首页 > 最新文献

结构化学最新文献

英文 中文
S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation 用于 H2 演化和有机物氧化的 S 型异质结光催化剂
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100327
{"title":"S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation","authors":"","doi":"10.1016/j.cjsc.2024.100327","DOIUrl":"10.1016/j.cjsc.2024.100327","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100327"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141034450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid 用于将二氧化碳高效还原为甲酸的生物基纳米材料的调整策略和电解槽设计
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-01 DOI: 10.1016/j.cjsc.2024.100346

The escalating emissions of greenhouse gases into atmosphere have precipitated a host of ecology and environmental concerns. Electrochemical reduction of CO2 (CO2RR) is emerging as a sustainable solution for effectively addressing these issues. Leveraging the cost-effectiveness and eco-friendly attributes, Bi-based catalysts have been extensively studied with the purpose of enhancing activity and stability. This minireview majorly overviews the research advancements in Bi-based catalysts for CO2 electrocatalysis towards formic acid/formate production. Initially, we offer a concise overview of the reaction pathways involved in electrochemical CO2 reduction. Subsequently, we summarize the progress in various types of electrolysis cells and associated influencing factors. Specifically, the electronic structure modulation strategies of Bi-based catalysts including oxide-derived bismuth, bismuth-based chalcogenides, bimetallic and high-entropy compounds, etc. have been highlighted. Future research endeavors are poised to delve deeper into comprehending system dynamics during the reaction process to achieve exemplary stability high energy efficiency under industrial conditions.

大气中温室气体排放量的不断增加引发了一系列生态和环境问题。二氧化碳的电化学还原(CO2RR)正在成为有效解决这些问题的可持续解决方案。利用成本效益和生态友好的特性,人们对 Bi 基催化剂进行了广泛研究,以提高其活性和稳定性。本微型综述主要概述了用于二氧化碳电催化甲酸/甲酸盐生产的生物基催化剂的研究进展。首先,我们简要概述了电化学二氧化碳还原反应的途径。随后,我们总结了各类电解槽的研究进展及相关影响因素。具体而言,我们重点介绍了铋基催化剂的电子结构调控策略,包括氧化物衍生铋、铋基卤化物、双金属和高熵化合物等。未来的研究工作将深入理解反应过程中的系统动力学,从而在工业条件下实现堪称典范的稳定性和高能效。
{"title":"Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid","authors":"","doi":"10.1016/j.cjsc.2024.100346","DOIUrl":"10.1016/j.cjsc.2024.100346","url":null,"abstract":"<div><p>The escalating emissions of greenhouse gases into atmosphere have precipitated a host of ecology and environmental concerns. Electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) is emerging as a sustainable solution for effectively addressing these issues. Leveraging the cost-effectiveness and eco-friendly attributes, Bi-based catalysts have been extensively studied with the purpose of enhancing activity and stability. This minireview majorly overviews the research advancements in Bi-based catalysts for CO<sub>2</sub> electrocatalysis towards formic acid/formate production. Initially, we offer a concise overview of the reaction pathways involved in electrochemical CO<sub>2</sub> reduction. Subsequently, we summarize the progress in various types of electrolysis cells and associated influencing factors. Specifically, the electronic structure modulation strategies of Bi-based catalysts including oxide-derived bismuth, bismuth-based chalcogenides, bimetallic and high-entropy compounds, etc. have been highlighted. Future research endeavors are poised to delve deeper into comprehending system dynamics during the reaction process to achieve exemplary stability high energy efficiency under industrial conditions.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 8","pages":"Article 100346"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141144507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity [Cs14Cl][Tm71Se110]:一种含有不同价位钛中心和超低热导率的非同寻常的含盐并合氢化物
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-07-27 DOI: 10.1016/j.cjsc.2024.100397
Hong Chen , Mao-Yin Ran , Long-Hua Li , Xin-Tao Wu , Hua Lin

As an emerging class of inorganic hybrid materials, salt-inclusion chalcogenides (SICs) have garnered significant attention in the past decade owing to their distinct host-guest structural characteristics and outstanding performance in the field of optoelectronics. In this study, a novel quaternary SIC [Cs14Cl][Tm71Se110] has been discovered using an appropriate flux method. The structure comprises two distinct parts within the lattice: the host [Tm71Se110]13− framework and the guest [Cs14Cl]13+ polycation. Notably, this structure reveals the presence of mixed-valent Tm2+/Tm3+ and different types of closed cavities for the first time. Additionally, thermal transport performance testing shows that it has ultralow thermal conductivity, ranging from 0.29 to 0.24 W/m⋅K within the temperature range of 323–673 K, which is one of the lowest reported values among polycrystalline chalcogenides. This research not only advances the coordination chemistry of rare-earth-based compounds but also reaffirms that SIC semiconductors are promising systems for achieving ultralow thermal conductivity.

作为一类新兴的无机杂化材料,盐包合瑀(SIC)因其独特的主客体结构特征和在光电领域的卓越性能,在过去十年中备受关注。本研究采用适当的通量方法发现了一种新型四元 SIC [Cs14Cl][Tm71Se110]。该结构在晶格内包括两个不同的部分:主[Tm71Se110]13- 框架和客体[Cs14Cl]13+ 多阳离子。值得注意的是,这种结构首次揭示了混合价 Tm2+/Tm3+ 和不同类型封闭空穴的存在。此外,热传导性能测试表明,它具有超低的热导率,在 323-673 K 的温度范围内介于 0.29 至 0.24 W/m⋅K 之间,是所报道的多晶钙钛矿中热导率值最低的化合物之一。这项研究不仅推动了稀土基化合物配位化学的发展,而且再次证实了 SIC 半导体是实现超低导热率的理想系统。
{"title":"[Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity","authors":"Hong Chen ,&nbsp;Mao-Yin Ran ,&nbsp;Long-Hua Li ,&nbsp;Xin-Tao Wu ,&nbsp;Hua Lin","doi":"10.1016/j.cjsc.2024.100397","DOIUrl":"10.1016/j.cjsc.2024.100397","url":null,"abstract":"<div><p>As an emerging class of inorganic hybrid materials, salt-inclusion chalcogenides (SICs) have garnered significant attention in the past decade owing to their distinct host-guest structural characteristics and outstanding performance in the field of optoelectronics. In this study, a novel quaternary SIC [Cs<sub>14</sub>Cl][Tm<sub>71</sub>Se<sub>110</sub>] has been discovered using an appropriate flux method. The structure comprises two distinct parts within the lattice: the host [Tm<sub>71</sub>Se<sub>110</sub>]<sup>13−</sup> framework and the guest [Cs<sub>14</sub>Cl]<sup>13+</sup> polycation. Notably, this structure reveals the presence of mixed-valent Tm<sup>2+</sup>/Tm<sup>3+</sup> and different types of closed cavities for the first time. Additionally, thermal transport performance testing shows that it has ultralow thermal conductivity, ranging from 0.29 to 0.24 W/m⋅K within the temperature range of 323–673 K, which is one of the lowest reported values among polycrystalline chalcogenides. This research not only advances the coordination chemistry of rare-earth-based compounds but also reaffirms that SIC semiconductors are promising systems for achieving ultralow thermal conductivity.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100397"},"PeriodicalIF":5.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement 用于制备原子精确金属纳米团簇的炔基配体:结构富集、性质调节和功能增强
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-07-26 DOI: 10.1016/j.cjsc.2024.100405
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang
Ligand plays a critical role in determining the physicochemical properties and functionalities of metal nanoclusters, as the ligand molecules interact with a significant amount of metal atoms in the core through various binding moieties. Compared with the most commonly employed thiolate molecule, alkynyl ligand represents a new avenue to prepare coinage metal nanoclusters due to its capability of binding to the metal atoms with either σ bonding or π bonding or both. In this review, we first describe the definition of atomically precise metal nanoclusters and the significance of ligand in metal nanoclusters. Then, the impact and unique advantages of employing alkynyl ligand for fabricating coinage metal nanoclusters are discussed, with focus on the enrichment of interfacial binding structure, the regulation of physicochemical properties, and the improvement of functionalities. Some explicit examples are provided, aiming to elucidate the structure-property-functionality relationship at the atomic level. Finally, a conclusion and introspective outlook regarding designing alkynyl ligand for future regulation of the structure/property/functionality of metal nanoclusters is presented.
配体在决定金属纳米团簇的理化性质和功能方面起着至关重要的作用,因为配体分子通过各种结合分子与核心中的大量金属原子相互作用。与最常用的硫醇酯分子相比,炔基配体能够以 σ 键或 π 键或两者结合的方式与金属原子结合,为制备共价金属纳米团簇提供了一条新途径。在这篇综述中,我们首先介绍了原子精确金属纳米团簇的定义以及配体在金属纳米团簇中的意义。然后,讨论了使用炔基配体制造硬币状金属纳米团簇的影响和独特优势,重点是丰富界面结合结构、调节理化性质和改善功能性。还提供了一些明确的例子,旨在阐明原子层面的结构-性能-功能关系。最后,对设计炔基配体用于未来调节金属纳米团簇的结构/性能/功能进行了总结和展望。
{"title":"Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement","authors":"Ziyi Liu ,&nbsp;Xunying Liu ,&nbsp;Lubing Qin ,&nbsp;Haozheng Chen ,&nbsp;Ruikai Li ,&nbsp;Zhenghua Tang","doi":"10.1016/j.cjsc.2024.100405","DOIUrl":"10.1016/j.cjsc.2024.100405","url":null,"abstract":"<div><div>Ligand plays a critical role in determining the physicochemical properties and functionalities of metal nanoclusters, as the ligand molecules interact with a significant amount of metal atoms in the core through various binding moieties. Compared with the most commonly employed thiolate molecule, alkynyl ligand represents a new avenue to prepare coinage metal nanoclusters due to its capability of binding to the metal atoms with either <em>σ</em> bonding or π bonding or both. In this review, we first describe the definition of atomically precise metal nanoclusters and the significance of ligand in metal nanoclusters. Then, the impact and unique advantages of employing alkynyl ligand for fabricating coinage metal nanoclusters are discussed, with focus on the enrichment of interfacial binding structure, the regulation of physicochemical properties, and the improvement of functionalities. Some explicit examples are provided, aiming to elucidate the structure-property-functionality relationship at the atomic level. Finally, a conclusion and introspective outlook regarding designing alkynyl ligand for future regulation of the structure/property/functionality of metal nanoclusters is presented.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 11","pages":"Article 100405"},"PeriodicalIF":5.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141839001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide 一维杂化卤化铅的温度和压力响应型光致发光
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-07-23 DOI: 10.1016/j.cjsc.2024.100395
Huan Hu , Ying Zhang , Shi-Shuang Huang , Zhi-Gang Li , Yungui Liu , Rui Feng , Wei Li

Low-dimensional hybrid lead halides with responsive emissions have attracted considerable attention due to their potential applications in sensing. Herein, a new one-dimensional hybrid lead bromide CyPbBr3 (Cy = cytosine cation) was synthesized to explore its emission evolution in response to temperature and pressure. The compound possesses an edge-sharing 1D double-chain structure and emits warm white light across nearly the entire visible spectrum upon ultraviolet excitation. This emission arises from the self-trapped excitons and its broadband feature is attributed to the strong electron-phonon coupling as revealed by the variable-temperature photoluminescence experiments. Moreover, a 4.5-fold pressure-induced emission enhancement was observed at 2.7 GPa which is caused by the pressure suppressed non-radiative energy loss. Furthermore, in-situ powder X-ray diffraction and Raman experiments reveal the maxima of the emission enhancement is associated with a phase transition at the same pressure. Our work demonstrates that low-dimensional metal halides are a promising class of stimuli-responsive materials which could have potential applications in temperature and pressure sensing.

具有响应发射的低维混合卤化铅因其在传感领域的潜在应用而备受关注。本文合成了一种新的一维杂化溴化铅 CyPbBr3(Cy = 胞嘧啶阳离子),以探索其发射随温度和压力的变化。该化合物具有边缘共享的一维双链结构,在紫外线激发下几乎能在整个可见光谱范围内发出温暖的白光。这种发射源于自俘获激子,其宽带特性归因于变温光致发光实验所揭示的强电子-声子耦合。此外,在 2.7 GPa 压力下还观察到 4.5 倍的压力诱导发射增强,这是由于压力抑制了非辐射能量损失。此外,原位粉末 X 射线衍射和拉曼实验显示,发射增强的最大值与同一压力下的相变有关。我们的工作表明,低维金属卤化物是一类很有前景的刺激响应材料,在温度和压力传感方面具有潜在的应用价值。
{"title":"Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide","authors":"Huan Hu ,&nbsp;Ying Zhang ,&nbsp;Shi-Shuang Huang ,&nbsp;Zhi-Gang Li ,&nbsp;Yungui Liu ,&nbsp;Rui Feng ,&nbsp;Wei Li","doi":"10.1016/j.cjsc.2024.100395","DOIUrl":"10.1016/j.cjsc.2024.100395","url":null,"abstract":"<div><p>Low-dimensional hybrid lead halides with responsive emissions have attracted considerable attention due to their potential applications in sensing. Herein, a new one-dimensional hybrid lead bromide CyPbBr<sub>3</sub> (Cy = cytosine cation) was synthesized to explore its emission evolution in response to temperature and pressure. The compound possesses an edge-sharing 1D double-chain structure and emits warm white light across nearly the entire visible spectrum upon ultraviolet excitation. This emission arises from the self-trapped excitons and its broadband feature is attributed to the strong electron-phonon coupling as revealed by the variable-temperature photoluminescence experiments. Moreover, a 4.5-fold pressure-induced emission enhancement was observed at 2.7 GPa which is caused by the pressure suppressed non-radiative energy loss. Furthermore, <em>in-situ</em> powder X-ray diffraction and Raman experiments reveal the maxima of the emission enhancement is associated with a phase transition at the same pressure. Our work demonstrates that low-dimensional metal halides are a promising class of stimuli-responsive materials which could have potential applications in temperature and pressure sensing.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100395"},"PeriodicalIF":5.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141853717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrostatically driven kinetic inverse CO2/C2H2 separation in LTA-type zeolites LTA 型沸石中的静电驱动动力学逆 CO2/C2H2 分离技术
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-07-23 DOI: 10.1016/j.cjsc.2024.100394
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li

The identical molecular size and similar physical properties of carbon dioxide (CO2) and acetylene (C2H2) make their adsorptive separation extremely challenging to achieve with most adsorbents. Reports on the separation of CO2 and C2H2 mixtures by zeolites are even rarer with the mechanism of adsorptive separation requiring further exploration. In this paper, we report that ion modulation of zeolite 5A promotes the difference in kinetic diffusion of CO2 and C2H2, realizing the inverse separation of zeolite from selective adsorption of C2H2 to selective adsorption of CO2. Creating a compact pore space restricting the orientation of gas molecules enables charge recognition. The positive electrostatic potential at the pore openings was utilized to hinder the diffusion of C2H2 between the cages while ensuring the transfer of CO2, increasing their diffusion differences in pore channels and leading to the CO2/C2H2 kinetic selectivity of 31.97. Grand canonical Monte Carlo (GCMC) simulation demonstrates that the CO2 distribution in K-5A-β is significantly higher than that of C2H2. Dynamic breakthrough experiments verify the excellent performance of material in practical CO2/C2H2 separation, for CO2/C2H2 (50/50 and 1/99, V/V) mixtures can be separated in one step, thus directly generating high purity C2H2 (> 99.95%), which provides a promising thought for the zeolite-based separation of CO2 and C2H2.

二氧化碳(CO2)和乙炔(C2H2)具有相同的分子大小和相似的物理性质,因此使用大多数吸附剂实现吸附分离极具挑战性。关于用沸石分离二氧化碳和 C2H2 混合物的报道更是少之又少,吸附分离的机理也有待进一步探索。本文报告了沸石 5A 的离子调制促进了 CO2 和 C2H2 的动力学扩散差异,实现了沸石从选择性吸附 C2H2 到选择性吸附 CO2 的逆向分离。创建一个限制气体分子取向的紧凑孔隙可实现电荷识别。利用孔隙开口处的正静电势阻碍 C2H2 在笼状结构之间的扩散,同时确保 CO2 的转移,从而增加它们在孔隙通道中的扩散差,使 CO2/C2H2 的动力学选择性达到 31.97。大规范蒙特卡罗(GCMC)模拟表明,K-5A-β 中的 CO2 分布明显高于 C2H2 的分布。动态突破实验验证了该材料在实际 CO2/C2H2 分离中的优异性能,CO2/C2H2(50/50 和 1/99,V/V)混合物可以一步分离,从而直接生成高纯度的 C2H2(99.95%),这为基于沸石的 CO2 和 C2H2 分离提供了一种前景广阔的思路。
{"title":"Electrostatically driven kinetic inverse CO2/C2H2 separation in LTA-type zeolites","authors":"Yongheng Ren ,&nbsp;Yang Chen ,&nbsp;Hongwei Chen ,&nbsp;Lu Zhang ,&nbsp;Jiangfeng Yang ,&nbsp;Qi Shi ,&nbsp;Lin-Bing Sun ,&nbsp;Jinping Li ,&nbsp;Libo Li","doi":"10.1016/j.cjsc.2024.100394","DOIUrl":"10.1016/j.cjsc.2024.100394","url":null,"abstract":"<div><p>The identical molecular size and similar physical properties of carbon dioxide (CO<sub>2</sub>) and acetylene (C<sub>2</sub>H<sub>2</sub>) make their adsorptive separation extremely challenging to achieve with most adsorbents. Reports on the separation of CO<sub>2</sub> and C<sub>2</sub>H<sub>2</sub> mixtures by zeolites are even rarer with the mechanism of adsorptive separation requiring further exploration. In this paper, we report that ion modulation of zeolite 5A promotes the difference in kinetic diffusion of CO<sub>2</sub> and C<sub>2</sub>H<sub>2</sub>, realizing the inverse separation of zeolite from selective adsorption of C<sub>2</sub>H<sub>2</sub> to selective adsorption of CO<sub>2</sub>. Creating a compact pore space restricting the orientation of gas molecules enables charge recognition. The positive electrostatic potential at the pore openings was utilized to hinder the diffusion of C<sub>2</sub>H<sub>2</sub> between the cages while ensuring the transfer of CO<sub>2</sub>, increasing their diffusion differences in pore channels and leading to the CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> kinetic selectivity of 31.97. Grand canonical Monte Carlo (GCMC) simulation demonstrates that the CO<sub>2</sub> distribution in K-5A-<em>β</em> is significantly higher than that of C<sub>2</sub>H<sub>2</sub>. Dynamic breakthrough experiments verify the excellent performance of material in practical CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> separation, for CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> (50/50 and 1/99, V/V) mixtures can be separated in one step, thus directly generating high purity C<sub>2</sub>H<sub>2</sub> (&gt; 99.95%), which provides a promising thought for the zeolite-based separation of CO<sub>2</sub> and C<sub>2</sub>H<sub>2</sub>.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100394"},"PeriodicalIF":5.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission 铱和钌配合物的二元和异质结构微板:制备、表征和热响应发射
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-07-15 DOI: 10.1016/j.cjsc.2024.100393
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao

Thermo-responsive microcrystals exhibiting obvious emission intensity or color changes have great potentials in sensing, information encryption, and microelectronics. We report herein the binary assembly of a blue-emissive iridium complex and a red-emissive ruthenium complex into homogeneously-doped or optically-heterostructured microcrystals with thermo-responsive properties. Depending on the assembly conditions, lateral or longitudinal triblock heterostructures with a microplate shape are obtained, which display distinct emission pattern changes upon heating as a result of the decreased efficiency of energy transfer. In addition, branched heterostructures are prepared by a stepwise assembly. The luminescence polarization of the homogeneously-doped binary crystals and the waveguiding property of the longitudinal triblock heterostructure are further examined. This work evidences the versatility of transition metal complexes in the assembly into various luminescent nano/micro structures with potential applications in thermo-sensing and nanophotonics.

具有明显发射强度或颜色变化的热响应微晶在传感、信息加密和微电子领域具有巨大潜力。我们在此报告了将蓝色发射铱复合物和红色发射钌复合物二元组装成具有热响应特性的均匀掺杂或光学异质结构微晶的方法。根据组装条件的不同,可获得具有微板形状的横向或纵向三嵌段异质结构,由于能量传递效率降低,这些异质结构在加热时会显示出明显的发射模式变化。此外,还通过分步组装制备了支化异质结构。此外,还进一步研究了均匀掺杂二元晶体的发光偏振和纵向三嵌段异质结构的波导特性。这项工作证明了过渡金属复合物在组装成各种发光纳米/微结构方面的多功能性,在热感应和纳米光子学方面具有潜在的应用价值。
{"title":"Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission","authors":"Chun-Yun Ding ,&nbsp;Ru-Yuan Zhang ,&nbsp;Yu-Wu Zhong ,&nbsp;Jiannian Yao","doi":"10.1016/j.cjsc.2024.100393","DOIUrl":"10.1016/j.cjsc.2024.100393","url":null,"abstract":"<div><p>Thermo-responsive microcrystals exhibiting obvious emission intensity or color changes have great potentials in sensing, information encryption, and microelectronics. We report herein the binary assembly of a blue-emissive iridium complex and a red-emissive ruthenium complex into homogeneously-doped or optically-heterostructured microcrystals with thermo-responsive properties. Depending on the assembly conditions, lateral or longitudinal triblock heterostructures with a microplate shape are obtained, which display distinct emission pattern changes upon heating as a result of the decreased efficiency of energy transfer. In addition, branched heterostructures are prepared by a stepwise assembly. The luminescence polarization of the homogeneously-doped binary crystals and the waveguiding property of the longitudinal triblock heterostructure are further examined. This work evidences the versatility of transition metal complexes in the assembly into various luminescent nano/micro structures with potential applications in thermo-sensing and nanophotonics.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100393"},"PeriodicalIF":5.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141694127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge 具有高有序纳米结构的纳米材料:定义、影响和未来挑战
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-07-14 DOI: 10.1016/j.cjsc.2024.100392
Ningxiang Wu, Huaping Zhao, Yong Lei
{"title":"Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge","authors":"Ningxiang Wu,&nbsp;Huaping Zhao,&nbsp;Yong Lei","doi":"10.1016/j.cjsc.2024.100392","DOIUrl":"10.1016/j.cjsc.2024.100392","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 11","pages":"Article 100392"},"PeriodicalIF":5.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141706356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving highly-efficient room-temperature phosphorescence with a nylon matrix 利用尼龙基质实现高效室温磷光效应
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-07-09 DOI: 10.1016/j.cjsc.2024.100391
Dian-Xue Ma , Yu-Wu Zhong
{"title":"Achieving highly-efficient room-temperature phosphorescence with a nylon matrix","authors":"Dian-Xue Ma ,&nbsp;Yu-Wu Zhong","doi":"10.1016/j.cjsc.2024.100391","DOIUrl":"10.1016/j.cjsc.2024.100391","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 9","pages":"Article 100391"},"PeriodicalIF":5.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141707666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies 硫化物全固态电池中的阴极锂离子界面传输:挑战与改进策略
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-07-09 DOI: 10.1016/j.cjsc.2024.100390
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui

Interface is a necessary channel of carrier permeation in sulfide-based all-solid-state lithium battery (ASSLB). Homogeneous and fast lithium-ion (Li+) interfacial transport of cathode is the overriding premise for high capability of ASSLBs. However, the inherent transport heterogeneity of crystalline materials in cathode and the cathode active material (CAM)/sulfide solid electrolyte (SSE) interfacial issues result in high interfacial impedance, decreasing the Li+ transfer kinetics. In this review, we outline the Li+ transport properties of CAMs and SSEs, followed by a discussion of their interfacial electro-chemo-mechanical issues. Commentary is also provided on the solutions to the multiple-scale interfacial Li+ transport failure. Furthermore, the underlying interdependent mechanisms between electrodes are summarized and overviewed. Finally, we suggest future paths to better comprehend and promote the interfacial Li+ transport in ASSLBs. This review provides an in-depth understanding of cathodal interfacial issues and the proposed improvement strategies will provide guidance for further advancement of high-performance ASSLBs.

界面是硫化物全固态锂电池(ASSLB)中载流子渗透的必要通道。正极锂离子(Li+)界面传输的均匀性和快速性是实现高容量全固态锂电池的首要前提。然而,正极中晶体材料固有的传输异质性以及正极活性材料(CAM)/硫化物固体电解质(SSE)的界面问题导致了较高的界面阻抗,从而降低了 Li+ 传输动力学。在本综述中,我们概述了 CAM 和 SSE 的 Li+ 传输特性,随后讨论了它们的界面电化学机械问题。我们还对解决多尺度界面 Li+ 传输故障的方法进行了评论。此外,我们还总结并概述了电极之间相互依存的基本机制。最后,我们提出了更好地理解和促进 ASSLB 中界面 Li+ 传输的未来路径。本综述提供了对阴极界面问题的深入理解,提出的改进策略将为高性能 ASSLB 的进一步发展提供指导。
{"title":"Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies","authors":"Yue Zheng ,&nbsp;Tianpeng Huang ,&nbsp;Pengxian Han ,&nbsp;Jun Ma ,&nbsp;Guanglei Cui","doi":"10.1016/j.cjsc.2024.100390","DOIUrl":"10.1016/j.cjsc.2024.100390","url":null,"abstract":"<div><p>Interface is a necessary channel of carrier permeation in sulfide-based all-solid-state lithium battery (ASSLB). Homogeneous and fast lithium-ion (Li<sup>+</sup>) interfacial transport of cathode is the overriding premise for high capability of ASSLBs. However, the inherent transport heterogeneity of crystalline materials in cathode and the cathode active material (CAM)/sulfide solid electrolyte (SSE) interfacial issues result in high interfacial impedance, decreasing the Li<sup>+</sup> transfer kinetics. In this review, we outline the Li<sup>+</sup> transport properties of CAMs and SSEs, followed by a discussion of their interfacial electro-chemo-mechanical issues. Commentary is also provided on the solutions to the multiple-scale interfacial Li<sup>+</sup> transport failure. Furthermore, the underlying interdependent mechanisms between electrodes are summarized and overviewed. Finally, we suggest future paths to better comprehend and promote the interfacial Li<sup>+</sup> transport in ASSLBs. This review provides an in-depth understanding of cathodal interfacial issues and the proposed improvement strategies will provide guidance for further advancement of high-performance ASSLBs.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100390"},"PeriodicalIF":5.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141705275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
结构化学
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1