The resurgence of Mpox (formerly known as Monkeypox) in Africa, marked by a 160 % increase in cases and a 19 % rise in deaths in 2024 compared to the previous year, is driven by the emergence of a more virulent clade 1b variant. This resurgence, declared a Public Health Emergency of International Concern by the World Health Organization, highlights the persistent challenges in global health equity, particularly in vaccine distribution, public health infrastructure, and surveillance. Drawing from historical lessons, including vaccine inequity during the COVID-19 pandemic and delayed responses in past outbreaks, this paper outlines critical strategies for addressing the current crisis. These strategies include strengthening vaccine equity and access, enhancing community-level surveillance, promoting research and development, implementing comprehensive public health campaigns, and addressing environmental factors that facilitate outbreaks. The paper emphasizes the need for international solidarity and support, proposing the establishment of a global accord to ensure equitable sharing of resources during health emergencies and to prevent low- and middle-income countries from being left behind.
The integration of artificial intelligence (AI) into healthcare is rapidly transforming patient care, offering numerous advantages in diagnostics, efficiency, and clinical decision-making. However, this technological shift raises significant concerns about the potential erosion of the doctor-patient relationship, a cornerstone of effective medical practice. AI’s increasing role risks depersonalizing healthcare, as the emphasis on data-driven decisions may overshadow the empathy, trust, and personalized care traditionally provided by human clinicians. The "black-box" nature of AI algorithms further exacerbates this issue, as the lack of transparency in AI decision-making processes can undermine patient trust. Additionally, AI systems trained on biased datasets may inadvertently widen health disparities, particularly for underrepresented populations. While AI has the potential to streamline routine tasks and reduce the burden on healthcare providers, it is essential to ensure that these advancements do not come at the cost of the human connection vital to patient care. To address these challenges, future research and development should focus on creating AI systems that enhance, rather than replace, the compassionate aspects of healthcare. This balanced approach is crucial to preserving the integrity of the doctor-patient relationship while harnessing the benefits of AI, ultimately ensuring that technological progress aligns with the core values of medical practice.
AI's potential to revolutionize oncology through enhanced diagnostics, treatment planning, and patient monitoring is well-documented globally. However, in Africa, its adoption has been slower, albeit steadily progressing. This commentary explores the integration of artificial Intelligence in cancer care across Africa, assessing its current state, challenges and future directions. It highlights significant AI innovations in cancer diagnostics, such as DataPathology, PapsAI, MinoHealth, and Hurone AI, which utilize AI for tissue analysis, cervical cell imaging, disease forecasting, and remote patient monitoring. Despite these advancements, several challenges impede AI's full integration into African healthcare systems. Key issues include data privacy and security, algorithm bias, and insufficient regulatory frameworks. The review emphasizes the necessity of robust data protection policies, representative datasets to mitigate biases, and clear guidelines for AI deployment tailored to the African context. Emerging AI technologies in Africa, such as AI-enhanced telemedicine, mobile health applications, predictive analytics, and virtual tumor boards, show promise in overcoming geographic and resource limitations. These innovations can facilitate remote consultations, continuous patient monitoring, and multidisciplinary collaborations, thereby improving cancer care accessibility and outcomes. Conclusively, recommendations for enhancing AI integration in African cancer care, including investing in data infrastructure, capacity building for healthcare professionals, and fostering international collaborations are discussed. Addressing ethical and regulatory challenges is crucial to ensure responsible and effective use of AI technologies. By leveraging AI, Africa can significantly improve cancer care delivery, reduce mortality rates, and enhance patient quality of life.
The rising demand for GLP-1 receptor agonists (GLP-1RAs), effective treatments for type 2 diabetes and obesity, has inadvertently led to a proliferation of counterfeit versions. This letter to the editor highlights the significant public health challenges posed by counterfeit GLP-1RAs, including severe risks to patient safety, economic impacts, and the erosion of public trust in the healthcare system. Counterfeit GLP-1RAs often contain incorrect dosages, harmful ingredients, or entirely lack the active ingredients, leading to ineffective treatment and potentially life-threatening complications such as hyperglycemia and cardiovascular issues. The economic burden of counterfeit drugs is also considerable, with healthcare systems incurring substantial costs in managing complications from these illegitimate medications, including hospitalizations and increased surveillance efforts. The drivers of this counterfeit drug problem include regulatory gaps, inadequate enforcement, and the expanding market demand due to rising rates of diabetes and obesity. In conclusion, the proliferation of counterfeit GLP-1RAs represents a critical threat to global health, underscoring the need for comprehensive measures to safeguard the integrity of the pharmaceutical supply chain and ensure patient safety. Addressing this issue requires a multifaceted approach that integrates regulatory oversight, technological innovation, and public education to mitigate the risks posed by counterfeit drugs and restore public trust in the healthcare system.
Pediatric Emergency Medicine (PEM) addresses the unique needs of children in emergencies. This subspecialty faces significant challenges, including the need for specialized training, patient crowding, and the demand for timely and accurate management. Artificial Intelligence (AI) presents promising solutions by enhancing diagnostic precision and operational efficiency. This review examines current trends and prospects of AI in PEM, focusing on its applications, benefits, challenges, and transformative potential. The review highlights AI’s role in overcoming PEM challenges and its future opportunities. Key AI applications in PEM include early sepsis detection, improving triage accuracy, predicting injuries, and supporting diagnostics. AI models show significant potential in forecasting clinical outcomes, optimizing resource management, and improving patient care. Despite these benefits, challenges remain, including the need for specialized training for physicians and the integration of AI systems into clinical practice. Yet, AI holds considerable promise for advancing PEM through enhanced diagnostic tools, more efficient patient management, and improved clinical decision support. Continued advancements and collaborations between AI researchers and pediatric emergency practitioners are essential to fully realize AI’s potential in this field.