cost, superior flexibility, and up-scaling capacity.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"221-233"},"PeriodicalIF":0.0,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.30","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconfigurable flexible thermoelectric generators based on all-inorganic MXene/Bi2Te3 composite films 基于全无机 MXene/Bi2Te3 复合薄膜的可重构柔性热电发生器
Pub Date : 2024-07-11 DOI: 10.1002/flm2.28
Yunhe Xu, Bo Wu, Chengyi Hou, Yaogang Li, Hongzhi Wang, Qinghong Zhang

Flexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego-like reconfigurable FTEG by combining flexible TE chips, rheological liquid-metal electrical wiring, and a stretchable substrate in a mechanical plug-in configuration. The flexible TE chips are constructed from n-type all-inorganic MXene/Bi2Te3 composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (ΔT), leading to a substantial ΔT at the cold end in contact with the environment, resulting in a power output of 7.1 μW with a ΔT of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low-grade heat.

柔性热电发生器(FTEG)利用其将人体热量转化为电能的能力,是为可穿戴电子设备供电的绝佳解决方案。然而,由于材料的热电(TE)效率不足以及设备之间的温度变化极小,它们在可穿戴行业中的应用受到了限制。在这项研究中,我们开发了一种类似乐高积木的可重构 FTEG,它将柔性 TE 芯片、流变液态金属电线和可拉伸基板以机械插件的形式结合在一起。柔性 TE 芯片由 n 型无机 MXene/Bi2Te3 复合薄膜制成,通过热处理进一步增强了其 TE 特性。FTEG 的演示表明,它具有将热量转化为垂直温差(ΔT)的能力,从而在与环境接触的冷端产生大量的ΔT,因此仅 5 个 TE 芯片就能输出 7.1 μW 的功率,ΔT 为 45 K。可重新配置的 FTEG 为可穿戴设备利用低级热量提供了巨大的潜力。
{"title":"Reconfigurable flexible thermoelectric generators based on all-inorganic MXene/Bi2Te3 composite films","authors":"Yunhe Xu,&nbsp;Bo Wu,&nbsp;Chengyi Hou,&nbsp;Yaogang Li,&nbsp;Hongzhi Wang,&nbsp;Qinghong Zhang","doi":"10.1002/flm2.28","DOIUrl":"10.1002/flm2.28","url":null,"abstract":"<p>Flexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego-like reconfigurable FTEG by combining flexible TE chips, rheological liquid-metal electrical wiring, and a stretchable substrate in a mechanical plug-in configuration. The flexible TE chips are constructed from n-type all-inorganic MXene/Bi<sub>2</sub>Te<sub>3</sub> composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (Δ<i>T</i>), leading to a substantial Δ<i>T</i> at the cold end in contact with the environment, resulting in a power output of 7.1 μW with a Δ<i>T</i> of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low-grade heat.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"248-257"},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.28","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141657765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FlexMat
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1