Pub Date : 2025-08-20DOI: 10.1016/j.mtcata.2025.100115
Preethi Vijayarengan , Anthony Raja Maria , K.S. Ashadevi , Naresh Nalajala , Chinnakonda S. Gopinath
Solar hydrogen production by photocatalysis has long been considered as an important energy option. Whichever photocatalyst succeeds, methods should be available to scale-up in a most sustainable and cost-effective manner, and the present work addresses this specific issue. In the present study, Ce-doped in the TiO2 lattice (Ce-TiO2) and the same integrated with CNT (CNT-Ce-TiO2; (CCT)) composite was synthesized and characterized. Current study demonstrates the synergistic integration of Ce-TiO₂ as a light absorber and charge generator with CNTs as efficient charge separation at heterojunctions as well as charge transporter in a thin-film configuration (lab-scale (4.7 cm2), bench-scale (500 cm2)). Improved H2 generation under direct sunlight demonstrated in thin film form, than in particulate suspension, is attributed to efficient light absorption, particularly for electron-hole pair separation and their dispersion to redox sites. Additionally, the role of the binder is highlighted for improving H2 yield and the sustainability of the thin-film form of photocatalyst. ∼200 mg (1 g) CCT coated over 500 cm2 (2500 cm2) photocatalyst produced 21.6 mmol/h (102 mmol/h) H2 in sunlight. Present results provides a proof of concept that the thin film form of photocatalyst displays, at least 10 times, higher H2 yield than its powder counterpart, depending on the measurement conditions. A non-linear enhancement in H2 yield with small and large area thin-film indicates complex underlying factors and highlights the scope for further improvements.
{"title":"Thin-film approach for scalability and enhancement of solar hydrogen production with CNT integrated Ce-doped-TiO2 composite in direct sunlight","authors":"Preethi Vijayarengan , Anthony Raja Maria , K.S. Ashadevi , Naresh Nalajala , Chinnakonda S. Gopinath","doi":"10.1016/j.mtcata.2025.100115","DOIUrl":"10.1016/j.mtcata.2025.100115","url":null,"abstract":"<div><div>Solar hydrogen production by photocatalysis has long been considered as an important energy option. Whichever photocatalyst succeeds, methods should be available to scale-up in a most sustainable and cost-effective manner, and the present work addresses this specific issue. In the present study, Ce-doped in the TiO<sub>2</sub> lattice (Ce-TiO<sub>2</sub>) and the same integrated with CNT (CNT-Ce-TiO<sub>2</sub>; (CCT)) composite was synthesized and characterized. Current study demonstrates the synergistic integration of Ce-TiO₂ as a light absorber and charge generator with CNTs as efficient charge separation at heterojunctions as well as charge transporter in a thin-film configuration (lab-scale (4.7 cm<sup>2</sup>), bench-scale (500 cm<sup>2</sup>)). Improved H<sub>2</sub> generation under direct sunlight demonstrated in thin film form, than in particulate suspension, is attributed to efficient light absorption, particularly for electron-hole pair separation and their dispersion to redox sites. Additionally, the role of the binder is highlighted for improving H<sub>2</sub> yield and the sustainability of the thin-film form of photocatalyst. ∼200 mg (1 g) CCT coated over 500 cm<sup>2</sup> (2500 cm<sup>2</sup>) photocatalyst produced 21.6 mmol/h (102 mmol/h) H<sub>2</sub> in sunlight. Present results provides a proof of concept that the thin film form of photocatalyst displays, at least 10 times, higher H<sub>2</sub> yield than its powder counterpart, depending on the measurement conditions. A non-linear enhancement in H<sub>2</sub> yield with small and large area thin-film indicates complex underlying factors and highlights the scope for further improvements.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"10 ","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144888787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-12DOI: 10.1016/j.mtcata.2025.100114
Adjapong Linda Akua Agyapomaa , Chulong Jin , Qingqing Zhang, Xiaojun Zeng
Electrocatalysts with heterobimetallic active sites are considered to be effective geometries for electrocatalytic oxygen evolution reaction (OER). However, MOF-derived heterobimetallic phosphides are uncontrollable and the addition of traditional binders is complicated. Here, we designed an efficient defect-rich (NF/Ni2P-Fe2P@NC) heterostructure derived from NF/Fe-MOF, in which nickel foam (NF) provides a supporting role and Ni source to promote the formation of heterobimetallic phosphides (Ni2P, Fe2P). NF/Ni2P-Fe2P@NC inherits remarkable OER performance with ultralow overpotential of 123 mV at a current density of 10 mA cm−2 and Tafel slope of 51. 3 mV dec−1 in alkaline electrolyte. The experimental results unravel that the multi-components (Ni2P, Fe2P, NC), rich heterogeneous interfaces (Ni2P/Fe2P), and numerous defects in the heterostructure provide abundant active sites, optimize the electronic structure, and improve the exposure of active sites, thereby promoting the electrocatalytic OER process. Density functional theory (DFT) calculations confirm that the free energy barrier for the catalyst to generate *OOH intermediates is low. Our findings present a simple and economical approach to obtaining heterobimetallic phosphides with robust OER performance.
具有杂双金属活性位的电催化剂被认为是电催化析氧反应(OER)的有效结构。然而,mof衍生的杂双金属磷化物是不可控的,传统粘合剂的添加是复杂的。在此,我们设计了一种基于NF/Fe-MOF的高效富缺陷异质结构(NF/Ni2P-Fe2P@NC),其中泡沫镍(NF)提供了支撑作用和Ni源,以促进异双金属磷化物(Ni2P, Fe2P)的形成。NF/Ni2P-Fe2P@NC继承了卓越的OER性能,电流密度为10 mA cm−2,过电位为123 mV, Tafel斜率为51。3 mV dec−1在碱性电解质中。实验结果表明,多组分(Ni2P、Fe2P、NC)、丰富的异质界面(Ni2P/Fe2P)和众多的异质结构缺陷提供了丰富的活性位点,优化了电子结构,提高了活性位点的暴露,从而促进了电催化OER过程。密度泛函理论(DFT)计算证实,催化剂生成*OOH中间体的自由能垒较低。我们的发现提出了一种简单而经济的方法来获得具有强大OER性能的杂双金属磷化物。
{"title":"Construction of self-supporting heterobimetallic phosphides for oxygen evolution reaction","authors":"Adjapong Linda Akua Agyapomaa , Chulong Jin , Qingqing Zhang, Xiaojun Zeng","doi":"10.1016/j.mtcata.2025.100114","DOIUrl":"10.1016/j.mtcata.2025.100114","url":null,"abstract":"<div><div>Electrocatalysts with heterobimetallic active sites are considered to be effective geometries for electrocatalytic oxygen evolution reaction (OER). However, MOF-derived heterobimetallic phosphides are uncontrollable and the addition of traditional binders is complicated. Here, we designed an efficient defect-rich (NF/Ni<sub>2</sub>P-Fe<sub>2</sub>P@NC) heterostructure derived from NF/Fe-MOF, in which nickel foam (NF) provides a supporting role and Ni source to promote the formation of heterobimetallic phosphides (Ni<sub>2</sub>P, Fe<sub>2</sub>P). NF/Ni<sub>2</sub>P-Fe<sub>2</sub>P@NC inherits remarkable OER performance with ultralow overpotential of 123 mV at a current density of 10 mA cm<sup>−2</sup> and Tafel slope of 51. 3 mV dec<sup>−1</sup> in alkaline electrolyte. The experimental results unravel that the multi-components (Ni<sub>2</sub>P, Fe<sub>2</sub>P, NC), rich heterogeneous interfaces (Ni<sub>2</sub>P/Fe<sub>2</sub>P), and numerous defects in the heterostructure provide abundant active sites, optimize the electronic structure, and improve the exposure of active sites, thereby promoting the electrocatalytic OER process. Density functional theory (DFT) calculations confirm that the free energy barrier for the catalyst to generate *OOH intermediates is low. Our findings present a simple and economical approach to obtaining heterobimetallic phosphides with robust OER performance.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"10 ","pages":"Article 100114"},"PeriodicalIF":0.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thermal polymerization of urea and thiourea under closed conditions at 370 °C have been independently carried out and the derived samples were subjected to detailed characterization techniques that showed varied chemical compositions as well as distribution of functional groups despite the same C/N atomic ratio. The detailed optical, physicochemical and morphological characterizations from FTIR, RAMAN, XRD, TGA, XPS, solid-state & solution-state NMR, solid state UV–visible absorption, PL, BET, FESEM, TEM and SAED revealed that urea derived U370 sample with 2D flakes-like morphology closely resembles melem-cyanuric acid complex/adduct while thiourea derived T370 sample having flat ribbon-like structure can be intimately related with oligomeric melem (s-heptazines) hydrate respectively. Solution state UV–visible absorption spectroscopy, Zeta potential and Dynamic Light Scattering (DLS) aided size distribution studies were also conducted in aqueous media with varying pH to comprehend the character of chemical functionalities and nature of prevailing interactions in acid, neutral and alkaline electrolytes which were further be correlated with their photoelectrochemical responses. Their comparative electrochemical studies were conducted in aid with CV, GCD and EIS studies both under dark as well as in presence of different and wide range light sources in acid, neutral and basic media correspondingly to design low costing, eco-friendly, smart materials for light-driven supercapacitive devices. Results revealed T370 sample with better photoelectrochemical performance in terms of higher normalized areal capacitance, better rate capacity as well as improved cyclic stability than U370 sample in aqueous alkaline electrolyte. Thus, this communication outlines a novel approach for significantly upgrading the supercapacitive responses of materials using the simple aid of electromagnetic radiation, thereby opening up new roadways in the emerging field of photoelectrochemical charge storage and conversion technology.
{"title":"Comparative photoelectrochemical study of oligomeric s-heptazines nanomaterials derived from partial thermal decompositions of urea & thiourea precursors","authors":"Anupam Chowdhury , Dipanwita Majumdar , Moisilee Dutta , Swapan Kumar Bhattacharya","doi":"10.1016/j.mtcata.2025.100112","DOIUrl":"10.1016/j.mtcata.2025.100112","url":null,"abstract":"<div><div>Thermal polymerization of urea and thiourea under closed conditions at 370 °C have been independently carried out and the derived samples were subjected to detailed characterization techniques that showed varied chemical compositions as well as distribution of functional groups despite the same C/N atomic ratio. The detailed optical, physicochemical and morphological characterizations from FTIR, RAMAN, XRD, TGA, XPS, solid-state & solution-state NMR, solid state UV–visible absorption, PL, BET, FESEM, TEM and SAED revealed that urea derived U370 sample with 2D flakes-like morphology closely resembles melem-cyanuric acid complex/adduct while thiourea derived T370 sample having flat ribbon-like structure can be intimately related with oligomeric melem (s-heptazines) hydrate respectively. Solution state UV–visible absorption spectroscopy, Zeta potential and Dynamic Light Scattering (DLS) aided size distribution studies were also conducted in aqueous media with varying pH to comprehend the character of chemical functionalities and nature of prevailing interactions in acid, neutral and alkaline electrolytes which were further be correlated with their photoelectrochemical responses. Their comparative electrochemical studies were conducted in aid with CV, GCD and EIS studies both under dark as well as in presence of different and wide range light sources in acid, neutral and basic media correspondingly to design low costing, eco-friendly, smart materials for light-driven supercapacitive devices. Results revealed T370 sample with better photoelectrochemical performance in terms of higher normalized areal capacitance, better rate capacity as well as improved cyclic stability than U370 sample in aqueous alkaline electrolyte. Thus, this communication outlines a novel approach for significantly upgrading the supercapacitive responses of materials using the simple aid of electromagnetic radiation, thereby opening up new roadways in the emerging field of photoelectrochemical charge storage and conversion technology.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"10 ","pages":"Article 100112"},"PeriodicalIF":0.0,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144738399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-25DOI: 10.1016/j.mtcata.2025.100111
Hafiz Suleman Yaseen , Liu Deng , Li Luo , Johnny Muya Chabu , Syed Aamir Hussain , Wei Wang , Chengcheng Zhang , Rongrong Wang , Yifan Jiang , You-Nian Liu
Photocatalytic hydrogen evolution through water splitting represents a sustainable approach for green energy generation. Graphitic carbon nitride (g-C3N4)-based Z-scheme heterostructures have emerged as promising photocatalysts, but their practical applications are fundamentally limited by the persistent challenge of rapid charge recombination at heterointerfaces. To address this critical issue, we develop a novel Z-scheme photocatalyst AgO/La@g-C3N4 (ALCN) through integration of lanthanum-doped g-C3N4 nanosheets with AgO nanoparticles. Comprehensive structural analyses, optical characterization, and electrochemical evaluations confirm the successful construction of p-n heterojunctions with optimized band alignment. The engineered ALCN composite exhibits remarkable electron-hole separation efficiency, achieving an exceptional hydrogen production rate of 16.7 mmol g⁻¹ h⁻¹ under solar light irradiation, which represents a 13-fold, 4-fold, and 2-fold enhancement compared to pristine g-C3N4, La-doped g-C3N4, and the composite of La-doped g-C3N4 with Ag2O counterparts, respectively. Mechanistic studies reveal that La-doping induces intermediate energy states facilitating charge migration, while the AgO/g-C3N4 heterojunction establishes directional Z-scheme charge transfer pathways. The optimized photocatalyst maintains 92 % activity after 5 cycles, demonstrating superior stability. This work establishes a new paradigm for designing efficient Z-scheme systems through synergistic metal loading and heterojunction engineering.
{"title":"La-doped and AgO-loading g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution from water splitting","authors":"Hafiz Suleman Yaseen , Liu Deng , Li Luo , Johnny Muya Chabu , Syed Aamir Hussain , Wei Wang , Chengcheng Zhang , Rongrong Wang , Yifan Jiang , You-Nian Liu","doi":"10.1016/j.mtcata.2025.100111","DOIUrl":"10.1016/j.mtcata.2025.100111","url":null,"abstract":"<div><div>Photocatalytic hydrogen evolution through water splitting represents a sustainable approach for green energy generation. Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>)-based Z-scheme heterostructures have emerged as promising photocatalysts, but their practical applications are fundamentally limited by the persistent challenge of rapid charge recombination at heterointerfaces. To address this critical issue, we develop a novel Z-scheme photocatalyst AgO/La@g-C<sub>3</sub>N<sub>4</sub> (ALCN) through integration of lanthanum-doped g-C<sub>3</sub>N<sub>4</sub> nanosheets with AgO nanoparticles. Comprehensive structural analyses, optical characterization, and electrochemical evaluations confirm the successful construction of p-n heterojunctions with optimized band alignment. The engineered ALCN composite exhibits remarkable electron-hole separation efficiency, achieving an exceptional hydrogen production rate of 16.7 mmol g⁻¹ h⁻¹ under solar light irradiation, which represents a 13-fold, 4-fold, and 2-fold enhancement compared to pristine g-C<sub>3</sub>N<sub>4</sub>, La-doped g-C<sub>3</sub>N<sub>4</sub>, and the composite of La-doped g-C<sub>3</sub>N<sub>4</sub> with Ag<sub>2</sub>O counterparts, respectively. Mechanistic studies reveal that La-doping induces intermediate energy states facilitating charge migration, while the AgO/g-C<sub>3</sub>N<sub>4</sub> heterojunction establishes directional Z-scheme charge transfer pathways. The optimized photocatalyst maintains 92 % activity after 5 cycles, demonstrating superior stability. This work establishes a new paradigm for designing efficient Z-scheme systems through synergistic metal loading and heterojunction engineering.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"10 ","pages":"Article 100111"},"PeriodicalIF":0.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144722178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-11DOI: 10.1016/j.mtcata.2025.100110
Qian Sun , Jiaxin Zhang , Wei Kong Pang , Bernt Johannessen , Peng Li , Guoqiang Zhao , Huaming Yang
Proton exchange membrane water electrolysis (PEMWE) is a promising technology for green hydrogen production, but its efficiency is limited by the sluggish oxygen evolution reaction (OER). RuO2-based electrocatalysts exhibit superior intrinsic OER activity compared to IrO2, yet their practical application is hindered by poor stability due to lattice oxygen overoxidation and Ru overoxidation. Recent advances highlight that modulating the local coordination environment of RuO2 through doping, strain engineering, and defect control can not only optimize the OER pathways but also regulate the intrinsic activity of active sites, thereby achieving more balanced OER activity and stability. Meanwhile, computational investigations have also revealed deep insights into the catalytic performance of RuO2 from the perspective of local coordination structures. Therefore, in this review, we start by discussing the OER mechanisms and common structural descriptors of the activity and stability of RuO2. Then, we explore the relationship between structural regulation strategies and the OER performance of RuO2 and analyze how coordination engineering influences catalytic behavior, establishing a designing framework for high-performance catalysts. Finally, we outline key challenges and future directions for RuO2-based OER electrocatalysts in PEMWE applications.
{"title":"Advanced RuO2-based electrocatalysts for oxygen evolution reaction: A perspective from coordination structures","authors":"Qian Sun , Jiaxin Zhang , Wei Kong Pang , Bernt Johannessen , Peng Li , Guoqiang Zhao , Huaming Yang","doi":"10.1016/j.mtcata.2025.100110","DOIUrl":"10.1016/j.mtcata.2025.100110","url":null,"abstract":"<div><div>Proton exchange membrane water electrolysis (PEMWE) is a promising technology for green hydrogen production, but its efficiency is limited by the sluggish oxygen evolution reaction (OER). RuO<sub>2</sub>-based electrocatalysts exhibit superior intrinsic OER activity compared to IrO<sub>2</sub>, yet their practical application is hindered by poor stability due to lattice oxygen overoxidation and Ru overoxidation. Recent advances highlight that modulating the local coordination environment of RuO<sub>2</sub> through doping, strain engineering, and defect control can not only optimize the OER pathways but also regulate the intrinsic activity of active sites, thereby achieving more balanced OER activity and stability. Meanwhile, computational investigations have also revealed deep insights into the catalytic performance of RuO<sub>2</sub> from the perspective of local coordination structures. Therefore, in this review, we start by discussing the OER mechanisms and common structural descriptors of the activity and stability of RuO<sub>2</sub>. Then, we explore the relationship between structural regulation strategies and the OER performance of RuO<sub>2</sub> and analyze how coordination engineering influences catalytic behavior, establishing a designing framework for high-performance catalysts. Finally, we outline key challenges and future directions for RuO<sub>2</sub>-based OER electrocatalysts in PEMWE applications.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"10 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144605792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-04DOI: 10.1016/j.mtcata.2025.100109
Wen-Xuan Lv , Kai-Xuan Jiang , Yue-Bao Chen , Peng-Fei Yin , Hui Liu , Xi-Wen Du
The green production, conversion, and utilization of hydrogen energy rely heavily on key technologies such as water electrolysis and hydrogen fuel cells. As essential components of these technologies, metal catalysts play a crucial role in determining device efficiency and economic viability. Currently, most electrocatalysts still rely on noble metals; however, their high cost and resource scarcity severely limit large-scale application and commercialization. Therefore, the development of cost-effective and high-performance alternatives to noble metal catalysts has become a major research focus. IB-group metals (Cu, Ag) have emerged as promising candidates for electrocatalysis due to their low cost, high electrical conductivity, and excellent corrosion resistance. However, their d10 electronic configuration results in weak adsorption of catalytic intermediates, leading to inherently low catalytic activity. Over the past decade, advancements in synthesis techniques and atomic/electronic structure modulation strategies have enabled the transformation of IB-group metals, particularly Cu and Ag, into highly efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). This review systematically summarizes recent progress in the synthesis and structural optimization of IB-group metal catalysts, with a particular focus on their applications in water electrolysis and hydrogen fuel cells. By analyzing key factors such as crystal structure and electronic configuration, we elucidate the fundamental mechanisms influencing catalytic performance. Finally, we discuss future perspectives on IB-group metal catalysts in clean energy technologies, highlighting their potential to accelerate the development of hydrogen energy and contribute to global carbon neutrality goals.
{"title":"Recent advances in IB-group metal electrocatalysts for hydrogen conversion and utilization","authors":"Wen-Xuan Lv , Kai-Xuan Jiang , Yue-Bao Chen , Peng-Fei Yin , Hui Liu , Xi-Wen Du","doi":"10.1016/j.mtcata.2025.100109","DOIUrl":"10.1016/j.mtcata.2025.100109","url":null,"abstract":"<div><div>The green production, conversion, and utilization of hydrogen energy rely heavily on key technologies such as water electrolysis and hydrogen fuel cells. As essential components of these technologies, metal catalysts play a crucial role in determining device efficiency and economic viability. Currently, most electrocatalysts still rely on noble metals; however, their high cost and resource scarcity severely limit large-scale application and commercialization. Therefore, the development of cost-effective and high-performance alternatives to noble metal catalysts has become a major research focus. IB-group metals (Cu, Ag) have emerged as promising candidates for electrocatalysis due to their low cost, high electrical conductivity, and excellent corrosion resistance. However, their <em>d</em><sup>10</sup> electronic configuration results in weak adsorption of catalytic intermediates, leading to inherently low catalytic activity. Over the past decade, advancements in synthesis techniques and atomic/electronic structure modulation strategies have enabled the transformation of IB-group metals, particularly Cu and Ag, into highly efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). This review systematically summarizes recent progress in the synthesis and structural optimization of IB-group metal catalysts, with a particular focus on their applications in water electrolysis and hydrogen fuel cells. By analyzing key factors such as crystal structure and electronic configuration, we elucidate the fundamental mechanisms influencing catalytic performance. Finally, we discuss future perspectives on IB-group metal catalysts in clean energy technologies, highlighting their potential to accelerate the development of hydrogen energy and contribute to global carbon neutrality goals.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"10 ","pages":"Article 100109"},"PeriodicalIF":0.0,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144572507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1016/j.mtcata.2025.100104
Xinyu Yang , Sheng-Hua Zhou , Xiaofang Li , Xin-Tao Wu , Qi-Long Zhu
The electrocatalytic hydrogenation of α, β-unsaturated aldehydes has attracted significant attention, yet the design of electrocatalysts with selective adsorption over CC or CO bond remaining a challenging task. In this study, the Co nanoclusters anchored onto the nitrogen-doped porous carbon nanofibers were elaborately fabricated for efficient electrocatalytic hydrogenation. A kinetically driven mono-micelle-oriented self-assembly method was applied to synthesize the polymer nanofibers as the accommodation for Co2 +. The stepwise pyrolysis of Co2+/polymer nanofibers with dicyandiamide yielded the evenly distributed Co nanoclusters with an average size of ∼4 nm over the nitrogen-doped porous carbon nanofibers. Benefited from the high activity of the Co nanoclusters and their rapid electron communication with the nitrogen-doped porous carbon nanofibers, this electrocatalyst demonstrated excellent performance in the selectively electrocatalytic hydrogenation of cinnamaldehyde to hydrocinnamaldehyde, achieving a high selectivity of 90.9 % and a conversion of 68.2 % at 12 mA cm−2. The further in-situ spectroscopy analysis and density functional theory calculations revealed the more preferred adsorption of CC bond and easier water dissociation to give the active H atoms over the Co nanoclusters, which shed light on the hydrogenation mechanism over this electrocatalyst. Our study can provide a new insight in catalyst design for electrocatalytic hydrogenation reaction.
α, β-不饱和醛的电催化加氢已经引起了人们的广泛关注,但在CC键或CO键上选择性吸附的电催化剂的设计仍然是一个具有挑战性的任务。在这项研究中,Co纳米团簇固定在氮掺杂的多孔碳纳米纤维上,用于高效的电催化加氢。采用动力学驱动的单胶束定向自组装方法合成了聚合物纳米纤维,作为Co2 +的容纳体。用双氰胺对Co2+/聚合物纳米纤维进行分步热解,得到了均匀分布的Co纳米团簇,平均尺寸为~ 4 nm。得益于Co纳米团簇的高活性及其与氮掺杂多孔碳纳米纤维的快速电子通信,该电催化剂在选择性电催化肉桂醛加氢为氢肉桂醛方面表现出了优异的性能,在12 mA cm−2下达到了90.9 %的高选择性和68.2% %的转化率。进一步的原位光谱分析和密度泛函理论计算表明,与Co纳米团簇相比,CC键更容易吸附,水解离更容易产生活性H原子,从而揭示了该电催化剂的加氢机理。本研究为电催化加氢反应的催化剂设计提供了新的思路。
{"title":"Allying cobalt nanoclusters with carbon nanofibers for selectively electrocatalytic hydrogenation of unsaturated aldehyde with water as hydrogen source","authors":"Xinyu Yang , Sheng-Hua Zhou , Xiaofang Li , Xin-Tao Wu , Qi-Long Zhu","doi":"10.1016/j.mtcata.2025.100104","DOIUrl":"10.1016/j.mtcata.2025.100104","url":null,"abstract":"<div><div>The electrocatalytic hydrogenation of α, β-unsaturated aldehydes has attracted significant attention, yet the design of electrocatalysts with selective adsorption over C<img>C or C<img>O bond remaining a challenging task. In this study, the Co nanoclusters anchored onto the nitrogen-doped porous carbon nanofibers were elaborately fabricated for efficient electrocatalytic hydrogenation. A kinetically driven mono-micelle-oriented self-assembly method was applied to synthesize the polymer nanofibers as the accommodation for Co<sup>2 +</sup>. The stepwise pyrolysis of Co<sup>2+</sup>/polymer nanofibers with dicyandiamide yielded the evenly distributed Co nanoclusters with an average size of ∼4 nm over the nitrogen-doped porous carbon nanofibers. Benefited from the high activity of the Co nanoclusters and their rapid electron communication with the nitrogen-doped porous carbon nanofibers, this electrocatalyst demonstrated excellent performance in the selectively electrocatalytic hydrogenation of cinnamaldehyde to hydrocinnamaldehyde, achieving a high selectivity of 90.9 % and a conversion of 68.2 % at 12 mA cm<sup>−2</sup>. The further in-situ spectroscopy analysis and density functional theory calculations revealed the more preferred adsorption of C<img>C bond and easier water dissociation to give the active H atoms over the Co nanoclusters, which shed light on the hydrogenation mechanism over this electrocatalyst. Our study can provide a new insight in catalyst design for electrocatalytic hydrogenation reaction.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"9 ","pages":"Article 100104"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144185726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}