Pub Date : 2024-12-12DOI: 10.1109/TRS.2024.3516413
Wending Li;Zhihuo Xu;Liu Chu;Quan Shi;Robin Braun;Jiajia Shi
The state of drowsiness significantly affects work efficiency and productivity, increasing the risk of accidents and mishaps. Radar-based detection technology offers significant advantages in drowsiness detection, providing a noninvasive and reliable method based on vital sign tracking and physiological feature extraction. However, the classification of sleepiness levels is often simple and the detection accuracy is limited. This study proposes a frequency-modulated continuous-wave (FMCW) radar-based system with a convolutional adaptive pooling attention gated-recurrent-unit (CAPA-GRU) network to enhance detection accuracy and precisely determine levels of radar-based drowsiness detection. First, an FMCW radar is used to obtain breathing and heartbeat signals, and the radar signals are processed through the wavelet transform method to obtain highly accurate physiological characteristics. Then, the vital sign signals are analyzed both in the time and frequency domains, and the optimal input data is obtained by combining the characteristic data. Also, the CAPA-GRU, comprising a convolutional neural network (CNN), a gated-recurrent-unit (GRU), and a convolutional adaptive average pooling (CAA) module, is proposed for drowsiness classification and monitoring. The experimental results show that the proposed method achieves multistage sleepiness detection based on FMCW radar and achieves excellent results in low classification. The proposed network has excellent performance and certain robustness. Experiments conducted with cross-validation on a self-collected dataset show that the proposed method achieved 90.11% accuracy in binary classification, 80.50% accuracy in ternary classification, and 58.17% accuracy in quinary classification and the study also used a public data set for sleepiness detection, and the detection accuracy reached 97.34%.
{"title":"FMCW Radar-Based Drowsiness Detection With a Convolutional Adaptive Pooling Attention Gated-Recurrent-Unit Network","authors":"Wending Li;Zhihuo Xu;Liu Chu;Quan Shi;Robin Braun;Jiajia Shi","doi":"10.1109/TRS.2024.3516413","DOIUrl":"https://doi.org/10.1109/TRS.2024.3516413","url":null,"abstract":"The state of drowsiness significantly affects work efficiency and productivity, increasing the risk of accidents and mishaps. Radar-based detection technology offers significant advantages in drowsiness detection, providing a noninvasive and reliable method based on vital sign tracking and physiological feature extraction. However, the classification of sleepiness levels is often simple and the detection accuracy is limited. This study proposes a frequency-modulated continuous-wave (FMCW) radar-based system with a convolutional adaptive pooling attention gated-recurrent-unit (CAPA-GRU) network to enhance detection accuracy and precisely determine levels of radar-based drowsiness detection. First, an FMCW radar is used to obtain breathing and heartbeat signals, and the radar signals are processed through the wavelet transform method to obtain highly accurate physiological characteristics. Then, the vital sign signals are analyzed both in the time and frequency domains, and the optimal input data is obtained by combining the characteristic data. Also, the CAPA-GRU, comprising a convolutional neural network (CNN), a gated-recurrent-unit (GRU), and a convolutional adaptive average pooling (CAA) module, is proposed for drowsiness classification and monitoring. The experimental results show that the proposed method achieves multistage sleepiness detection based on FMCW radar and achieves excellent results in low classification. The proposed network has excellent performance and certain robustness. Experiments conducted with cross-validation on a self-collected dataset show that the proposed method achieved 90.11% accuracy in binary classification, 80.50% accuracy in ternary classification, and 58.17% accuracy in quinary classification and the study also used a public data set for sleepiness detection, and the detection accuracy reached 97.34%.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"71-87"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1109/TRS.2024.3514840
Sabri Mustafa Kahya;Muhammet Sami Yavuz;Eckehard Steinbach
Detecting human presence indoors with millimeter-wave frequency-modulated continuous-wave (FMCW) radar faces challenges from both moving and stationary clutters. This work proposes a robust and real-time capable human presence and out-of-distribution (OOD) detection method using 60-GHz short-range FMCW radar. HOOD solves the human presence and OOD detection problems simultaneously in a single pipeline. Our solution relies on a reconstruction-based architecture and works with radar macro- and micro-range-Doppler images (RDIs). HOOD aims to accurately detect the presence of humans in the presence or absence of moving and stationary disturbers. Since HOOD is also an OOD detector, it aims to detect moving or stationary clutters as OOD in humans’ absence and predicts the current scene’s output as “no presence.” HOOD performs well in diverse scenarios, demonstrating its effectiveness across different human activities and situations. On our dataset collected with a 60-GHz short-range FMCW radar with only one transmit (Tx) and three receive antennas, we achieved an average area under the receiver operating characteristic curve (AUROC) of 94.36%. Additionally, our extensive evaluations and experiments demonstrate that HOOD outperforms state-of-the-art (SOTA) OOD detection methods in terms of common OOD detection metrics. Importantly, HOOD also perfectly fits on Raspberry Pi 3B+ with a advanced RISC machines (ARM) Cortex-A53 CPU, which showcases its versatility across different hardware environments. Videos of our human presence detection experiments are available at: https://muskahya.github.io/HOOD