Emerging as a promising alternative to expensive platinum-based catalysts for electrocatalytic hydrogen evolution reaction (HER), molybdenum disulfide (MoS2) stands out for its favourable thermodynamic properties. However, the catalytic activity of MoS2 is mostly confined to its edges while the basal plane remains inactive, limiting practical applicability. Fabrication of stable MoS2 structures with enhanced active sites on a given surface area still remains a complex task. Here we introduce a substrate-agnostic, metal-organic chemical vapour deposition (MOCVD) method for large-area 3D dendritic nanostructures of 2D MoS2, termed as “MoS2 nanowalls”. Using scanning and transmission electron microscopy (SEM/TEM), we elucidate the growth mechanism of the MoS2 nanowalls and their branched dendritic structure. Even subjected to extreme pH environments (0 and 14) during the HER, the grown MoS2 nanowalls show remarkable stability even after >170 hours of continuous operation and exhibit excellent catalytic activity with 10 mAcm−2 current density achievable by applying low overpotentials (309±2 mV at pH = 0 and 272±2 mV at pH = 14). The presented large-area growth method for inexpensive MoS2 nanowall based catalyst can pave the way for practical applications of water electrolysis cells operating at low voltages (≤1.5 V).
Electromagnetic induction heating currently attracts significant attention as a means to electrify catalytic processes and leverage a highly specific and localized energy supply. This Comment article features the application of this unconventional energy input for waste polymer conversion to fuel hydrocarbons.
Among the various molecular CO2 reduction catalysts, the [Ni(cyclam)]2+ (Ni-{N4}) complex with its earth-abundant metal center and macrocyclic ligand proved to be efficient for the selective electrochemical conversion of CO2 to CO. In the present study we now connected the two Ni-cyclam units by using para- and meta-xylene as organic linkers attached to the amines of the macrocycle to form the p-{Ni2} and m-{Ni2} complexes, respectively, and test them as catalysts for the electrochemical CO2 reduction reactions. Notably, the p-{Ni2} complex demonstrates a higher faraday efficiency in the electrochemical reduction of CO2 to CO compared to the m-{Ni2} complex. This finding highlights the significant role played by the M-M distance in influencing this catalytic process.
Semiconductor photocatalyzed energy production and environment treatment have received a lot of attention. Mn–Cd–S solid solutions (MnxCd1−xS) with tunable band structure, suitable redox capacity, and visible light response is recognized as one of the most promising photocatalysts for practical applications. However, low separation efficiency of photogenerated carriers and sluggish reaction kinetics restricts its photocatalytic activity. This review discusses the advantages and drawbacks of MnxCd1−xS for photocatalysis in terms of electronic band structure and surveys the modification strategies of photocatalytic activity, including modulation of Mn/Cd ratio, morphology/structure regulation, defect engineering, construction of heterojunction, loading cocatalysts, and integration of multiple strategies. Then, the progress in photocatalytic water splitting to hydrogen, carbon dioxide reduction, and pollutant degradation using MnxCd1−xS-based materials are summarized. Finally, it is concluded by outlining the challenges and opportunities for developing efficient photocatalysts based on MnxCd1−xS.

