Pub Date : 2024-12-09DOI: 10.1109/TRS.2024.3513293
Chandra S. Pappu;Sonny Grooms;Dmitriy Garmatyuk;Thomas L. Carroll;Aubrey N. Beal;Saba Mudaliar
The increased usage of wireless services in the congested electromagnetic spectrum has caused communication systems to contend with the existing operational radar frequency bands. Integrated sensing and communication (ISAC) systems that share the same frequency band and signaling strategies, such as a single radio frequency emission, address these congestion issues. In this work, we propose novel chaotic signal processing techniques and waveform design methods for ISAC systems. First, we consider a family of chaotic oscillators and use their output to encode the information. Next, we multiplex the information carrying chaotic signals to improve the data rates significantly and further use it for ISAC transmission. We show that a simple correlator can accurately decode the information with low bit-error rates. The performance of the multiplexed waveform is robust in the Rician multipath channel. Using correlation and ambiguity function analysis, we claim that the proposed waveforms are excellent candidates for high-resolution radar imaging. We generate synthetic aperture radar (SAR) images using the backprojection algorithm (BPA). The SAR images generated using multiplexed chaos-based waveforms are of similar quality compared to traditionally used linear frequency-modulated waveforms. The most important feature of the proposed multiplexed chaos-based waveforms is their inherent resilience to intentional and nonintentional interference.
{"title":"Interference Resilient Integrated Sensing and Communication Using Multiplexed Chaos","authors":"Chandra S. Pappu;Sonny Grooms;Dmitriy Garmatyuk;Thomas L. Carroll;Aubrey N. Beal;Saba Mudaliar","doi":"10.1109/TRS.2024.3513293","DOIUrl":"https://doi.org/10.1109/TRS.2024.3513293","url":null,"abstract":"The increased usage of wireless services in the congested electromagnetic spectrum has caused communication systems to contend with the existing operational radar frequency bands. Integrated sensing and communication (ISAC) systems that share the same frequency band and signaling strategies, such as a single radio frequency emission, address these congestion issues. In this work, we propose novel chaotic signal processing techniques and waveform design methods for ISAC systems. First, we consider a family of chaotic oscillators and use their output to encode the information. Next, we multiplex the information carrying chaotic signals to improve the data rates significantly and further use it for ISAC transmission. We show that a simple correlator can accurately decode the information with low bit-error rates. The performance of the multiplexed waveform is robust in the Rician multipath channel. Using correlation and ambiguity function analysis, we claim that the proposed waveforms are excellent candidates for high-resolution radar imaging. We generate synthetic aperture radar (SAR) images using the backprojection algorithm (BPA). The SAR images generated using multiplexed chaos-based waveforms are of similar quality compared to traditionally used linear frequency-modulated waveforms. The most important feature of the proposed multiplexed chaos-based waveforms is their inherent resilience to intentional and nonintentional interference.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"26-43"},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10781422","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1109/TRS.2024.3509775
Nicolas C. Kruse;Ronny G. Guendel;Francesco Fioranelli;Alexander Yarovoy
The problem of human activity classification using a distributed network of radar sensors has been considered. A novel sensor fusion method has been proposed that processes data from a network of radar sensors and yields 3-D representations of both reflection intensity and velocity distribution. The formulated method has been verified in an experimental case study, where activity classification was performed using data collected with 14 participants moving in diverse, unconstrained trajectories and executing nine activities. The classification performance of the proposed method has been compared to alternative fusion methods on the same dataset, and a test accuracy and macro $F1$