Pub Date : 2024-05-06DOI: 10.1016/j.fpp.2024.100053
D.R. Shklyar , N.S. Artekha
Despite the undoubted importance of having fairly simple analytical expressions for the refractive indices of wave modes in a magnetoactive plasma, such expressions are known only in some particular cases. For electron waves with frequencies much higher than the lower hybrid resonance frequency, such an expression is known only for whistler waves in a dense plasma when the electron plasma frequency significantly exceeds the electron cyclotron frequency. In this Letter, we propose simple operational expressions for the refractive indices of all four electron modes in a magnetoactive plasma, namely, the fast magnetosonic, also called whistler mode, the slow extraordinary mode, the ordinary mode, and the fast extraordinary mode. The form of these expressions does not depend on the value of the ratio of plasma frequency to cyclotron frequency.
{"title":"Model expressions for refractive indices of electron waves in cold magnetoactive plasma of arbitrary density","authors":"D.R. Shklyar , N.S. Artekha","doi":"10.1016/j.fpp.2024.100053","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100053","url":null,"abstract":"<div><p>Despite the undoubted importance of having fairly simple analytical expressions for the refractive indices of wave modes in a magnetoactive plasma, such expressions are known only in some particular cases. For electron waves with frequencies much higher than the lower hybrid resonance frequency, such an expression is known only for whistler waves in a dense plasma when the electron plasma frequency significantly exceeds the electron cyclotron frequency. In this Letter, we propose simple operational expressions for the refractive indices of all four electron modes in a magnetoactive plasma, namely, the fast magnetosonic, also called whistler mode, the slow extraordinary mode, the ordinary mode, and the fast extraordinary mode. The form of these expressions does not depend on the value of the ratio of plasma frequency to cyclotron frequency.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100053"},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000189/pdfft?md5=cfce0ca354cae85e7af3b6727d940f9a&pid=1-s2.0-S2772828524000189-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140901363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1016/j.fpp.2024.100050
Huasheng Xie , Haojie Ma , Yukun Bai
Although an accurate description of wave propagation and absorption in plasmas requires complicated full-wave solutions or kinetic simulations, local dispersion analysis can still be helpful to capture the main physics of wave properties. Plasma wave propagation conditions or accessibility informs whether a wave can propagate to a region, which usually depends on the wave frequency, wave vector, the local plasma density, and magnetic field. We demonstrate a warm multi-fluid eigenvalue model and a matrix approach to rapidly calculate plasma wave accessibility diagrams, where thermal effects are also included via an isotropic pressure term. All cold plasma waves, from high-frequency electron cyclotron waves, intermediate-frequency lower hybrid waves, to low-frequency ion cyclotron waves, are presented. By comparing with the kinetic model, it is interesting to find that the warm multi-fluid model, though incapable of reproducing the Bernstein modes, can provide a quick way to determine whether thermal effects are important.
{"title":"Plasma wave propagation conditions analysis using the warm multi-fluid model","authors":"Huasheng Xie , Haojie Ma , Yukun Bai","doi":"10.1016/j.fpp.2024.100050","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100050","url":null,"abstract":"<div><p>Although an accurate description of wave propagation and absorption in plasmas requires complicated full-wave solutions or kinetic simulations, local dispersion analysis can still be helpful to capture the main physics of wave properties. Plasma wave propagation conditions or accessibility informs whether a wave can propagate to a region, which usually depends on the wave frequency, wave vector, the local plasma density, and magnetic field. We demonstrate a warm multi-fluid eigenvalue model and a matrix approach to rapidly calculate plasma wave accessibility diagrams, where thermal effects are also included via an isotropic pressure term. All cold plasma waves, from high-frequency electron cyclotron waves, intermediate-frequency lower hybrid waves, to low-frequency ion cyclotron waves, are presented. By comparing with the kinetic model, it is interesting to find that the warm multi-fluid model, though incapable of reproducing the Bernstein modes, can provide a quick way to determine whether thermal effects are important.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100050"},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000153/pdfft?md5=e7df8ca765e52eb87ab1b02c3084e6b4&pid=1-s2.0-S2772828524000153-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140807850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1016/j.fpp.2024.100051
Linjin Zheng, M.T. Kotschenreuther, F.L. Waelbroeck, M.E. Austin, W.L. Rowan, P. Valanju, X. Liu
The steady-state confinement, beta limit, and divertor heat load are among the most concerned issues for toroidal confinement of fusion plasmas. In this work, we show that the negative triangularity tokamak has promising prospects to address these issues. We first demonstrate that the negative triangularity tokamak generates the filed line rotation transform more effectively. This brings bright prospects for the advanced steady-state tokamak scenario. Given this, the MHD stability and equilibrium confinement of negative triangularity tokamak are investigated. We point out that the negative triangularity configuration with a broad pressure profile is indeed more unstable for low- magnetohydrodynamic modes than the positive triangularity case so that the H-mode confinement can hardly be achieved in this configuration, where is the toroidal mode number. Nevertheless, we found that the negative triangularity configuration with high bootstrap current fraction, high poloidal beta, and peaked pressure profiles can achieve higher normalized beta for low- modes than the positive triangularity case. In a certain parameter domain, the normalized beta can reach about twice the extended Troyon limit, while the same computation indicates that the positive triangularity configuration is indeed constrained by the Troyon limit. This shows that the negative triangularity tokamaks are not only favorable for divertor design to avoid the edge localized modes but also can have promising prospects for advanced steady-state confinement of fusion plasmas in high beta.
稳态约束、贝塔极限和分流器热负荷是聚变等离子体环形约束最关心的问题。在这项工作中,我们证明负三角形托卡马克有望解决这些问题。我们首先证明了负三角形托卡马克能更有效地产生锉线旋转变换。这为先进的稳态托卡马克方案带来了光明的前景。有鉴于此,我们对负三角形托卡马克的 MHD 稳定性和平衡约束进行了研究。我们指出,对于低 n 磁流体力学模式而言,具有宽压力曲线的负三角形构型确实比正三角形构型更不稳定,因此在这种构型(n 为环形模式数)中很难实现 H 模式约束。尽管如此,我们发现,负三角形配置具有高自举电流分数、高极坐标贝塔值和峰值压力剖面,与正三角形情况相比,可以实现更高的低 n 模式归一化贝塔值。在一定的参数域中,归一化贝塔值可以达到扩展特洛伊恩极限的两倍左右,而同样的计算表明,正三角构型确实受到特洛伊恩极限的限制。这表明负三角形托卡马克不仅有利于分流器的设计以避免边缘局部模式,而且对于高贝塔聚变等离子体的先进稳态约束具有广阔的前景。
{"title":"Prospects of negative triangularity tokamak for advanced steady-state confinement of fusion plasmas in MHD stability consideration","authors":"Linjin Zheng, M.T. Kotschenreuther, F.L. Waelbroeck, M.E. Austin, W.L. Rowan, P. Valanju, X. Liu","doi":"10.1016/j.fpp.2024.100051","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100051","url":null,"abstract":"<div><p>The steady-state confinement, beta limit, and divertor heat load are among the most concerned issues for toroidal confinement of fusion plasmas. In this work, we show that the negative triangularity tokamak has promising prospects to address these issues. We first demonstrate that the negative triangularity tokamak generates the filed line rotation transform more effectively. This brings bright prospects for the advanced steady-state tokamak scenario. Given this, the MHD stability and equilibrium confinement of negative triangularity tokamak are investigated. We point out that the negative triangularity configuration with a broad pressure profile is indeed more unstable for low-<span><math><mi>n</mi></math></span> magnetohydrodynamic modes than the positive triangularity case so that the H-mode confinement can hardly be achieved in this configuration, where <span><math><mi>n</mi></math></span> is the toroidal mode number. Nevertheless, we found that the negative triangularity configuration with high bootstrap current fraction, high poloidal beta, and peaked pressure profiles can achieve higher normalized beta for low-<span><math><mi>n</mi></math></span> modes than the positive triangularity case. In a certain parameter domain, the normalized beta can reach about twice the extended Troyon limit, while the same computation indicates that the positive triangularity configuration is indeed constrained by the Troyon limit. This shows that the negative triangularity tokamaks are not only favorable for divertor design to avoid the edge localized modes but also can have promising prospects for advanced steady-state confinement of fusion plasmas in high beta.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100051"},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000165/pdfft?md5=7226485704d08552a46a853c6c20fd6c&pid=1-s2.0-S2772828524000165-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1016/j.fpp.2024.100052
Trinesh Sana , S.K. Mishra
This study assesses the plasma sheath formation on the night side of the Moon when exposed to highly energetic ambient plasma. The calculations indicate that the secondary electron emission (SEE) due to highly energetic plasma electrons leads to the formation of the inverse sheath around the positively charged lunar surface on the night side, where a traditional Debye sheath with a high negative surface potential is anticipated. Analytical formulation of Debye sheath and inverse sheath formation is given considering Maxwellian plasma and secondary electrons and cold ions. For a given SEE yield, a temperature regime is predicted where the inverse sheath is possible.
本研究评估了月球夜面暴露于高能环境等离子体时等离子体鞘的形成。计算表明,高能等离子体电子导致的二次电子发射(SEE)会在月球夜面带正电的月面周围形成反鞘,而传统的德拜鞘具有较高的负表面电位。考虑到麦克斯韦等离子体、二次电子和冷离子,给出了德拜鞘和反鞘形成的分析公式。对于给定的 SEE 产率,预测了可能出现反向鞘的温度机制。
{"title":"Possibility of inverse sheath in the lunar nightside due to secondary electron emission","authors":"Trinesh Sana , S.K. Mishra","doi":"10.1016/j.fpp.2024.100052","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100052","url":null,"abstract":"<div><p>This study assesses the plasma sheath formation on the night side of the Moon when exposed to highly energetic ambient plasma. The calculations indicate that the secondary electron emission (SEE) due to highly energetic plasma electrons leads to the formation of the inverse sheath around the positively charged lunar surface on the night side, where a traditional Debye sheath with a high negative surface potential is anticipated. Analytical formulation of Debye sheath and inverse sheath formation is given considering Maxwellian plasma and secondary electrons and cold ions. For a given SEE yield, a temperature regime is predicted where the inverse sheath is possible.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100052"},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000177/pdfft?md5=cf67cb1e7da06258ca9aabfa9742a47a&pid=1-s2.0-S2772828524000177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140813170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-20DOI: 10.1016/j.fpp.2024.100049
Philippa K. Browning, Mykola Gordovskyy, Luiz A.C.A. Schiavo, James Stewart
We show how some different fundamental plasma processes - the ideal kink instability, magnetic reconnection and magnetohydrodynamic oscillations - can be causally linked. This is shown through reviewing a series of models of energy release in twisted magnetic flux ropes in the solar corona, representing confined solar flares. 3D magnetohydrodynamic simulations demonstrate that fragmented current sheets develop during the nonlinear phase of the ideal kink instability, leading to multiple magnetic reconnections and the release of stored magnetic energy. By coupling these simulations with a test particle code, we can predict the development of populations of non-thermal electrons and ions, as observed in solar flares, and produce synthetic observables for comparison with observations. We also show that magnetic oscillations arise in the reconnecting loop, although there is no oscillatory external driver, and these lead to pulsations in the microwave emission similar to observed flare quasi-periodic pulsations. Oscillations and propagating waves also arise from reconnection when two twisted flux ropes merge, which is modelled utilising 2D magnetohydrodynamic simulations.
{"title":"From kink instability to magnetic reconnection to oscillations in solar flares","authors":"Philippa K. Browning, Mykola Gordovskyy, Luiz A.C.A. Schiavo, James Stewart","doi":"10.1016/j.fpp.2024.100049","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100049","url":null,"abstract":"<div><p>We show how some different fundamental plasma processes - the ideal kink instability, magnetic reconnection and magnetohydrodynamic oscillations - can be causally linked. This is shown through reviewing a series of models of energy release in twisted magnetic flux ropes in the solar corona, representing confined solar flares. 3D magnetohydrodynamic simulations demonstrate that fragmented current sheets develop during the nonlinear phase of the ideal kink instability, leading to multiple magnetic reconnections and the release of stored magnetic energy. By coupling these simulations with a test particle code, we can predict the development of populations of non-thermal electrons and ions, as observed in solar flares, and produce synthetic observables for comparison with observations. We also show that magnetic oscillations arise in the reconnecting loop, although there is no oscillatory external driver, and these lead to pulsations in the microwave emission similar to observed flare quasi-periodic pulsations. Oscillations and propagating waves also arise from reconnection when two twisted flux ropes merge, which is modelled utilising 2D magnetohydrodynamic simulations.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100049"},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000141/pdfft?md5=617285bdd749202a8b7b0881cb9438df&pid=1-s2.0-S2772828524000141-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140649779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-18DOI: 10.1016/j.fpp.2024.100048
Steffy Sara Varghese , Kuldeep Singh , Ioannis Kourakis
A comprehensive overview is presented of recent theoretical advancements and observational manifestations of a relatively new type of electrostatic solitary wave (ESW), known as supersoliton or supersolitary wave (SSW). These nonlinear structures are characterized by a distorted pulse-shaped electrostatic potential excitations, deviating from the standard (“sech2”-like) form generally expected from solitonic pulses. In Space plasmas, in particular, e.g. in magnetospheric observations, SSWs may be associated with a characteristic wiggly bipolar electric field waveform. It has been shown that a three-component configuration is essential, as a minimum requirement for SSWs to occur in a plasma.
Various spacecraft missions have recorded evidence of “non-conventional” electrostatic solitary waves (pulses) such as wiggly bipolar pulses, offset bipolar pulses, and monopolar pairs. This review article aims to present the current state of the art in this fascinating new theme, first outlining the basic framework for the modeling of such “exotic” ESWs and then putting forward a correlation between SSW structures with certain non-standard bipolar electric field forms observed in planetary magnetospheres.
{"title":"Electrostatic supersolitary waves: A challenging paradigm in nonlinear plasma science and beyond – State of the art and overview of recent results","authors":"Steffy Sara Varghese , Kuldeep Singh , Ioannis Kourakis","doi":"10.1016/j.fpp.2024.100048","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100048","url":null,"abstract":"<div><p>A comprehensive overview is presented of recent theoretical advancements and observational manifestations of a relatively new type of electrostatic solitary wave (ESW), known as <em>supersoliton</em> or <em>supersolitary wave</em> (SSW). These nonlinear structures are characterized by a distorted pulse-shaped electrostatic potential excitations, deviating from the standard (“sech<sup>2</sup>”-like) form generally expected from solitonic pulses. In Space plasmas, in particular, e.g. in magnetospheric observations, SSWs may be associated with a characteristic wiggly bipolar electric field waveform. It has been shown that a three-component configuration is essential, as a minimum requirement for SSWs to occur in a plasma.</p><p>Various spacecraft missions have recorded evidence of “non-conventional” electrostatic solitary waves (pulses) such as wiggly bipolar pulses, offset bipolar pulses, and monopolar pairs. This review article aims to present the current state of the art in this fascinating new theme, first outlining the basic framework for the modeling of such “exotic” ESWs and then putting forward a correlation between SSW structures with certain non-standard bipolar electric field forms observed in planetary magnetospheres.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100048"},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277282852400013X/pdfft?md5=49cbcd2a0e610c5b3f1408887a7e700c&pid=1-s2.0-S277282852400013X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140641202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-30DOI: 10.1016/j.fpp.2024.100047
S. Suman , S.K. Sethy , K.J. Sankaran
Superior lifetime stability for the microplasma device developed by decorating nanodiamonds (nDs) on laser induced graphene (LIG) is reported. Upon overwhelming the difficulty of poor stability in graphene, the nD-LIG displays exceptional lifetime stability of 1770s verified at an applied voltage of 340 V. But, the lifetime stability of LIG is only 718 s at the same applied voltage. Therefore, the nD-LIG with enhanced lifetime stability have pronounced prospective as cathodes in microplasma device applications.
通过在激光诱导石墨烯(LIG)上装饰纳米金刚石(nDs)而开发的微等离子体设备具有卓越的寿命稳定性。nD-LIG 克服了石墨烯稳定性差的困难,在 340 V 的外加电压下,其寿命稳定性高达 1770 秒。因此,寿命稳定性更高的 nD-LIG 在微等离子设备应用中作为阴极具有广阔的前景。
{"title":"High stability plasma illumination from micro discharges with nanodiamond decorated laser induced graphene electrodes","authors":"S. Suman , S.K. Sethy , K.J. Sankaran","doi":"10.1016/j.fpp.2024.100047","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100047","url":null,"abstract":"<div><p>Superior lifetime stability for the microplasma device developed by decorating nanodiamonds (nDs) on laser induced graphene (LIG) is reported. Upon overwhelming the difficulty of poor stability in graphene, the nD-LIG displays exceptional lifetime stability of 1770s verified at an applied voltage of 340 V. But, the lifetime stability of LIG is only 718 s at the same applied voltage. Therefore, the nD-LIG with enhanced lifetime stability have pronounced prospective as cathodes in microplasma device applications.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100047"},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000128/pdfft?md5=e82ca17af359f13027806f02cb9aebaf&pid=1-s2.0-S2772828524000128-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report on the first implementation of a miniature laser-driven shock tube (LDST) of 5 × 5 mm cross section and 50-mm length for generating and studying strong shock waves (SW) and hypersonic gas flows with M > 10. Operation of the LDST is based on the acceleration of a thin CH-film by ablative plasma pressure produced when the film is irradiated by high-energy UV pulse of the GARPUN KrF laser (100 J & 100-ns). The film serves as a piston that pushes a SW in the gas filling the LDST. An optical system based on a multi-element prism raster provides focusing of KrF laser beam into 7 × 7 mm square spot with 100 J/cm2 energy fluence (1 GW/cm2 intensity) with inhomogeneity ∼3 % across the LDST aperture. It is expected that the LDST with KrF laser driver can be an effective tool for studying hydrodynamic phenomena, such as hydrodynamic instabilities and transition to a turbulence, hypersonic gas flow around bodies, reflection and cumulation of strong SW.
{"title":"KrF laser-driven shock tube: Realization and first experiments","authors":"V.D. Zvorykin, P.V. Veliev, I.A. Kozin, N.V. Morozov, E.V. Parkevich, K.T. Smaznova, N.N. Ustinovskii, A.V. Shutov","doi":"10.1016/j.fpp.2024.100046","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100046","url":null,"abstract":"<div><p>We report on the first implementation of a miniature laser-driven shock tube (LDST) of 5 × 5 mm cross section and 50-mm length for generating and studying strong shock waves (SW) and hypersonic gas flows with <em>M</em> > 10. Operation of the LDST is based on the acceleration of a thin CH-film by ablative plasma pressure produced when the film is irradiated by high-energy UV pulse of the GARPUN KrF laser (100 J & 100-ns). The film serves as a piston that pushes a SW in the gas filling the LDST. An optical system based on a multi-element prism raster provides focusing of KrF laser beam into 7 × 7 mm square spot with 100 J/cm<sup>2</sup> energy fluence (1 GW/cm<sup>2</sup> intensity) with inhomogeneity ∼3 % across the LDST aperture. It is expected that the LDST with KrF laser driver can be an effective tool for studying hydrodynamic phenomena, such as hydrodynamic instabilities and transition to a turbulence, hypersonic gas flow around bodies, reflection and cumulation of strong SW.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100046"},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000116/pdfft?md5=221386dde950270064ca1f0d9d3b44e3&pid=1-s2.0-S2772828524000116-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140328564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1016/j.fpp.2024.100045
F.T.T. Houng , S.Y. Hoh , J.F. Ong
We show that the wakefield driven by fast electrons inside the nanowire when irradiated with an ultra-short relativistic laser pulse strips atoms to a higher charge state. Using particle-in-cell simulations, we demonstrate that the charge state agrees with the barrier suppression threshold of the wakefield and reaches a higher value via collision. The ionisation of gold nanowires occurs only via collisional-damped wakefield. We found that the collisional ionisation of high-Z nanowires depends on the onset of the z pinch. These results suggest a different ionisation mechanism of the structured target in the subfemtosecond regime.
{"title":"Ionisation in nanowire by ultra-short relativistic laser pulse","authors":"F.T.T. Houng , S.Y. Hoh , J.F. Ong","doi":"10.1016/j.fpp.2024.100045","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100045","url":null,"abstract":"<div><p>We show that the wakefield driven by fast electrons inside the nanowire when irradiated with an ultra-short relativistic laser pulse strips atoms to a higher charge state. Using particle-in-cell simulations, we demonstrate that the charge state agrees with the barrier suppression threshold of the wakefield and reaches a higher value via collision. The ionisation of gold nanowires occurs only via collisional-damped wakefield. We found that the collisional ionisation of high-Z nanowires depends on the onset of the z pinch. These results suggest a different ionisation mechanism of the structured target in the subfemtosecond regime.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100045"},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000104/pdfft?md5=e871395d63b33dd6eba2ce039a6643f7&pid=1-s2.0-S2772828524000104-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140328565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1016/j.fpp.2024.100044
A. Krupka, M.-C. Firpo
We consider a visco-resistive magnetohydrodynamic modelling of a steady-state incompressible tokamak plasma with a prescribed toroidal current drive, featuring constant resistivity η and viscosity ν. It is shown that the plasma velocity root-mean-square behaves as as long as the inertial term remains negligible, where H stands for the Hartmann number , and that exhibits power-law behaviours in the limits and . In the latter limit, we establish that scales as , which is consistent with numerical results.
{"title":"Scaling laws of the plasma velocity in visco-resistive magnetohydrodynamic systems","authors":"A. Krupka, M.-C. Firpo","doi":"10.1016/j.fpp.2024.100044","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100044","url":null,"abstract":"<div><p>We consider a visco-resistive magnetohydrodynamic modelling of a steady-state incompressible tokamak plasma with a prescribed toroidal current drive, featuring constant resistivity <em>η</em> and viscosity <em>ν</em>. It is shown that the plasma velocity root-mean-square behaves as <span><math><mi>η</mi><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> as long as the inertial term remains negligible, where <em>H</em> stands for the Hartmann number <span><math><mi>H</mi><mo>≡</mo><msup><mrow><mo>(</mo><mi>η</mi><mi>ν</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, and that <span><math><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> exhibits power-law behaviours in the limits <span><math><mi>H</mi><mo>≪</mo><mn>1</mn></math></span> and <span><math><mi>H</mi><mo>≫</mo><mn>1</mn></math></span>. In the latter limit, we establish that <span><math><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> scales as <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></math></span>, which is consistent with numerical results.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100044"},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000098/pdfft?md5=a466eeef37a256e3c75b644a84b157fa&pid=1-s2.0-S2772828524000098-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140187615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}