Pub Date : 2024-09-13Epub Date: 2024-09-12DOI: 10.1161/RES.0000000000000692
{"title":"Meet the First Authors.","authors":"","doi":"10.1161/RES.0000000000000692","DOIUrl":"https://doi.org/10.1161/RES.0000000000000692","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"135 7","pages":"706-707"},"PeriodicalIF":16.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13Epub Date: 2024-08-14DOI: 10.1161/CIRCRESAHA.124.324812
Manuel Sigle, Anne-Katrin Rohlfing, Melanie Cruz Santos, Timo Kopp, Konstantin Krutzke, Vincent Gidlund, Ferdinand Kollotzek, Julia Marzi, Saskia von Ungern-Sternberg, Antti Poso, Mathias Heikenwälder, Katja Schenke-Layland, Peter Seizer, Julia Möllmann, Nikolaus Marx, Robert Feil, Susanne Feil, Robert Lukowski, Oliver Borst, Tilman E Schäffer, Karin Anne Lydia Müller, Meinrad P Gawaz, David Heinzmann
Background: Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function.
Methods: Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody.
Results: We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (P=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice.
Conclusions: Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.
{"title":"Targeting Cyclophilin A in the Cardiac Microenvironment Preserves Heart Function and Structure in Failing Hearts.","authors":"Manuel Sigle, Anne-Katrin Rohlfing, Melanie Cruz Santos, Timo Kopp, Konstantin Krutzke, Vincent Gidlund, Ferdinand Kollotzek, Julia Marzi, Saskia von Ungern-Sternberg, Antti Poso, Mathias Heikenwälder, Katja Schenke-Layland, Peter Seizer, Julia Möllmann, Nikolaus Marx, Robert Feil, Susanne Feil, Robert Lukowski, Oliver Borst, Tilman E Schäffer, Karin Anne Lydia Müller, Meinrad P Gawaz, David Heinzmann","doi":"10.1161/CIRCRESAHA.124.324812","DOIUrl":"10.1161/CIRCRESAHA.124.324812","url":null,"abstract":"<p><strong>Background: </strong>Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function.</p><p><strong>Methods: </strong>Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody.</p><p><strong>Results: </strong>We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (<i>P</i>=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice.</p><p><strong>Conclusions: </strong>Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"758-773"},"PeriodicalIF":16.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13Epub Date: 2024-08-15DOI: 10.1161/CIRCRESAHA.124.324608
Ling Tang, Huiliang Qiu, Bing Xu, Yajuan Su, Verah Nyarige, Pengsheng Li, Houjia Chen, Brady Killham, Jun Liao, Henderson Adam, Aaron Yang, Alexander Yu, Michelle Jang, Michael Rubart, Jingwei Xie, Wuqiang Zhu
Background: Apelin is an endogenous prepropeptide that regulates cardiac homeostasis and various physiological processes. Intravenous injection has been shown to improve cardiac contractility in patients with heart failure. However, its short half-life prevents studying its impact on left ventricular remodeling in the long term. Here, we aim to study whether microparticle-mediated slow release of apelin improves heart function and left ventricular remodeling in mice with myocardial infarction (MI).
Methods: A cardiac patch was fabricated by embedding apelin-containing microparticles in a fibrin gel scaffold. MI was induced via permanent ligation of the left anterior descending coronary artery in adult C57BL/6J mice followed by epicardial patch placement immediately after (acute MI) or 28 days (chronic MI) post-MI. Four groups were included in this study, namely sham, MI, MI plus empty microparticle-embedded patch treatment, and MI plus apelin-containing microparticle-embedded patch treatment. Cardiac function was assessed by transthoracic echocardiography. Cardiomyocyte morphology, apoptosis, and cardiac fibrosis were evaluated by histology. Cardioprotective pathways were determined by RNA sequencing, quantitative polymerase chain reaction, and Western blot.
Results: The level of endogenous apelin was largely reduced in the first 7 days after MI induction and it was normalized by day 28. Apelin-13 encapsulated in poly(lactic-co-glycolic acid) microparticles displayed a sustained release pattern for up to 28 days. Treatment with apelin-containing microparticle-embedded patch inhibited cardiac hypertrophy and reduced scar size in both acute and chronic MI models, which is associated with improved cardiac function. Data from cellular and molecular analyses showed that apelin inhibits the activation and proliferation of cardiac fibroblasts by preventing transforming growth factor-β-mediated activation of Smad2/3 (supporessor of mothers against decapentaplegic 2/3) and downstream profibrotic gene expression.
Conclusions: Poly(lactic-co-glycolic acid) microparticles prolonged the apelin release time in the mouse hearts. Epicardial delivery of the apelin-containing microparticle-embedded patch protects mice from both acute and chronic MI-induced cardiac dysfunction, inhibits cardiac fibrosis, and improves left ventricular remodeling.
{"title":"Microparticle Mediated Delivery of Apelin Improves Heart Function in Post Myocardial Infarction Mice.","authors":"Ling Tang, Huiliang Qiu, Bing Xu, Yajuan Su, Verah Nyarige, Pengsheng Li, Houjia Chen, Brady Killham, Jun Liao, Henderson Adam, Aaron Yang, Alexander Yu, Michelle Jang, Michael Rubart, Jingwei Xie, Wuqiang Zhu","doi":"10.1161/CIRCRESAHA.124.324608","DOIUrl":"10.1161/CIRCRESAHA.124.324608","url":null,"abstract":"<p><strong>Background: </strong>Apelin is an endogenous prepropeptide that regulates cardiac homeostasis and various physiological processes. Intravenous injection has been shown to improve cardiac contractility in patients with heart failure. However, its short half-life prevents studying its impact on left ventricular remodeling in the long term. Here, we aim to study whether microparticle-mediated slow release of apelin improves heart function and left ventricular remodeling in mice with myocardial infarction (MI).</p><p><strong>Methods: </strong>A cardiac patch was fabricated by embedding apelin-containing microparticles in a fibrin gel scaffold. MI was induced via permanent ligation of the left anterior descending coronary artery in adult C57BL/6J mice followed by epicardial patch placement immediately after (acute MI) or 28 days (chronic MI) post-MI. Four groups were included in this study, namely sham, MI, MI plus empty microparticle-embedded patch treatment, and MI plus apelin-containing microparticle-embedded patch treatment. Cardiac function was assessed by transthoracic echocardiography. Cardiomyocyte morphology, apoptosis, and cardiac fibrosis were evaluated by histology. Cardioprotective pathways were determined by RNA sequencing, quantitative polymerase chain reaction, and Western blot.</p><p><strong>Results: </strong>The level of endogenous apelin was largely reduced in the first 7 days after MI induction and it was normalized by day 28. Apelin-13 encapsulated in poly(lactic-co-glycolic acid) microparticles displayed a sustained release pattern for up to 28 days. Treatment with apelin-containing microparticle-embedded patch inhibited cardiac hypertrophy and reduced scar size in both acute and chronic MI models, which is associated with improved cardiac function. Data from cellular and molecular analyses showed that apelin inhibits the activation and proliferation of cardiac fibroblasts by preventing transforming growth factor-β-mediated activation of Smad2/3 (supporessor of mothers against decapentaplegic 2/3) and downstream profibrotic gene expression.</p><p><strong>Conclusions: </strong>Poly(lactic-co-glycolic acid) microparticles prolonged the apelin release time in the mouse hearts. Epicardial delivery of the apelin-containing microparticle-embedded patch protects mice from both acute and chronic MI-induced cardiac dysfunction, inhibits cardiac fibrosis, and improves left ventricular remodeling.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"777-798"},"PeriodicalIF":16.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13Epub Date: 2024-08-23DOI: 10.1161/CIRCRESAHA.124.324722
Qingqing Chu, Yujia Li, Jichao Wu, Yanjiao Gao, Xiangyun Guo, Jing Li, Hang Lv, Min Liu, Wei Tang, Peng Zhan, Tao Zhang, Huili Hu, Hong Liu, Jinpeng Sun, Xiaojie Wang, Fan Yi
Background: Despite endothelial dysfunction being an initial step in the development of hypertension and associated cardiovascular/renal injuries, effective therapeutic strategies to prevent endothelial dysfunction are still lacking. GPR183 (G protein-coupled receptor 183), a recently identified G protein-coupled receptor for oxysterols and hydroxylated metabolites of cholesterol, has pleiotropic roles in lipid metabolism and immune responses. However, the role of GPR183 in the regulation of endothelial function remains unknown.
Methods: Endothelial-specific GPR183 knockout mice were generated and used to examine the role of GPR183 in endothelial senescence by establishing 2 independent hypertension models: desoxycorticosterone acetate/salt-induced and Ang II (angiotensin II)-induced hypertensive mice. Echocardiography, transmission electron microscopy, blood pressure measurement, vasorelaxation response experiments, flow cytometry analysis, and chromatin immunoprecipitation analysis were performed in this study.
Results: Endothelial GPR183 was significantly induced in hypertensive mice, which was further confirmed in renal biopsies from subjects with hypertensive nephropathy. Endothelial-specific deficiency of GPR183 markedly alleviated cardiovascular and renal injuries in hypertensive mice. Moreover, we found that GPR183 regulated endothelial senescence in both hypertensive mice and aged mice. Mechanistically, GPR183 disrupted circadian signaling by inhibiting PER1 (period circadian regulator 1) expression, thereby facilitating endothelial senescence and dysfunction through the cAMP (cyclic adenosine monophosphate)/PKA (protein kinase A)/CREB (cAMP-response element binding protein) signaling pathway. Importantly, pharmacological inhibition of the oxysterol-GPR183 axis by NIBR189 or clotrimazole ameliorated endothelial senescence and cardiovascular/renal injuries in hypertensive mice.
Conclusions: This study discovers a previously unrecognized role of GPR183 in promoting endothelial senescence. Pharmacological targeting of GPR183 may be an innovative therapeutic strategy for hypertension and its associated complications.
{"title":"Oxysterol Sensing Through GPR183 Triggers Endothelial Senescence in Hypertension.","authors":"Qingqing Chu, Yujia Li, Jichao Wu, Yanjiao Gao, Xiangyun Guo, Jing Li, Hang Lv, Min Liu, Wei Tang, Peng Zhan, Tao Zhang, Huili Hu, Hong Liu, Jinpeng Sun, Xiaojie Wang, Fan Yi","doi":"10.1161/CIRCRESAHA.124.324722","DOIUrl":"10.1161/CIRCRESAHA.124.324722","url":null,"abstract":"<p><strong>Background: </strong>Despite endothelial dysfunction being an initial step in the development of hypertension and associated cardiovascular/renal injuries, effective therapeutic strategies to prevent endothelial dysfunction are still lacking. GPR183 (G protein-coupled receptor 183), a recently identified G protein-coupled receptor for oxysterols and hydroxylated metabolites of cholesterol, has pleiotropic roles in lipid metabolism and immune responses. However, the role of GPR183 in the regulation of endothelial function remains unknown.</p><p><strong>Methods: </strong>Endothelial-specific GPR183 knockout mice were generated and used to examine the role of GPR183 in endothelial senescence by establishing 2 independent hypertension models: desoxycorticosterone acetate/salt-induced and Ang II (angiotensin II)-induced hypertensive mice. Echocardiography, transmission electron microscopy, blood pressure measurement, vasorelaxation response experiments, flow cytometry analysis, and chromatin immunoprecipitation analysis were performed in this study.</p><p><strong>Results: </strong>Endothelial GPR183 was significantly induced in hypertensive mice, which was further confirmed in renal biopsies from subjects with hypertensive nephropathy. Endothelial-specific deficiency of GPR183 markedly alleviated cardiovascular and renal injuries in hypertensive mice. Moreover, we found that GPR183 regulated endothelial senescence in both hypertensive mice and aged mice. Mechanistically, GPR183 disrupted circadian signaling by inhibiting PER1 (period circadian regulator 1) expression, thereby facilitating endothelial senescence and dysfunction through the cAMP (cyclic adenosine monophosphate)/PKA (protein kinase A)/CREB (cAMP-response element binding protein) signaling pathway. Importantly, pharmacological inhibition of the oxysterol-GPR183 axis by NIBR189 or clotrimazole ameliorated endothelial senescence and cardiovascular/renal injuries in hypertensive mice.</p><p><strong>Conclusions: </strong>This study discovers a previously unrecognized role of GPR183 in promoting endothelial senescence. Pharmacological targeting of GPR183 may be an innovative therapeutic strategy for hypertension and its associated complications.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"708-721"},"PeriodicalIF":16.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13Epub Date: 2024-08-14DOI: 10.1161/CIRCRESAHA.124.324601
Jessica L Caldwell, Jessica D Clarke, Charlotte E R Smith, Christian Pinali, Callum J Quinn, Charles M Pearman, Aiste Adomaviciene, Emma J Radcliffe, Amy Watkins, Margaux A Horn, Elizabeth F Bode, George W P Madders, Mark Eisner, David A Eisner, Andrew W Trafford, Katharine M Dibb
Background: Transverse (t)-tubules drive the rapid and synchronous Ca2+ rise in cardiac myocytes. The virtual complete atrial t-tubule loss in heart failure (HF) decreases Ca2+ release. It is unknown if or how atrial t-tubules can be restored and how this affects systolic Ca2+.
Methods: HF was induced in sheep by rapid ventricular pacing and recovered following termination of rapid pacing. Serial block-face scanning electron microscopy and confocal imaging were used to study t-tubule ultrastructure. Function was assessed using patch clamp, Ca2+, and confocal imaging. Candidate proteins involved in atrial t-tubule recovery were identified by western blot and expressed in rat neonatal ventricular myocytes to determine if they altered t-tubule structure.
Results: Atrial t-tubules were lost in HF but reappeared following recovery from HF. Recovered t-tubules were disordered, adopting distinct morphologies with increased t-tubule length and branching. T-tubule disorder was associated with mitochondrial disorder. Recovered t-tubules were functional, triggering Ca2+ release in the cell interior. Systolic Ca2+, ICa-L, sarcoplasmic reticulum Ca2+ content, and sarcoendoplasmic reticulum Ca2+ ATPase function were restored following recovery from HF. Confocal microscopy showed fragmentation of ryanodine receptor staining and movement away from the z-line in HF, which was reversed following recovery from HF. Acute detubulation, to remove recovered t-tubules, confirmed their key role in restoration of the systolic Ca2+ transient, the rate of Ca2+ removal, and the peak L-type Ca2+ current. The abundance of telethonin and myotubularin decreased during HF and increased during recovery. Transfection with these proteins altered the density and structure of tubules in neonatal myocytes. Myotubularin had a greater effect, increasing tubule length and branching, replicating that seen in the recovery atria.
Conclusions: We show that recovery from HF restores atrial t-tubules, and this promotes recovery of ICa-L, sarcoplasmic reticulum Ca2+ content, and systolic Ca2+. We demonstrate an important role for myotubularin in t-tubule restoration. Our findings reveal a new and viable therapeutic strategy.
背景:横向(t)微管驱动心肌细胞中 Ca2+ 快速同步上升。心力衰竭(HF)患者实际上完全丧失了心房的 t 型微管,从而减少了 Ca2+ 的释放。方法:通过快速心室起搏诱发绵羊心力衰竭,并在快速起搏终止后恢复。使用序列块面扫描电子显微镜和共聚焦成像技术研究 t 型微管的超微结构。使用膜片钳、Ca2+和共聚焦成像技术评估其功能。通过 Western 印迹鉴定了参与心房 t 型微管恢复的候选蛋白,并在大鼠新生心室肌细胞中表达了这些蛋白,以确定它们是否改变了 t 型微管的结构:结果:心房颤动导致心房t-微管缺失,但在心房颤动恢复后又重新出现。恢复后的t-微管结构紊乱,形态各异,t-微管长度和分支增加。t-微管紊乱与线粒体紊乱有关。恢复的t-微管具有功能性,可触发细胞内部的Ca2+释放。高频恢复后,收缩期Ca2+、ICa-L、肌浆网Ca2+含量和SERCA功能均得到恢复。共聚焦显微镜显示,在高房颤动中,雷诺丁受体染色破碎并偏离z线,而在高房颤动恢复后,这种情况被逆转。急性去管法去除恢复的t-管,证实了它们在恢复收缩期Ca2+瞬态、Ca2+去除率和L型Ca2+电流峰值中的关键作用。telethonin 和 myotubularin 的丰度在高频过程中降低,而在恢复过程中升高。转染这些蛋白后,新生儿心肌细胞小管的密度和结构发生了改变。Myotubularin的作用更大,它增加了小管的长度和分支,复制了在恢复期心房中看到的情况:我们的研究表明,心房颤动的恢复可恢复心房的 t 型小管,从而促进 ICa-L、肌质网 Ca2+ 含量和收缩期 Ca2+ 的恢复。我们证明了肌球蛋白在微管恢复中的重要作用。我们的发现揭示了一种新的可行治疗策略。
{"title":"Restoring Atrial T-Tubules Augments Systolic Ca Upon Recovery From Heart Failure.","authors":"Jessica L Caldwell, Jessica D Clarke, Charlotte E R Smith, Christian Pinali, Callum J Quinn, Charles M Pearman, Aiste Adomaviciene, Emma J Radcliffe, Amy Watkins, Margaux A Horn, Elizabeth F Bode, George W P Madders, Mark Eisner, David A Eisner, Andrew W Trafford, Katharine M Dibb","doi":"10.1161/CIRCRESAHA.124.324601","DOIUrl":"10.1161/CIRCRESAHA.124.324601","url":null,"abstract":"<p><strong>Background: </strong>Transverse (t)-tubules drive the rapid and synchronous Ca<sup>2+</sup> rise in cardiac myocytes. The virtual complete atrial t-tubule loss in heart failure (HF) decreases Ca<sup>2+</sup> release. It is unknown if or how atrial t-tubules can be restored and how this affects systolic Ca<sup>2+</sup>.</p><p><strong>Methods: </strong>HF was induced in sheep by rapid ventricular pacing and recovered following termination of rapid pacing. Serial block-face scanning electron microscopy and confocal imaging were used to study t-tubule ultrastructure. Function was assessed using patch clamp, Ca<sup>2+</sup>, and confocal imaging. Candidate proteins involved in atrial t-tubule recovery were identified by western blot and expressed in rat neonatal ventricular myocytes to determine if they altered t-tubule structure.</p><p><strong>Results: </strong>Atrial t-tubules were lost in HF but reappeared following recovery from HF. Recovered t-tubules were disordered, adopting distinct morphologies with increased t-tubule length and branching. T-tubule disorder was associated with mitochondrial disorder. Recovered t-tubules were functional, triggering Ca<sup>2+</sup> release in the cell interior. Systolic Ca<sup>2+</sup>, <i>I</i><sub>Ca-L</sub>, sarcoplasmic reticulum Ca<sup>2+</sup> content, and sarcoendoplasmic reticulum Ca<sup>2+</sup> ATPase function were restored following recovery from HF. Confocal microscopy showed fragmentation of ryanodine receptor staining and movement away from the z-line in HF, which was reversed following recovery from HF. Acute detubulation, to remove recovered t-tubules, confirmed their key role in restoration of the systolic Ca<sup>2+</sup> transient, the rate of Ca<sup>2+</sup> removal, and the peak L-type Ca<sup>2+</sup> current. The abundance of telethonin and myotubularin decreased during HF and increased during recovery. Transfection with these proteins altered the density and structure of tubules in neonatal myocytes. Myotubularin had a greater effect, increasing tubule length and branching, replicating that seen in the recovery atria.</p><p><strong>Conclusions: </strong>We show that recovery from HF restores atrial t-tubules, and this promotes recovery of <i>I</i><sub>Ca-L</sub>, sarcoplasmic reticulum Ca<sup>2+</sup> content, and systolic Ca<sup>2+</sup>. We demonstrate an important role for myotubularin in t-tubule restoration. Our findings reveal a new and viable therapeutic strategy.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"739-754"},"PeriodicalIF":16.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which β-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear.
Methods: Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions.
Results: By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities.
Conclusions: Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.
{"title":"Targeting the I<sub>Ks</sub> Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants.","authors":"Ling Zhong, Zhenzhen Yan, Dexiang Jiang, Kuo-Chan Weng, Yue Ouyang, Hangyu Zhang, Xiaoqing Lin, Chenxin Xiao, Huaiyu Yang, Jing Yao, Xinjiang Kang, Changhe Wang, Chen Huang, Bing Shen, Sookja Kim Chung, Zhi-Hong Jiang, Wandi Zhu, Erwin Neher, Jonathan R Silva, Panpan Hou","doi":"10.1161/CIRCRESAHA.124.325009","DOIUrl":"10.1161/CIRCRESAHA.124.325009","url":null,"abstract":"<p><strong>Background: </strong>The KCNQ1+KCNE1 (I<sub>Ks</sub>) potassium channel plays a crucial role in cardiac adaptation to stress, in which β-adrenergic stimulation phosphorylates the I<sub>Ks</sub> channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between I<sub>Ks</sub> channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear.</p><p><strong>Methods: </strong>Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/I<sub>Ks</sub> channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions.</p><p><strong>Results: </strong>By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of I<sub>Ks</sub> channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of I<sub>Ks</sub>. We refer to this pattern as the I<sub>Ks</sub> channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the I<sub>Ks</sub> channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities.</p><p><strong>Conclusions: </strong>Our findings not only elucidate the molecular mechanism of PKA-dependent I<sub>Ks</sub> channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"722-738"},"PeriodicalIF":16.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1161/circresaha.124.323595
Mohammad Saleem,Luul A Aden,Ashley Pitzer Mutchler,Chitra Basu,Lale A Ertuglu,Quanhu Sheng,Niki Penner,Anna R Hemnes,Jennifer H Park,Jeanne A Ishimwe,Cheryl L Laffer,Fernando Elijovich,Celestine N Wanjalla,Nestor de la Visitacion,Paul D Kastner,Claude F Albritton,Taseer Ahmad,Alexandria P Haynes,Justin Yu,Meghan K Graber,Sharia Yasmin,Kay-Uwe Wagner,Peter P Sayeski,Antonis K Hatzopoulos,Eric R Gamazon,Alexander G Bick,Thomas R Kleyman,Annet Kirabo
BACKGROUNDSalt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP.METHODWe performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function.RESULTSWe found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha).CONCLUSIONSOur findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.
{"title":"Myeloid-Specific JAK2 Contributes to Inflammation and Salt Sensitivity of Blood Pressure.","authors":"Mohammad Saleem,Luul A Aden,Ashley Pitzer Mutchler,Chitra Basu,Lale A Ertuglu,Quanhu Sheng,Niki Penner,Anna R Hemnes,Jennifer H Park,Jeanne A Ishimwe,Cheryl L Laffer,Fernando Elijovich,Celestine N Wanjalla,Nestor de la Visitacion,Paul D Kastner,Claude F Albritton,Taseer Ahmad,Alexandria P Haynes,Justin Yu,Meghan K Graber,Sharia Yasmin,Kay-Uwe Wagner,Peter P Sayeski,Antonis K Hatzopoulos,Eric R Gamazon,Alexander G Bick,Thomas R Kleyman,Annet Kirabo","doi":"10.1161/circresaha.124.323595","DOIUrl":"https://doi.org/10.1161/circresaha.124.323595","url":null,"abstract":"BACKGROUNDSalt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP.METHODWe performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function.RESULTSWe found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha).CONCLUSIONSOur findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"52 1","pages":""},"PeriodicalIF":20.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1161/circresaha.124.325211
Michelle L Munro,Luis A Gonano
{"title":"On the Mend: Atrial Tubulogenesis After Tachypacing-Induced Heart Failure.","authors":"Michelle L Munro,Luis A Gonano","doi":"10.1161/circresaha.124.325211","DOIUrl":"https://doi.org/10.1161/circresaha.124.325211","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"3 1","pages":"755-757"},"PeriodicalIF":20.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1161/circresaha.124.325132
Marion Delaunay,Zegeye H Jebessa,Timothy A McKinsey
{"title":"Cyclophilin(g) a Knowledge Gap in Heart Failure Pathogenesis.","authors":"Marion Delaunay,Zegeye H Jebessa,Timothy A McKinsey","doi":"10.1161/circresaha.124.325132","DOIUrl":"https://doi.org/10.1161/circresaha.124.325132","url":null,"abstract":"","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"4 1","pages":"774-776"},"PeriodicalIF":20.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}