Artificial intelligence (AI) is developing and expanding rapidly beyond the expectations of engineers who develop it as well. It is evaluated that it has/will have great potential not only in terms of software but also in terms of material science, data analysis, and decision-making. On the other hand; molecularly imprinted polymers (MIPs) still attract researchers’ attention with their superior features in terms of wide range of design options and application fields. In this review, the combination of AI and MIP applications and their potential contributions to the future were compiled. In this context, firstly, a brief introduction to MIPs were given in a combination with recent sensor design approaches. Subsequently, the subject of artificial intelligence, in other commonly used words, machine learning, was discussed while summarizing the commonly used algorithms. In the last section, pioneering studies involving the combination of AI and MIPs are highlighted. This review will be the first article compiling AI and MIPs as well as it is thought to be an important main resource for researchers and enthusiasts.
A class of β-keto analogs of phenethylamine known as synthetic cathinones has been identified as the most emergent new class of psychoactive chemicals in the last ten years. Synthetic cathinones (SC) are becoming more varied, which represents a serious danger to social security and public health worldwide. In this work, an analytical technique based on UHPLC-MS/MS was developed for the simultaneously measurement of 36 synthetic cathinones and two metabolites in hair keratin samples. The separation was conducted by Atlantis Premier BEH C18 AX (2.5 μm, 2.1 × 100 mm) column using elution with 5 mM ammonium acetate in water with 0.1 % formic acid (v/v) (mobile phase A) and 2 mM ammonium formate in MeOH/Acetonitrile 50/50, +0.1 % formic acid (v/v) (mobile phase B). The analysis time was 11 min. Mass spectrometer was equipped with electrospray ionization (ESI). Multiple reaction monitoring (MRM) mode was used for the detection and quantification of the studied compounds. The methodology was successfully validated according to the Organization Scientific Area Committee guidelines, with linearity (r2 ≥ 0.99) from LOQ to 500 pg/mg concentrations for all the compounds investigated. This method was subsequently applied to nine hair samples positive for ten different synthetic cathinones. The most common SCs identified were 3,4-methylenedioxypyrovalerone (3,4-MDPV), in a concentration range 6.0–1000.0 pg/mg, along with alpha-pyrrolidinopentiophenone (α-PHP (54.0 and 554.0 pg/mg, respectively)), followed by the two positional isomers 3-MMC (556.0 and 5000.0 pg/mg) and 4-MMC (11.5 and 448.0 pg/mg). In conclusion, a validated LC-MS/MS method with high specificity was developed offering an easy and affordable sample preparation, and a run time that makes it suitable for use in a high throughput forensic laboratory for the multi-analyte quantification of 36 novel synthetic cathinones and 2 metabolites in hair.
The 19F NMR spectrum has a smaller number of signals than 1H NMR, therefore, quantitative 19F NMR (19F-qNMR) can replace quantitative 1H NMR (1H-qNMR) for the absolute quantitation of organic fluorine-bearing compounds. In this study, we determined the purity of voriconazole (VCZ), an organic fluorine pharmaceutical, using 19F-qNMR, validated the results in multiple laboratories, and compared them with those obtained using an established 1H-qNMR method. 3,5-Bis(trifluoromethyl)benzoic acid (3,5-BTFMBA) was selected as the reference standard for both 19F-qNMR and 1H-qNMR owing to its solubility characteristics and 19F-qNMR and 1H-qNMR chemical shifts.
Since VCZ contains three fluorines, the 19F-qNMR spectrum of VCZ showed three major fluorine signals (FA, FB, and FC). 19F-qNMR measurements were performed under three conditions with each 19F signal of VCZ (FA, FB, and FC) and the 19F signal of RS as the center (offset) of each observation. The quantitative values of the three target signals FA, FB, and FC were calculated and were comparable; 99.40 %, 99.66 %, and 99.49 %, respectively.
Owing to a difference of up to 8.8 % between the quantitative values of the two signals other than the targeted quantitative signal, the average FA, FB, and FC quantitative values were considered for purity (%). The purity of VCZ determined by 1H- and 19F-qNMR was comparable (99.65±0.29 % and 99.52±0.44 %, respectively), exhibiting variations within an acceptable range. Compared to conventional 1H-qNMR methods, the developed 19F-qNMR method has been proven efficient and highly promising for determining the accurate purity of organic fluorine pharmaceuticals.
The biomedicine scientific field has made continuous progress, introducing various pharmaceutical compounds to enhance human life. While these advancements bring benefits, the unregulated use of these compounds raises concerns, particularly regarding their presence in the environment and potential adverse effects on human health. Therefore, the assessment of pharmaceutical compounds by analytical strategies is imperative for comprehending and appraising their potential effects and interactions across diverse matrices. In this sense, solid-based microextraction procedures have shed light on the challenging task of evaluating pharmaceutical compounds in complex and diverse samples. Moreover, miniaturized procedures are firmly rooted in the principles of green analytical chemistry, thereby presenting more environmentally friendly approaches than traditional extraction methods. Consequently, significant endeavors have been undertaken to introduce novel sorbent materials that foster a more selective interaction with target analytes. Having this in mind, molecularly imprinted polymers (MIPs) emerge as a solution, providing selective binding sites capable of interacting with the target analyte within a complex sample. The integration of solid-based microextraction procedures with MIPs as sorbent phases has led to significant strides in advancing the evaluation of pharmaceutical compounds in different samples. Hence, this review endeavors to offer a comprehensive overview of the current applications of solid-based microextraction combined with MIPs in the assessment of pharmaceutical compounds across various samples.