<p>This editorial revisits the topic of plant allometry. This topic is the subject of a large volume of literature, so coverage here is necessarily selective, focusing on points of interest for grassland research. In my final year of undergraduate study (1983), three different courses I took included a module based on Yoda's 1963 study, “Self-thinning in overcrowded pure stands” (Yoda et al., <span>1963</span>). Principles elucidated in that paper were seen as fundamental to the theoretical understanding of crop-specific husbandry recommendations for yield optimization. Meanwhile, Hutchings (<span>1983</span>) published an article “Ecology's law in search of a theory,” indicating a lack of consensus among researchers of that era as to what ecological drivers were operating to produce the plant behaviour patterns Yoda and colleagues had described.</p><p>Briefly, the self-thinning rule (Yoda et al., <span>1963</span>) states that when values for single plant mean dry weight (<i>w</i>) for plants in a crowded stand are plotted against stand density on a log–log scale, the points for plants of different species or plants of the same species at different ages will fall along a line of slope −3/2, which became known as the “−3/2 boundary line.” As a stand approaches the boundary line, for example through an increase in plant size over time or through increased planting density, some plants will be lost from the population so that size/density (i.e., <i>w:d</i>) trajectories over time or across planting densities follow the boundary line. The intensity of competition increases and plant allocation between body parts changes as the boundary line is approached. This also is important in crop husbandry. For example, height or leaf accumulation may be favoured at the expense of reproductive yield or bulb development.</p><p>Data from such studies suggest that an effective tactical approach for fodder beet production involves planting at 8 plants per m<sup>2</sup>, allowing approximately 60 days for leaf area development, followed by 90 days for carbohydrate translocation to support bulb fill. At this plant density, bulbs are comparatively large (which is desirable), and during the bulb-fill growth stage, the crop accumulates bulb dry weight at rates that can exceed 350 kg DM ha<sup>−1</sup> day<sup>−1</sup>. During the leaf area development phase, there is opportunity for weeds to colonize bare soil, and weed control—often requiring a costly herbicide combination—is critical (Matthew et al., <span>2011</span>). For maize, experimental data from Wisconsin showed that the optimal plant density for grain production was approximately 6000 plants m<sup>−2</sup> lower than that for silage production. This occurred because for silage the forage biomass gains from a higher planting density of around 80 000 plants ha<sup>−1</sup> outweighed the competition-induced loss in grain yield above 75 000 plants ha<sup>−1</sup> (Cusicanqui & Lauer, <span>1999</span>). In
这篇社论回顾了植物异速生长的主题。这是一个大量文献的主题,所以这里的报道必然是有选择性的,集中在草原研究的兴趣点上。在我本科学习的最后一年(1983年),我修了三门不同的课程,其中一个模块是基于尤达1963年的研究,“过度拥挤的纯净森林中的自我稀疏”(尤达等人,1963年)。该论文阐明的原则被视为对作物特定畜牧业产量优化建议的理论理解的基础。与此同时,Hutchings(1983)发表了一篇题为《寻找理论的生态学法则》的文章,指出那个时代的研究人员对产生尤达及其同事所描述的植物行为模式的生态驱动因素缺乏共识。简而言之,自疏规则(Yoda et al., 1963)指出,当在对数对数尺度上绘制拥挤林分中植物的单株平均干重(w)值与林分密度时,不同物种的植物或不同年龄的同一物种的植物的点将沿着斜率为- 3/2的直线下降,这被称为“- 3/2边界线”。当林分接近边界线时,例如随着时间的推移植物大小增加或通过增加种植密度,一些植物将从种群中消失,因此大小/密度(即w:d)随时间或跨种植密度的轨迹将遵循边界线。随着边界线的接近,竞争强度增加,各身体部位之间的植物分配也发生了变化。这在农作物养殖中也很重要。例如,以牺牲繁殖产量或鳞茎发育为代价,可能有利于植株的高度或叶片积累。来自这些研究的数据表明,饲料用甜菜生产的有效策略是每平方米种植8株,允许大约60天的叶面积发育,然后用90天的碳水化合物转运来支持球茎填充。在这种植物密度下,鳞茎相对较大(这是理想的),在鳞茎填充生长阶段,作物鳞茎干重的积累速度可超过350 kg DM ha - 1 day - 1。在叶面积发育阶段,杂草有机会在裸露的土壤上繁殖,而杂草控制——通常需要昂贵的除草剂组合——是至关重要的(Matthew et al., 2011)。对于玉米,威斯康辛州的试验数据表明,谷物生产的最佳种植密度约为6000株m−2,比青贮生产低。这是因为对于青贮来说,较高的种植密度(约8万株/公顷)所带来的饲料生物量收益超过了超过7.5万株/公顷(Cusicanqui &;劳尔,1999)。在油棕种植园中,三角形种植模式下的最佳树间距代表了在较高的树密度以提高果实产量和较宽的树间距以减缓高度生长和延长人工采伐仍然可行的时间之间的折衷。在一项研究中,种植距离从9.5米减少到7.5米,14年后树高从3.5米增加到4.0米,增加了50厘米(Bonneau &;Impens, 2022)。在林业科学中,自疏线已在特定物种的基础上参数化(Pretzsch &;Biber, 2005)。这是因为在疏化的情况下,它是密度控制的重要参考线。如果已知特定品种,则可以避免次优密度和由此导致的生产损失。Davies(1988)在她的图3.6中观察到多年生黑麦草的分蘖重量和密度数据符合- 3/2边界规则,并引用了其他支持的研究。然而,仔细观察就会发现,这个结论过于简单化了,因为大型分蘖机的数据位于趋势线上方,而小型分蘖机的数据位于趋势线下方。Davies数据集的实际斜率更像是- 5/2,而不是- 3/2。假设斜率和实际斜率之间的差异让人想起了Mrad等人(2020)的评论,他们回顾了8种解释- 3/2幂法则的潜在机制,并在他们的结语中引用了俄罗斯物理学家Lev Landau:“钱在指数中,指数需要精确计算。”经过反思,很明显,自疏规则的操作对于草地来说将是一个比森林林分复杂得多的过程。森林树木是多年生的,必须在不同季节“平均”它们的人口密度。在大多数树种和森林中,种群密度在建立后的一段时间内是固定的,或者是缓慢的。一些树种可以从根长出新枝,这意味着种群是动态的。 相比之下,禾本科分蘖植物的寿命通常不到1年,在冬季寒冷或夏季干旱时可能会有一个休眠期,此时叶片已经衰老,位于地面附近的茎尖分生组织以静止的芽的形式存在,包裹在未发育的叶原基或成熟死叶的鞘中。它们也可以很容易地从苜蓿的腋芽或冠芽中产生新芽。因此,草地和苜蓿等饲料作物的茎枝数量可以在一个季节或在落叶后的再生周期中动态波动。Matthew et al.(1995)在分析黑麦草和紫花苜蓿草地分蘖和芽密度数据时,将- 3/2边界线定义为不同芽大小-密度组合的叶面积常数线,代表给定环境所能支持的最大叶面积指数(LAI)。对于坐标在边界线以上的树,叶片衰老的速度将超过叶片形成的速度,而对于坐标在边界线以下的树,叶片形成的速度将超过衰老的速度,从而将边界线或沿边界线的位置定义为平衡点。作者提出了草地落叶再生周期中大小-密度动态的四个阶段:(1)随着种群密度和LAI的增加,再生早期新芽的萌发加速了LAI的恢复;(ii)在−5/2附近自疏,LAI继续上升,而较小或较年轻的枝条由于基部被较大的、不断扩大的枝条遮阴而死亡;(iii)在一定的草地LAI条件下,沿−3/2自疏线的尺寸-密度补偿,随着活枝高度的增加,牧草质量从假茎积累到支撑叶逐渐增加;(iv)牧草质量恒定阶段,代表特定植被类型的“天花板牧草质量”特征。阶段(iv),根据数学上的需要,如果随着时间的推移,平均枝梢尺寸有任何增加,则需要1:1的自薄。利用该模型,作者开发了一个斜率校正,以解释第(ii)阶段与LAI增加相关的“大于−3/2”的自疏,以及一个植物形状校正,以解释再生期间植物形状变化对提供环境可持续LAI所需的种群的影响。植物形状校正基于一个简单的无量纲参数:m2叶片/ (m3体积)2/3,该参数被指定为“R”,似乎可以有效地理解遮阳等处理对植物行为的影响。例如,在紫花苜蓿中,遮荫通过抑制分支来降低R(未发表的数据)。我们还提出,由分蘖大小-密度坐标定义的点与任意定位的自疏线之间的距离,可以用作在共同环境中遭受不同处理的禾草的生产力指数(Hernández Garay et al., 1999;图7.2 (Matthew et al., 2000)。以这种方式可视化草地大小-密度数据的一个特别有趣的观察结果是,同一草地内多年生黑麦草和白三叶草的大小-密度补偿轨迹在相反的方向上运行,跨越四种不同的放牧强度,这些放牧强度由放牧后牧草质量目标(kg DM ha - 1)定义(图1a,b;Yu et al., 2008)。我们认为这表明白三叶占据了多年生黑麦草无法利用的光截获生态位,因为在落叶压力下,新分蘖形成所需的碳水化合物有限(图1c)。尺度理论也为放牧优化理论的关键原理和环境承载力的概念化提供了直观的逻辑基础。从图1c中我们可以看到,过度放牧限制了草地产生叶面积的能力,这种情况可能与碳水化合物储备减少和植物整体活力有关(Fulkerson &;多纳吉,2001)。在自疏图的中间范围,牧草积累发生,茎部死亡相对较少。我们还从Matthew et al.(2000)的自疏图或图7.2中看到,相对于小蘖密度较高的放牧管理制度而言,大蘖密度较低的放牧管理制度更有利于叶面积发展和草地生产力。在制定牧场管理建议时,农学家并不总是欣赏这一点。人们很容易相信分蘖密度越高越好。同时,在自疏线的左上端(超出图1c所示范围),过渡到1:1的尺度意味着长时间不放牧可能会加剧嫩枝死亡率和物种多样性的丧失。 这些原则一方面确保草地植被有足够的叶面积以
{"title":"On plant scaling","authors":"Cory Matthew","doi":"10.1002/glr2.70020","DOIUrl":"https://doi.org/10.1002/glr2.70020","url":null,"abstract":"<p>This editorial revisits the topic of plant allometry. This topic is the subject of a large volume of literature, so coverage here is necessarily selective, focusing on points of interest for grassland research. In my final year of undergraduate study (1983), three different courses I took included a module based on Yoda's 1963 study, “Self-thinning in overcrowded pure stands” (Yoda et al., <span>1963</span>). Principles elucidated in that paper were seen as fundamental to the theoretical understanding of crop-specific husbandry recommendations for yield optimization. Meanwhile, Hutchings (<span>1983</span>) published an article “Ecology's law in search of a theory,” indicating a lack of consensus among researchers of that era as to what ecological drivers were operating to produce the plant behaviour patterns Yoda and colleagues had described.</p><p>Briefly, the self-thinning rule (Yoda et al., <span>1963</span>) states that when values for single plant mean dry weight (<i>w</i>) for plants in a crowded stand are plotted against stand density on a log–log scale, the points for plants of different species or plants of the same species at different ages will fall along a line of slope −3/2, which became known as the “−3/2 boundary line.” As a stand approaches the boundary line, for example through an increase in plant size over time or through increased planting density, some plants will be lost from the population so that size/density (i.e., <i>w:d</i>) trajectories over time or across planting densities follow the boundary line. The intensity of competition increases and plant allocation between body parts changes as the boundary line is approached. This also is important in crop husbandry. For example, height or leaf accumulation may be favoured at the expense of reproductive yield or bulb development.</p><p>Data from such studies suggest that an effective tactical approach for fodder beet production involves planting at 8 plants per m<sup>2</sup>, allowing approximately 60 days for leaf area development, followed by 90 days for carbohydrate translocation to support bulb fill. At this plant density, bulbs are comparatively large (which is desirable), and during the bulb-fill growth stage, the crop accumulates bulb dry weight at rates that can exceed 350 kg DM ha<sup>−1</sup> day<sup>−1</sup>. During the leaf area development phase, there is opportunity for weeds to colonize bare soil, and weed control—often requiring a costly herbicide combination—is critical (Matthew et al., <span>2011</span>). For maize, experimental data from Wisconsin showed that the optimal plant density for grain production was approximately 6000 plants m<sup>−2</sup> lower than that for silage production. This occurred because for silage the forage biomass gains from a higher planting density of around 80 000 plants ha<sup>−1</sup> outweighed the competition-induced loss in grain yield above 75 000 plants ha<sup>−1</sup> (Cusicanqui & Lauer, <span>1999</span>). In ","PeriodicalId":100593,"journal":{"name":"Grassland Research","volume":"4 2","pages":"89-92"},"PeriodicalIF":0.0,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glr2.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144536890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}