Pub Date : 2024-07-02DOI: 10.1016/j.fpp.2024.100065
T. Johnson , L.-G. Eriksson
This paper presents a new Monte Carlo algorithm intended for use in orbit following Monte Carlo codes (OFMC) to describe resonant interaction of ions with Radio Frequency (RF) waves in axi-symmetric toroidal plasmas. The algorithm is based on a quasi-linear description of the wave–particle interaction and its effect on the distribution function of a resonating ion species. The algorithm outlined in the present paper utilises a two-step approach for the evaluation of the Monte Carlo operator that has better efficiency and a stronger convergence than the standard Euler–Maruyama scheme. The algorithm preserves the reciprocity of the diffusion process. Furthermore, it simplifies how the displacement of the resonance position, as a result of wave–particle interaction, is accounted for. Such displacements can have a noticeable effect on the deterministic part of the Monte Carlo operator. The fundamental nature of guiding centre displacements of resonant ions as a result of wave–particle interaction is reviewed.
{"title":"A two-step Monte Carlo algorithm for interaction between resonant ions and radio frequency waves","authors":"T. Johnson , L.-G. Eriksson","doi":"10.1016/j.fpp.2024.100065","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100065","url":null,"abstract":"<div><p>This paper presents a new Monte Carlo algorithm intended for use in orbit following Monte Carlo codes (OFMC) to describe resonant interaction of ions with Radio Frequency (RF) waves in axi-symmetric toroidal plasmas. The algorithm is based on a quasi-linear description of the wave–particle interaction and its effect on the distribution function of a resonating ion species. The algorithm outlined in the present paper utilises a two-step approach for the evaluation of the Monte Carlo operator that has better efficiency and a stronger convergence than the standard Euler–Maruyama scheme. The algorithm preserves the reciprocity of the diffusion process. Furthermore, it simplifies how the displacement of the resonance position, as a result of wave–particle interaction, is accounted for. Such displacements can have a noticeable effect on the deterministic part of the Monte Carlo operator. The fundamental nature of guiding centre displacements of resonant ions as a result of wave–particle interaction is reviewed.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100065"},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277282852400030X/pdfft?md5=2ceda756529cd47b63c9efe88237f81c&pid=1-s2.0-S277282852400030X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1016/j.fpp.2024.100066
Alexander Bershadskii
Magneto-inertial range dominated by magnetic helicity has been studied using results of the numerical simulations, laboratory measurements, solar, solar wind, and the Earth’s and planets’ magnetosphere observations (spacecraft measurements). The spectral data have been compared with the theoretical results based on the distributed chaos notion in the frames of the Kolmogorov–Iroshnikov phenomenology. The transition from magnetohydrodynamics to kinetics in the electron and Hall magnetohydrodynamics, and in a fully kinetic 3D approach, as well as in the solar wind, solar photosphere, and at the special events (reconnections, Kelvin–Helmholtz instability, isolated flux tube interchanges, etc.) in the magnetosphere of Earth, Saturn, Jupiter, and Mercury has been also discussed.
{"title":"Magneto-inertial range dominated by magnetic helicity in space plasmas","authors":"Alexander Bershadskii","doi":"10.1016/j.fpp.2024.100066","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100066","url":null,"abstract":"<div><p>Magneto-inertial range dominated by magnetic helicity has been studied using results of the numerical simulations, laboratory measurements, solar, solar wind, and the Earth’s and planets’ magnetosphere observations (spacecraft measurements). The spectral data have been compared with the theoretical results based on the distributed chaos notion in the frames of the Kolmogorov–Iroshnikov phenomenology. The transition from magnetohydrodynamics to kinetics in the electron and Hall magnetohydrodynamics, and in a fully kinetic 3D approach, as well as in the solar wind, solar photosphere, and at the special events (reconnections, Kelvin–Helmholtz instability, isolated flux tube interchanges, etc.) in the magnetosphere of Earth, Saturn, Jupiter, and Mercury has been also discussed.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000311/pdfft?md5=6e3ff431df9fec0fc9d94dcd75179ac9&pid=1-s2.0-S2772828524000311-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1016/j.fpp.2024.100064
D. Urbanski, A. Tenerani, F.L. Waelbroeck
A unified linear theory that includes forced reconnection as a particular case of Alfvén resonance is presented. We consider a generalized Taylor problem in which a sheared magnetic field is subject to a time-dependent boundary perturbation oscillating at frequency . By analyzing the asymptotic time response of the system, the theory demonstrates that the Alfvén resonance is due to the residues at the resonant poles, in the complex frequency plane, introduced by the boundary perturbation. Alfvén resonance transitions towards forced reconnection, described by the constant-psi regime for (normalized) times , when the forcing frequency of the boundary perturbation is , allowing the coupling of the Alfvén resonances across the neutral line with the reconnecting mode, as originally suggested in Uberoi and Zweibel, (1999). Additionally, it is shown that even if forced reconnection develops for finite, albeit small, frequencies, the reconnection rate and reconnected flux are strongly reduced for frequencies .
{"title":"Unified framework of forced magnetic reconnection and Alfvén resonance","authors":"D. Urbanski, A. Tenerani, F.L. Waelbroeck","doi":"10.1016/j.fpp.2024.100064","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100064","url":null,"abstract":"<div><p>A unified linear theory that includes forced reconnection as a particular case of Alfvén resonance is presented. We consider a generalized Taylor problem in which a sheared magnetic field is subject to a time-dependent boundary perturbation oscillating at frequency <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. By analyzing the asymptotic time response of the system, the theory demonstrates that the Alfvén resonance is due to the residues at the resonant poles, in the complex frequency plane, introduced by the boundary perturbation. Alfvén resonance transitions towards forced reconnection, described by the constant-psi regime for (normalized) times <span><math><mrow><mi>t</mi><mo>≫</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></math></span>, when the forcing frequency of the boundary perturbation is <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≪</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></math></span>, allowing the coupling of the Alfvén resonances across the neutral line with the reconnecting mode, as originally suggested in Uberoi and Zweibel, (1999). Additionally, it is shown that even if forced reconnection develops for finite, albeit small, frequencies, the reconnection rate and reconnected flux are strongly reduced for frequencies <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≫</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>5</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100064"},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000293/pdfft?md5=ad3ab7e0416c016e1c10d6b80bb24d3f&pid=1-s2.0-S2772828524000293-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.fpp.2024.100063
Jason M. Keller, Alexei F. Cheviakov
The famous Hill’s solution describing a spherical vortex with nested toroidal pressure surfaces, bounded by a sphere, propelling itself in an ideal Eulerian fluid, is re-derived using Galilei symmetry and the Bragg–Hawthorne equations in spherical coordinates. The correspondence between equilibrium Euler equations of fluid dynamics and static magnetohydrodynamic equations is used to derive a generalized vortex type solution that corresponds to dynamic fluid equilibria and static plasma equilibria with a nonzero azimuthal vector field component, satisfying physical boundary conditions. Separation of variables in Bragg–Hawthorne equation in spherical coordinates is used to construct further new fluid and plasma equilibria with nested toroidal flux surfaces, featuring respectively boundary vorticity sheets and current sheets. Finally, the instability of the original Hill’s vortex with respect to certain radial perturbations of the spherical flux surface is proven analytically and illustrated numerically.
{"title":"Exact spherical vortex-type equilibrium flows in fluids and plasmas","authors":"Jason M. Keller, Alexei F. Cheviakov","doi":"10.1016/j.fpp.2024.100063","DOIUrl":"10.1016/j.fpp.2024.100063","url":null,"abstract":"<div><p>The famous Hill’s solution describing a spherical vortex with nested toroidal pressure surfaces, bounded by a sphere, propelling itself in an ideal Eulerian fluid, is re-derived using Galilei symmetry and the Bragg–Hawthorne equations in spherical coordinates. The correspondence between equilibrium Euler equations of fluid dynamics and static magnetohydrodynamic equations is used to derive a generalized vortex type solution that corresponds to dynamic fluid equilibria and static plasma equilibria with a nonzero azimuthal vector field component, satisfying physical boundary conditions. Separation of variables in Bragg–Hawthorne equation in spherical coordinates is used to construct further new fluid and plasma equilibria with nested toroidal flux surfaces, featuring respectively boundary vorticity sheets and current sheets. Finally, the instability of the original Hill’s vortex with respect to certain radial perturbations of the spherical flux surface is proven analytically and illustrated numerically.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100063"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000281/pdfft?md5=48286a2083b13c041ea1a8a771cfbc8e&pid=1-s2.0-S2772828524000281-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141281043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1016/j.fpp.2024.100059
Jonathan Freundlich
The interstellar medium of galaxies is composed of multiple phases, including molecular, atomic, and ionized gas, as well as dust. Stars are formed within this medium from cold molecular gas clouds, which collapse due to their gravitational attraction. Throughout their life, stars emit strong radiation fields and stellar winds, and they can also explode as supernovae at the end of their life. These processes contribute to stirring the turbulent interstellar medium and regulate star formation by heating up, ionizing, and expelling part of the gas. However, star formation does not proceed uniformly throughout the history of the Universe and decrease by an order of magnitude in the last ten billion years. To understand this winding-down of star formation and assess possible variations in the efficiency of star formation, it is crucial to probe the molecular gas reservoirs from which stars are formed. In this article following my presentation at the 10th International Conference on Frontiers of Plasma Physics and Technology held in Kathmandu from 13–17 March 2023, I review some aspects of the multiphase interstellar medium and star formation, with an emphasis on the interplay between neutral and ionized phases, and present recent and ongoing observations of the molecular gas content in typical star-forming galaxies across cosmic time and in different environments. I also present some of our understanding of star-forming galaxies from theoretical models and simulations.
{"title":"Star formation across cosmic time","authors":"Jonathan Freundlich","doi":"10.1016/j.fpp.2024.100059","DOIUrl":"10.1016/j.fpp.2024.100059","url":null,"abstract":"<div><p>The interstellar medium of galaxies is composed of multiple phases, including molecular, atomic, and ionized gas, as well as dust. Stars are formed within this medium from cold molecular gas clouds, which collapse due to their gravitational attraction. Throughout their life, stars emit strong radiation fields and stellar winds, and they can also explode as supernovae at the end of their life. These processes contribute to stirring the turbulent interstellar medium and regulate star formation by heating up, ionizing, and expelling part of the gas. However, star formation does not proceed uniformly throughout the history of the Universe and decrease by an order of magnitude in the last ten billion years. To understand this winding-down of star formation and assess possible variations in the efficiency of star formation, it is crucial to probe the molecular gas reservoirs from which stars are formed. In this article following my presentation at the 10th International Conference on Frontiers of Plasma Physics and Technology held in Kathmandu from 13–17 March 2023, I review some aspects of the multiphase interstellar medium and star formation, with an emphasis on the interplay between neutral and ionized phases, and present recent and ongoing observations of the molecular gas content in typical star-forming galaxies across cosmic time and in different environments. I also present some of our understanding of star-forming galaxies from theoretical models and simulations.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100059"},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000244/pdfft?md5=f61269f2a2c88f17fb56be04dcb9479c&pid=1-s2.0-S2772828524000244-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141143542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1016/j.fpp.2024.100057
K. Mima , M. Matys , Y. Sentoku , H. Nagatomo , N. Iwata , T.M. Jeong , S.V. Bulanov
The hole-boring by intense laser is one of the key issues for fast ignition laser fusion, laser radiation pressure ion acceleration, generation of high energy radiations, and so on. In the hole-boring, laser pulse propagation and generation of relativistic electrons and magnetic fields are critical phenomena. When the laser intensity is higher than and is larger than 10, the self-generated quasi-static magnetic fields reaches Giga Gauss to play important roles in the electron dynamics and the laser propagation. We explore the hole-boring by a linearly and a circularly polarized laser-pulses with the 3 dimensional (3D) PIC simulations. It is found that strong longitudinal magnetic fields are generated in front of the hole-boring driven by a circular polarization laser. The circularly polarized laser is converted into spiral electromagnetic waves which include both radially polarized wave and azimuthally polarized wave in the hole. The radially polarized spiral wave generates a spiral electron beam which induces the longitudinal magnetic field. Those spiral structure-formations are essentially 3D-phenomena which are investigated in details in the first time. The spiral structure-formations may play important roles in fast ignition, radiation pressure ion acceleration, and so on.
{"title":"Generations of spiral laser beam, spiral electron beam and longitudinal magnetic fields in hole-boring","authors":"K. Mima , M. Matys , Y. Sentoku , H. Nagatomo , N. Iwata , T.M. Jeong , S.V. Bulanov","doi":"10.1016/j.fpp.2024.100057","DOIUrl":"10.1016/j.fpp.2024.100057","url":null,"abstract":"<div><p>The hole-boring by intense laser is one of the key issues for fast ignition laser fusion, laser radiation pressure ion acceleration, generation of high energy radiations, and so on. In the hole-boring, laser pulse propagation and generation of relativistic electrons and magnetic fields are critical phenomena. When the laser intensity is higher than <span><math><mrow><msup><mrow><mn>10</mn></mrow><mn>20</mn></msup><mspace></mspace><mi>W</mi><mo>/</mo><mi>c</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> and <span><math><msub><mi>a</mi><mn>0</mn></msub></math></span> is larger than 10, the self-generated quasi-static magnetic fields reaches Giga Gauss to play important roles in the electron dynamics and the laser propagation. We explore the hole-boring by a linearly and a circularly polarized laser-pulses with the 3 dimensional (3D) PIC simulations. It is found that strong longitudinal magnetic fields are generated in front of the hole-boring driven by a circular polarization laser. The circularly polarized laser is converted into spiral electromagnetic waves which include both radially polarized wave and azimuthally polarized wave in the hole. The radially polarized spiral wave generates a spiral electron beam which induces the longitudinal magnetic field. Those spiral structure-formations are essentially 3D-phenomena which are investigated in details in the first time. The spiral structure-formations may play important roles in fast ignition, radiation pressure ion acceleration, and so on.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100057"},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000220/pdfft?md5=4d94ee98bc25c609f44f2d9af7054687&pid=1-s2.0-S2772828524000220-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141143673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.fpp.2024.100056
Subramanya Bhat K.N. , Amita Das , V. Ravishankar , Bhooshan Paradkar
The dynamics of strongly interacting particles are governed by Yang–Mills (Y–M) theory, which is a natural generalization of Maxwell Electrodynamics (ED). Its quantized version is known as quantum chromodynamics (QCD) (Gross and Wilczek, 1973; Politzer, 1973; ’t Hooft, 1972[1], [2], [3]) and has been very well studied. Classical Y–M theory is proving to be equally interesting because of the central role it plays in describing the physics of quark–gluon plasma (QGP) — which was prevalent in the early universe and is also produced in relativistic heavy ion collision experiments. This calls for a systematic study of classical Y–M theories. A good insight into classical Y–M dynamics would be best obtained by comparing and contrasting the Y–M results with their ED counterparts. In this article, a beginning has been made by considering streaming instabilities in Y–M fluids. We find that in addition to analogues of ED instabilities, novel nonabelian modes arise, reflecting the inherent nonabelian nature of the interaction. The new modes exhibit propagation/ growth, with growth rates that can be larger than what we find in ED. Interestingly, we also find a mode that propagates without getting affected by the medium.
强相互作用粒子的动力学受杨-米尔斯(Y-M)理论支配,该理论是麦克斯韦电动力学(ED)的自然概括。它的量子化版本被称为量子色动力学(QCD)(Gross and Wilczek, 1973; Politzer, 1973; 't Hooft, 1972[1], [2], [3]),研究得非常深入。事实证明,经典 Y-M 理论同样令人感兴趣,因为它在描述夸克-胶子等离子体(QGP)物理学中发挥着核心作用--夸克-胶子等离子体在早期宇宙中非常普遍,在相对论重离子碰撞实验中也会产生。这就需要对经典 Y-M 理论进行系统研究。对经典 Y-M 动力学的深入了解,最好是将 Y-M 结果与其对应的 ED 结果进行比较和对比。本文首先考虑了 Y-M 流体中的流不稳定性。我们发现,除了类似于 ED 的不稳定性之外,还出现了新的非阿贝尔模式,反映了相互作用固有的非阿贝尔性质。新模式表现出传播/增长,其增长率可能大于我们在 ED 中发现的增长率。有趣的是,我们还发现了一种不受介质影响而传播的模式。
{"title":"Novel instabilities in counter-streaming nonabelian fluids","authors":"Subramanya Bhat K.N. , Amita Das , V. Ravishankar , Bhooshan Paradkar","doi":"10.1016/j.fpp.2024.100056","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100056","url":null,"abstract":"<div><p>The dynamics of strongly interacting particles are governed by Yang–Mills (Y–M) theory, which is a natural generalization of Maxwell Electrodynamics (ED). Its quantized version is known as quantum chromodynamics (QCD) (Gross and Wilczek, 1973; Politzer, 1973; ’t Hooft, 1972<span>[1]</span>, <span>[2]</span>, <span>[3]</span>) and has been very well studied. Classical Y–M theory is proving to be equally interesting because of the central role it plays in describing the physics of quark–gluon plasma (QGP) — which was prevalent in the early universe and is also produced in relativistic heavy ion collision experiments. This calls for a systematic study of classical Y–M theories. A good insight into classical Y–M dynamics would be best obtained by comparing and contrasting the Y–M results with their ED counterparts. In this article, a beginning has been made by considering streaming instabilities in Y–M fluids. We find that in addition to analogues of ED instabilities, novel nonabelian modes arise, reflecting the inherent nonabelian nature of the interaction. The new modes exhibit propagation/ growth, with growth rates that can be larger than what we find in ED. Interestingly, we also find a mode that propagates without getting affected by the medium.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100056"},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000219/pdfft?md5=43e6ee4af48becb964c4eb56a6cc21bb&pid=1-s2.0-S2772828524000219-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141095082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1016/j.fpp.2024.100055
T. Passot , S.S. Cerri , C. Granier , D. Laveder , P.L. Sulem , E. Tassi
A Hamiltonian two-field gyrofluid model is used to investigate the dynamics of an electron-ion collisionless plasma subject to a strong ambient magnetic field, within a spectral range extending from the magnetohydrodynamic (MHD) scales to the electron skin depth. This model isolates Alfvén, Kinetic Alfvén and Inertial Kinetic Alfvén waves that play a central role in space plasmas, and extends standard reduced fluid models to broader ranges of the plasma parameters. Recent numerical results are reviewed, including (i) the reconnection-mediated MHD turbulence developing from the collision of counter-propagating Alfvén wave packets, (ii) the specific features of the cascade dynamics in strongly imbalanced turbulence, including a possible link between the existence of a spectral transition range and the presence of co-propagating wave interactions at sub-ion scales, for which new simulations are reported, (iii) the influence of the ion-to-electron temperature ratio in two-dimensional collisionless magnetic reconnection. The role of electron finite Larmor radius corrections is pointed out and the extension of the present model to a four-field gyrofluid model is discussed. Such an extended model accurately describes electron finite Larmor radius effects at small or moderate values of the electron beta parameter, and also retains the coupling to slow magnetosonic waves.
{"title":"Gyrofluid simulations of turbulence and reconnection in space plasmas","authors":"T. Passot , S.S. Cerri , C. Granier , D. Laveder , P.L. Sulem , E. Tassi","doi":"10.1016/j.fpp.2024.100055","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100055","url":null,"abstract":"<div><p>A Hamiltonian two-field gyrofluid model is used to investigate the dynamics of an electron-ion collisionless plasma subject to a strong ambient magnetic field, within a spectral range extending from the magnetohydrodynamic (MHD) scales to the electron skin depth. This model isolates Alfvén, Kinetic Alfvén and Inertial Kinetic Alfvén waves that play a central role in space plasmas, and extends standard reduced fluid models to broader ranges of the plasma parameters. Recent numerical results are reviewed, including (i) the reconnection-mediated MHD turbulence developing from the collision of counter-propagating Alfvén wave packets, (ii) the specific features of the cascade dynamics in strongly imbalanced turbulence, including a possible link between the existence of a spectral transition range and the presence of co-propagating wave interactions at sub-ion scales, for which new simulations are reported, (iii) the influence of the ion-to-electron temperature ratio in two-dimensional collisionless magnetic reconnection. The role of electron finite Larmor radius corrections is pointed out and the extension of the present model to a four-field gyrofluid model is discussed. Such an extended model accurately describes electron finite Larmor radius effects at small or moderate values of the electron beta parameter, and also retains the coupling to slow magnetosonic waves.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100055"},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000207/pdfft?md5=032438d03b2ba4566b39a6340ff88931&pid=1-s2.0-S2772828524000207-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1016/j.fpp.2024.100058
Deepak Prasad Subedi, Rajesh Prakash Guragain, Ujjwal Man Joshi
This study deals with the surface modification of polymer films utilizing a custom designed cost- effective dielectric barrier discharge (DBD) plasma produced in air at reduced pressure. We comprehensively examine diverse aspects of surface modification, encompassing electrical discharge characterization, optical signal analysis, contact angle measurements, and surface morphology assessment. Our observations unveiled the presence of distinctive filamentary streamer-based micro-discharges during the DBD process, with a power consumption of approximately 5.64 W and an electron density of 3.4 × 1011 cm−3. Optical emission spectroscopy identifies multiple emission peaks attributed to nitrogen emissions. Notably, plasma treatment substantially reduced the water contact angle and augmented surface energy on polypropylene (PP) and polyethylene terephthalate (PET) films. Surface morphology analysis illustrated an increase in surface roughness following plasma treatment. Intriguingly, the initial rapid alterations in wettability and surface morphology attained equilibrium after approximately 30 s of treatment. This study highlights atmospheric DBD plasma's effectiveness in customizing polymer surfaces, improving wettability and roughness, offering promising applications for enhanced adhesion and wetting.
{"title":"Surface modification of polymers by 50 Hz dielectric barrier discharge (DBD) plasma produced in air at 40 Torr","authors":"Deepak Prasad Subedi, Rajesh Prakash Guragain, Ujjwal Man Joshi","doi":"10.1016/j.fpp.2024.100058","DOIUrl":"10.1016/j.fpp.2024.100058","url":null,"abstract":"<div><p>This study deals with the surface modification of polymer films utilizing a custom designed cost- effective dielectric barrier discharge (DBD) plasma produced in air at reduced pressure. We comprehensively examine diverse aspects of surface modification, encompassing electrical discharge characterization, optical signal analysis, contact angle measurements, and surface morphology assessment. Our observations unveiled the presence of distinctive filamentary streamer-based micro-discharges during the DBD process, with a power consumption of approximately 5.64 W and an electron density of 3.4 × 10<sup>11</sup> cm<sup>−3</sup>. Optical emission spectroscopy identifies multiple emission peaks attributed to nitrogen emissions. Notably, plasma treatment substantially reduced the water contact angle and augmented surface energy on polypropylene (PP) and polyethylene terephthalate (PET) films. Surface morphology analysis illustrated an increase in surface roughness following plasma treatment. Intriguingly, the initial rapid alterations in wettability and surface morphology attained equilibrium after approximately 30 s of treatment. This study highlights atmospheric DBD plasma's effectiveness in customizing polymer surfaces, improving wettability and roughness, offering promising applications for enhanced adhesion and wetting.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100058"},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000232/pdfft?md5=812df3a553b453a87a7c8e3cdfd72b78&pid=1-s2.0-S2772828524000232-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141048877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1016/j.fpp.2024.100054
Naoki Sato , Philip J. Morrison
The phase space of a noncanonical Hamiltonian system is partially inaccessible due to dynamical constraints (Casimir invariants) arising from the kernel of the Poisson tensor. When an ensemble of noncanonical Hamiltonian systems is allowed to interact, dissipative processes eventually break the phase space constraints, resulting in a thermodynamic equilibrium described by a Maxwell–Boltzmann distribution. However, the time scale required to reach Maxwell–Boltzmann statistics is often much longer than the time scale over which a given system achieves a state of thermal equilibrium. Examples include diffusion in rigid mechanical systems, as well as collisionless relaxation in magnetized plasmas and stellar systems, where the interval between binary Coulomb or gravitational collisions can be longer than the time scale over which stable structures are self-organized. Here, we focus on self-organizing phenomena over spacetime scales such that particle interactions respect the noncanonical Hamiltonian structure, but yet act to create a state of thermodynamic equilibrium. We derive a collision operator for general noncanonical Hamiltonian systems, applicable to fast, localized interactions. This collision operator depends on the interaction exchanged by colliding particles and on the Poisson tensor encoding the noncanonical phase space structure, is consistent with entropy growth and conservation of particle number and energy, preserves the interior Casimir invariants, reduces to the Landau collision operator in the limit of grazing binary Coulomb collisions in canonical phase space, and exhibits a metriplectic structure. We further show how thermodynamic equilibria depart from Maxwell–Boltzmann statistics due to the noncanonical phase space structure, and how self-organization and collisionless relaxation in magnetized plasmas and stellar systems can be described through the derived collision operator.
{"title":"A collision operator for describing dissipation in noncanonical phase space","authors":"Naoki Sato , Philip J. Morrison","doi":"10.1016/j.fpp.2024.100054","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100054","url":null,"abstract":"<div><p>The phase space of a noncanonical Hamiltonian system is partially inaccessible due to dynamical constraints (Casimir invariants) arising from the kernel of the Poisson tensor. When an ensemble of noncanonical Hamiltonian systems is allowed to interact, dissipative processes eventually break the phase space constraints, resulting in a thermodynamic equilibrium described by a Maxwell–Boltzmann distribution. However, the time scale required to reach Maxwell–Boltzmann statistics is often much longer than the time scale over which a given system achieves a state of thermal equilibrium. Examples include diffusion in rigid mechanical systems, as well as collisionless relaxation in magnetized plasmas and stellar systems, where the interval between binary Coulomb or gravitational collisions can be longer than the time scale over which stable structures are self-organized. Here, we focus on self-organizing phenomena over spacetime scales such that particle interactions respect the noncanonical Hamiltonian structure, but yet act to create a state of thermodynamic equilibrium. We derive a collision operator for general noncanonical Hamiltonian systems, applicable to fast, localized interactions. This collision operator depends on the interaction exchanged by colliding particles and on the Poisson tensor encoding the noncanonical phase space structure, is consistent with entropy growth and conservation of particle number and energy, preserves the interior Casimir invariants, reduces to the Landau collision operator in the limit of grazing binary Coulomb collisions in canonical phase space, and exhibits a metriplectic structure. We further show how thermodynamic equilibria depart from Maxwell–Boltzmann statistics due to the noncanonical phase space structure, and how self-organization and collisionless relaxation in magnetized plasmas and stellar systems can be described through the derived collision operator.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100054"},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000190/pdfft?md5=dd0047a8bebbf536e73a46a63ba0ed47&pid=1-s2.0-S2772828524000190-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}