In the past few years, CMOS semiconductor has been a growing and evolving technology in VLSI. However, due to the scaling issue and some other constraints like heat generation, high power consumption QCA (quantum cellular automata) emerged as an alternate and enhanced solution that provides a new technique of computing than CMOS in recent years. QCA is highly effective in implementing both Irreversible and Reversible logic, which has been shown to be incredibly efficient in terms of power consumption. A novel technique to data encryption called as SCV (select, cross, and variation) is demonstrated in this paper, which is based on ASCII to binary conversion and uses reversible logic. The data security procedure is aided by implementing SCV logic in reversible logic. Using Fredkin gate, it is built in QCA. QCADesigner tool has been used here for design and verification purposes. Total 80 cell counts and 0.14 μm2 area are required. The theoretical data and the simulation results are the same as the intended circuit. Comparison to previous QCA architectural features is featured.
在过去的几年中,CMOS半导体已经成为VLSI中不断发展和发展的技术。然而,由于缩放问题和其他一些限制,如发热,高功耗QCA(量子元胞自动机)近年来成为一种替代和增强的解决方案,提供了一种比CMOS新的计算技术。QCA在实现不可逆和可逆逻辑方面都非常有效,这已被证明在功耗方面具有令人难以置信的效率。本文提出了一种新的数据加密技术SCV (select, cross, and variation),该技术基于ASCII到二进制的转换,采用可逆逻辑。通过在可逆逻辑中实现SCV逻辑来辅助数据安全过程。采用Fredkin门,在QCA中构建。这里使用了qcaddesigner工具进行设计和验证。总共需要80个细胞计数和0.14 μm2的面积。理论数据和仿真结果与设计电路基本一致。与以前的QCA架构特性进行了比较。
{"title":"RSCV: Reversible Select, cross and variation architecture in quantum-dot cellular automata","authors":"Arpita Kundu, Jadav Chandra Das, Debashis De","doi":"10.1049/qtc2.12040","DOIUrl":"https://doi.org/10.1049/qtc2.12040","url":null,"abstract":"<p>In the past few years, CMOS semiconductor has been a growing and evolving technology in VLSI. However, due to the scaling issue and some other constraints like heat generation, high power consumption QCA (quantum cellular automata) emerged as an alternate and enhanced solution that provides a new technique of computing than CMOS in recent years. QCA is highly effective in implementing both Irreversible and Reversible logic, which has been shown to be incredibly efficient in terms of power consumption. A novel technique to data encryption called as SCV (select, cross, and variation) is demonstrated in this paper, which is based on ASCII to binary conversion and uses reversible logic. The data security procedure is aided by implementing SCV logic in reversible logic. Using Fredkin gate, it is built in QCA. QCADesigner tool has been used here for design and verification purposes. Total 80 cell counts and 0.14 μm<sup>2</sup> area are required. The theoretical data and the simulation results are the same as the intended circuit. Comparison to previous QCA architectural features is featured.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 2","pages":"139-149"},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137883613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ansh Singal, Sundaraja Sitharam Iyengar, Latesh Kumar, Azad M. Madni
Quantum communication networks pose immense potential for revolutionising secure communications for several applications such as banking, defence, etc. The majority literature on quantum networks deals with the problems of networking and resource allocation using Software Defined Networks (SDNs). SDNs, however, introduce several issues, such as app manipulation attacks and scalability issues. We propose a novel scheme of implementing quantum communication networks that are hardware routed rather than software defined by labelling qubit photons using laser communications. We provide a comprehensive implementation of the new scheme and propose two novel algorithms—Bandwidth sharing and Equitable bandwidth sharing to implement the hardware routed quantum network. The algorithms result in a key rate increase of 118% and improved network resource utilization of 147% as compared to the First Come First Serve algorithm.
{"title":"Hardware routed quantum key distribution networks","authors":"Ansh Singal, Sundaraja Sitharam Iyengar, Latesh Kumar, Azad M. Madni","doi":"10.1049/qtc2.12039","DOIUrl":"10.1049/qtc2.12039","url":null,"abstract":"<p>Quantum communication networks pose immense potential for revolutionising secure communications for several applications such as banking, defence, etc. The majority literature on quantum networks deals with the problems of networking and resource allocation using Software Defined Networks (SDNs). SDNs, however, introduce several issues, such as app manipulation attacks and scalability issues. We propose a novel scheme of implementing quantum communication networks that are hardware routed rather than software defined by labelling qubit photons using laser communications. We provide a comprehensive implementation of the new scheme and propose two novel algorithms—Bandwidth sharing and Equitable bandwidth sharing to implement the hardware routed quantum network. The algorithms result in a key rate increase of 118% and improved network resource utilization of 147% as compared to the First Come First Serve algorithm.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 2","pages":"127-138"},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117274092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the general theory of relativity, the four-dimensional space-time of describing a mass body accelerated motion or in a gravitational field, although it is a curved Riemannian geometric space from the perspective of “integral geometry”, but for any instantaneous position of the moving mass body, there is a local Flat Space of Riemannian geometric space. The local Flat Space is a Mincowski space in which the inertial coordinate system can be used in the local small area. Between the proper coordinate systems of two interacting moving masses, or between a series of following proper coordinate systems experienced by a mass body moving in any way, there should be a coordinate transformation relationship similar to the traditional special theory of relativity. However, they have an important difference: in these instantaneous local inertial systems, the speed of light is no longer the constant c of vacuum, the effect of gravitational field or acceleration on the speed of light is the same as that of a medium with a dielectric constant of ε and a magnetic permeability of μ. Using the special theory of relativity with variable speed of light that the author has established can discuss relevant relativity physics issues in these instantaneous local inertial systems. This article uses the special theory of relativity with variable speed of light to derive the functional relationship between a moving mass and the change of speed. In addition to obtain the traditional continuous increasing function relationship, a step function relationship with stepped discontinuous changes is also obtained. At the same speed, the mass can have two values, such as a ladder upgrade one level; the same mass can be matched with two different speeds, such as one step extension forward on the same step stair. From the perspective of the increase in speed, the mass is stagnant on the step platform (the speed increases, the mass does not change), and it jumps in the step up ladder (the speed does not change, the mass has a jump change). This obviously incorporates the main image of quantum theory into the theory of relativity, which is the result that all physics researchers care about and expect.
{"title":"The jump and stagnation of mass with speed","authors":"Jun Dong, Na Dong","doi":"10.1049/qtc2.12038","DOIUrl":"https://doi.org/10.1049/qtc2.12038","url":null,"abstract":"<p>In the general theory of relativity, the four-dimensional space-time of describing a mass body accelerated motion or in a gravitational field, although it is a curved Riemannian geometric space from the perspective of “integral geometry”, but for any instantaneous position of the moving mass body, there is a local Flat Space of Riemannian geometric space. The local Flat Space is a Mincowski space in which the inertial coordinate system can be used in the local small area. Between the proper coordinate systems of two interacting moving masses, or between a series of following proper coordinate systems experienced by a mass body moving in any way, there should be a coordinate transformation relationship similar to the traditional special theory of relativity. However, they have an important difference: in these instantaneous local inertial systems, the speed of light is no longer the constant <i>c</i> of vacuum, the effect of gravitational field or acceleration on the speed of light is the same as that of a medium with a dielectric constant of <i>ε</i> and a magnetic permeability of <i>μ</i>. Using the special theory of relativity with variable speed of light that the author has established can discuss relevant relativity physics issues in these instantaneous local inertial systems. This article uses the special theory of relativity with variable speed of light to derive the functional relationship between a moving mass and the change of speed. In addition to obtain the traditional continuous increasing function relationship, a step function relationship with stepped discontinuous changes is also obtained. At the same speed, the mass can have two values, such as a ladder upgrade one level; the same mass can be matched with two different speeds, such as one step extension forward on the same step stair. From the perspective of the increase in speed, the mass is stagnant on the step platform (the speed increases, the mass does not change), and it jumps in the step up ladder (the speed does not change, the mass has a jump change). This obviously incorporates the main image of quantum theory into the theory of relativity, which is the result that all physics researchers care about and expect.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 2","pages":"118-126"},"PeriodicalIF":0.0,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137548006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diganta Sengupta, Ahmed Abd El-Latif, Debashis De, Keivan Navi, Nader Bagherzadeh
Quantum Computing has emerged as one of the important dimensions of global research lately, on both the prospects, hardware as well as algorithms. With enhanced processing powers, several architectures based on adiabatic concepts resulting in reversibility have been proposed to date. Architectures based on Quantum Dot Cellular Automata have also shown considerable promise for realising the concept of reversibility. Recently, research has been focussed on the application of quantum computing for faster and secure communication. Dedicated machine learning algorithms and neural networks for quantum computation have also attracted considerable research. With a plethora of research and advances in this domain, this Special Issue publishes outstanding contributions for dissemination of the knowledge of Reversible Quantum Communication & Systems. This Special Issue publishes latest approaches and findings in Quantum Algorithms and Reversible Computing with focus on emerging Machine Learning approaches in Quantum Communications. Reversible Logic forms a pivotal part of Quantum Computing and has been a topic of high interest among Quantum Computing Scientists and researchers throughout the last decade. It also exhibits considerable prospects in recent research due to its adiabatic characteristics. Logic synthesis and optimisation algorithms within the purview of Reversibility have witnessed credible approaches and pose future prospects, such as the rise of Machine Learning approaches which have also penetrated the Quantum Domain.
{"title":"Reversible quantum communication & systems","authors":"Diganta Sengupta, Ahmed Abd El-Latif, Debashis De, Keivan Navi, Nader Bagherzadeh","doi":"10.1049/qtc2.12037","DOIUrl":"10.1049/qtc2.12037","url":null,"abstract":"<p>Quantum Computing has emerged as one of the important dimensions of global research lately, on both the prospects, hardware as well as algorithms. With enhanced processing powers, several architectures based on adiabatic concepts resulting in reversibility have been proposed to date. Architectures based on Quantum Dot Cellular Automata have also shown considerable promise for realising the concept of reversibility. Recently, research has been focussed on the application of quantum computing for faster and secure communication. Dedicated machine learning algorithms and neural networks for quantum computation have also attracted considerable research. With a plethora of research and advances in this domain, this Special Issue publishes outstanding contributions for dissemination of the knowledge of Reversible Quantum Communication & Systems. This Special Issue publishes latest approaches and findings in Quantum Algorithms and Reversible Computing with focus on emerging Machine Learning approaches in Quantum Communications. Reversible Logic forms a pivotal part of Quantum Computing and has been a topic of high interest among Quantum Computing Scientists and researchers throughout the last decade. It also exhibits considerable prospects in recent research due to its adiabatic characteristics. Logic synthesis and optimisation algorithms within the purview of Reversibility have witnessed credible approaches and pose future prospects, such as the rise of Machine Learning approaches which have also penetrated the Quantum Domain.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123037668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Any technology offering zero power dissipation must be reversible. A reversible circuit can be envisaged as a cascade of reversible gates only, such as Toffoli gate, which has two components: k control bits and a target bit (k-CNOT), k ≥ 1. Analysing testability issues in a reversible circuit is an important phenomenon. A new online design-for-testability (DFT) technique for reversible circuits is proposed. The authors’ method yields less overhead in terms of quantum cost as compared to the previous online approaches.
{"title":"A new online testing technique for reversible circuits","authors":"Joyati Mondal, Debesh Kumar Das","doi":"10.1049/qtc2.12035","DOIUrl":"10.1049/qtc2.12035","url":null,"abstract":"<p>Any technology offering zero power dissipation must be reversible. A reversible circuit can be envisaged as a cascade of reversible gates only, such as Toffoli gate, which has two components: <i>k</i> control bits and a target bit (<i>k</i>-CNOT), <i>k</i> ≥ 1. Analysing testability issues in a reversible circuit is an important phenomenon. A new online design-for-testability (DFT) technique for reversible circuits is proposed. The authors’ method yields less overhead in terms of quantum cost as compared to the previous online approaches.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 1","pages":"50-59"},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131097877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the difficulties of implementing joint measurements, quantum illumination schemes that are based on signal-idler entanglement are difficult to implement in practice. For this reason, one may consider quantum-inspired designs of quantum lidar/radar where the input sources are semi-classical (coherent states) while retaining the quantum aspects of the detection. The performance of these designs could be studied in the context of asymmetric hypothesis testing by resorting to the quantum Stein’s lemma. However, here the authors discuss that, for typical finite-size regimes, the second- and third-order expansions associated with this approach are not sufficient to prove quantum advantage.
{"title":"Performance of coherent-state quantum target detection in the context of asymmetric hypothesis testing","authors":"Gaetana Spedalieri, Stefano Pirandola","doi":"10.1049/qtc2.12036","DOIUrl":"10.1049/qtc2.12036","url":null,"abstract":"<p>Due to the difficulties of implementing joint measurements, quantum illumination schemes that are based on signal-idler entanglement are difficult to implement in practice. For this reason, one may consider quantum-inspired designs of quantum lidar/radar where the input sources are semi-classical (coherent states) while retaining the quantum aspects of the detection. The performance of these designs could be studied in the context of asymmetric hypothesis testing by resorting to the quantum Stein’s lemma. However, here the authors discuss that, for typical finite-size regimes, the second- and third-order expansions associated with this approach are not sufficient to prove quantum advantage.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 2","pages":"112-117"},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129773460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics in general is successfully governed by quantum mechanics at the microscale and principles of relativity at the macroscale. Any attempts to unify them using conventional methods have somewhat remained elusive for nearly a century up to the present stage. Here, a classical gedanken experiment of electron-wave diffraction of a single slit is intuitively examined for its quantized states. A unidirectional monopole pair (MP) field as quanta of the electric field is pictorially conceptualised into 4D space-time. Its application towards quantum mechanics and general relativity appears consistent with existing knowledge in physics. This considers a multiverse of MP models at a hierarchy of scales. Einsteinian gravity is then defined to be of circular acceleration with angular momentum in time reversal mode to an overarching MP field precessing into forward time. Such descriptions provide a credible intuitive tool for physics applications in general. Its proposed design can be assessed using conventional methods, perhaps in incremental steps and this warrants further investigations.
{"title":"Unconventional reconciliation path for quantum mechanics and general relativity","authors":"Samuel Polopa Yuguru","doi":"10.1049/qtc2.12034","DOIUrl":"https://doi.org/10.1049/qtc2.12034","url":null,"abstract":"<p>Physics in general is successfully governed by quantum mechanics at the microscale and principles of relativity at the macroscale. Any attempts to unify them using conventional methods have somewhat remained elusive for nearly a century up to the present stage. Here, a classical gedanken experiment of electron-wave diffraction of a single slit is intuitively examined for its quantized states. A unidirectional monopole pair (MP) field as quanta of the electric field is pictorially conceptualised into 4D space-time. Its application towards quantum mechanics and general relativity appears consistent with existing knowledge in physics. This considers a multiverse of MP models at a hierarchy of scales. Einsteinian gravity is then defined to be of circular acceleration with angular momentum in time reversal mode to an overarching MP field precessing into forward time. Such descriptions provide a credible intuitive tool for physics applications in general. Its proposed design can be assessed using conventional methods, perhaps in incremental steps and this warrants further investigations.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 2","pages":"99-111"},"PeriodicalIF":0.0,"publicationDate":"2022-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137523825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuela Weigold, Johanna Barzen, Frank Leymann, Marie Salm
As quantum computers are based on the laws of quantum mechanics, they are capable of solving certain problems faster than their classical counterparts. However, quantum algorithms with a theoretical speed-up often assume that data can be loaded efficiently. In general, the runtime complexity of the loading routine depends on (i) the data encoding that defines how the data is represented by the state of the quantum computer and (ii) the data itself. In some cases, loading the data requires at least exponential time that destroys a potential speed-up. And especially for the first generation of devices that are currently available, the resources (qubits and operations) needed to encode the data are limited. In this work, we, therefore, present six patterns that describe how data is handled by quantum computers.
{"title":"Encoding patterns for quantum algorithms","authors":"Manuela Weigold, Johanna Barzen, Frank Leymann, Marie Salm","doi":"10.1049/qtc2.12032","DOIUrl":"10.1049/qtc2.12032","url":null,"abstract":"<p>As quantum computers are based on the laws of quantum mechanics, they are capable of solving certain problems faster than their classical counterparts. However, quantum algorithms with a theoretical speed-up often assume that data can be loaded efficiently. In general, the runtime complexity of the loading routine depends on (i) the data encoding that defines how the data is represented by the state of the quantum computer and (ii) the data itself. In some cases, loading the data requires at least exponential time that destroys a potential speed-up. And especially for the first generation of devices that are currently available, the resources (qubits and operations) needed to encode the data are limited. In this work, we, therefore, present six patterns that describe how data is handled by quantum computers.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"2 4","pages":"141-152"},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125615537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arpita Sanyal Bhaduri, Amit Saha, Banani Saha, Amlan Chakrabarti
Finding cliques in a graph has a wide range of applications due to its pattern matching ability. The k-clique problem, a subset of the clique problem, determines whether or not an arbitrary network has a clique of size k. Modern-day applications include a variation of the k-clique problem that lists all cliques of size k. However, the quantum implementation of such a variation of the k-clique problem has not been addressed yet. In this work, apart from the theoretical solution of such a k-clique problem, practical quantum-gate-based implementation has been addressed using Grover's algorithm. In a classical-quantum hybrid architecture, this approach is extended to build the circuit for the maximum clique problem. Our technique is generalised since the program automatically builds the circuit for any given undirected and unweighted graph and any chosen k. For a small k with regard to a big graph, the proposed solution to addressing the k-clique issue has shown a reduction in qubit cost and circuit depth when compared to the state-of-the-art approach. A framework is also presented for mapping the automated generated circuit for clique problems to quantum devices. Using IBM's Qiskit, an analysis of the experimental results is demonstrated.
{"title":"Circuit design for clique problem and its implementation on quantum computer","authors":"Arpita Sanyal Bhaduri, Amit Saha, Banani Saha, Amlan Chakrabarti","doi":"10.1049/qtc2.12029","DOIUrl":"10.1049/qtc2.12029","url":null,"abstract":"<p>Finding cliques in a graph has a wide range of applications due to its pattern matching ability. The <i>k</i>-clique problem, a subset of the clique problem, determines whether or not an arbitrary network has a clique of size <i>k</i>. Modern-day applications include a variation of the <i>k</i>-clique problem that lists all cliques of size <i>k</i>. However, the quantum implementation of such a variation of the <i>k</i>-clique problem has not been addressed yet. In this work, apart from the theoretical solution of such a <i>k</i>-clique problem, practical quantum-gate-based implementation has been addressed using Grover's algorithm. In a classical-quantum hybrid architecture, this approach is extended to build the circuit for the maximum clique problem. Our technique is generalised since the program automatically builds the circuit for any given undirected and unweighted graph and any chosen <i>k</i>. For a small <i>k</i> with regard to a big graph, the proposed solution to addressing the <i>k</i>-clique issue has shown a reduction in qubit cost and circuit depth when compared to the state-of-the-art approach. A framework is also presented for mapping the automated generated circuit for clique problems to quantum devices. Using IBM's Qiskit, an analysis of the experimental results is demonstrated.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 1","pages":"30-49"},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129905279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johanna Barzen, Sebastian Feld, Frank Leymann, Karoline Wild
<p>At a fast pace, applications of quantum algorithms are being built by industrial and academic users to gain experiences with this quickly evolving technology. The more these endeavours are shifting from an experimental stage towards solving real practical problems, it becomes clear that a systematic approach is needed to develop the corresponding quantum applications. This need is based on the fact that software that involves quantum computers is very different from classical software. Such a systematic approach for building quantum software must especially consider the early phases of the corresponding development process addressing the architecture of quantum software.</p><p>Guidelines for successful quantum software architecture are missing and research in this domain has just begun. Questions to be answered include, for example, which architectural style should be followed, or whether there are already established best practices? Real-world quantum software is most often hybrid—that is, a quantum application consists of quantum circuits as well as classical programs. This implies that building a quantum application means having to solve a corresponding integration problem. For decades, such integration problems are addressed by workflow technology, implying a first architectural style for building hybrid quantum software. A quantum circuit that processes data expects this data as quantum states. Such states can be prepared by using any of a multitude of approaches each having pros and cons. The knowledge about these solutions can be presented as patterns, indicating the relevance of architectural pattern languages for hybrid quantum applications.</p><p>Running individual circuits is appropriate for initial experiments with quantum algorithms. But when quantum software is used in production, issues such as scalability, availability, or security, for example, appear. Furthermore, it should not be assumed that all quantum software is developed from scratch. Instead, existing applications should be reused as much as possible to accelerate benefitting from potential speedups or enhanced precision of quantum algorithms. For this purpose, methods for re-factoring existing applications, for example, are needed.</p><p>The articles in this special issue are partly based on contributions of the <i>1st Workshop on Quantum Software Architecture</i>. The goal of this workshop was to bring together researchers and practitioners from different areas of quantum computing and (classical) software architecture to help shaping a quantum software community and to discuss problems and solutions for hybrid quantum software like the ones mentioned above.</p><p>The workshop also proposed solutions to several questions of a lifecycle for developing hybrid quantum software on how to test implemented quantum software, how to migrate from proof of concepts to productive systems, how to automate the deployment of hybrid quantum software, and how to specify KPIs for mea
{"title":"Guest editorial: Selected extended papers from the Quantum Software Architecture Workshop at IEEE International Conference on Software Architecture 2021 (ICSA 2021)","authors":"Johanna Barzen, Sebastian Feld, Frank Leymann, Karoline Wild","doi":"10.1049/qtc2.12031","DOIUrl":"10.1049/qtc2.12031","url":null,"abstract":"<p>At a fast pace, applications of quantum algorithms are being built by industrial and academic users to gain experiences with this quickly evolving technology. The more these endeavours are shifting from an experimental stage towards solving real practical problems, it becomes clear that a systematic approach is needed to develop the corresponding quantum applications. This need is based on the fact that software that involves quantum computers is very different from classical software. Such a systematic approach for building quantum software must especially consider the early phases of the corresponding development process addressing the architecture of quantum software.</p><p>Guidelines for successful quantum software architecture are missing and research in this domain has just begun. Questions to be answered include, for example, which architectural style should be followed, or whether there are already established best practices? Real-world quantum software is most often hybrid—that is, a quantum application consists of quantum circuits as well as classical programs. This implies that building a quantum application means having to solve a corresponding integration problem. For decades, such integration problems are addressed by workflow technology, implying a first architectural style for building hybrid quantum software. A quantum circuit that processes data expects this data as quantum states. Such states can be prepared by using any of a multitude of approaches each having pros and cons. The knowledge about these solutions can be presented as patterns, indicating the relevance of architectural pattern languages for hybrid quantum applications.</p><p>Running individual circuits is appropriate for initial experiments with quantum algorithms. But when quantum software is used in production, issues such as scalability, availability, or security, for example, appear. Furthermore, it should not be assumed that all quantum software is developed from scratch. Instead, existing applications should be reused as much as possible to accelerate benefitting from potential speedups or enhanced precision of quantum algorithms. For this purpose, methods for re-factoring existing applications, for example, are needed.</p><p>The articles in this special issue are partly based on contributions of the <i>1st Workshop on Quantum Software Architecture</i>. The goal of this workshop was to bring together researchers and practitioners from different areas of quantum computing and (classical) software architecture to help shaping a quantum software community and to discuss problems and solutions for hybrid quantum software like the ones mentioned above.</p><p>The workshop also proposed solutions to several questions of a lifecycle for developing hybrid quantum software on how to test implemented quantum software, how to migrate from proof of concepts to productive systems, how to automate the deployment of hybrid quantum software, and how to specify KPIs for mea","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"2 4","pages":"139-140"},"PeriodicalIF":0.0,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82569601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}