Pub Date : 2025-11-01DOI: 10.1016/j.cjsc.2025.100716
Yanping Qiu , Lei Ge
{"title":"Low-coordination Cu3 motif for selective photocatalytic conversion of CO2 to ethanol","authors":"Yanping Qiu , Lei Ge","doi":"10.1016/j.cjsc.2025.100716","DOIUrl":"10.1016/j.cjsc.2025.100716","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 11","pages":"Article 100716"},"PeriodicalIF":10.3,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145658751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01DOI: 10.1016/j.cjsc.2025.100703
Longhao Hu, Lingshan Gong, Wenlong Ye, Hao Chen, Xiao-Li Lai, Yingxiang Ye
Hydrogen-bonded organic frameworks (HOFs) represent an innovative category of crystalline porous materials, formed through the self-assembly of organic building blocks via intermolecular hydrogen bonds, along with supplementary interactions such as π-π stacking and van der Waals forces. The relatively weak nature of hydrogen bonding endows HOFs with remarkable structural flexibility and a wide range of functional potential. Among them, luminescent HOFs (LHOFs) not only preserve the inherent luminescent properties of their organic fluorophore components but also exhibit key features characteristic of HOF materials, including porosity, recyclability, solution processability, and exceptional biocompatibility. This review outlines the design principles of LHOFs and explores their most recent applications, such as in sensing, bioimaging, and white-light emission. Lastly, we discuss current challenges and provide an outlook on future research directions in this field.
{"title":"Luminescent hydrogen-bonded organic frameworks: From design to applications","authors":"Longhao Hu, Lingshan Gong, Wenlong Ye, Hao Chen, Xiao-Li Lai, Yingxiang Ye","doi":"10.1016/j.cjsc.2025.100703","DOIUrl":"10.1016/j.cjsc.2025.100703","url":null,"abstract":"<div><div>Hydrogen-bonded organic frameworks (HOFs) represent an innovative category of crystalline porous materials, formed through the self-assembly of organic building blocks via intermolecular hydrogen bonds, along with supplementary interactions such as π-π stacking and van der Waals forces. The relatively weak nature of hydrogen bonding endows HOFs with remarkable structural flexibility and a wide range of functional potential. Among them, luminescent HOFs (LHOFs) not only preserve the inherent luminescent properties of their organic fluorophore components but also exhibit key features characteristic of HOF materials, including porosity, recyclability, solution processability, and exceptional biocompatibility. This review outlines the design principles of LHOFs and explores their most recent applications, such as in sensing, bioimaging, and white-light emission. Lastly, we discuss current challenges and provide an outlook on future research directions in this field.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 11","pages":"Article 100703"},"PeriodicalIF":10.3,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145658836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01DOI: 10.1016/j.cjsc.2025.100711
Xueyu Man , Guochao Li , Minghui Zhu , Shanhe Li , Gang Xu , Zhenlei Zhang , Hong Liang , Feng Yang
To effectively penetrate the blood-brain barrier (BBB) and integrate magnetic resonance imaging (MRI) diagnosis and multitarget therapy for orthotopic glioma, we proposed to develop a multinuclear gadolinium (Gd) complex based on apoferritin (AFt). To this end, we rationally designed and synthesized a trinuclear Gd(III) complex (Gd3) with strong T1-weighted MRI performance and remarkable cytotoxicity against glioma cells in vitro. Subsequently, we constructed an AFt-Gd3 nanoparticle (NP) delivery system. AFt-Gd3 NPs not only penetrate BBB but also provide significant T1-weighted MRI contrast for orthotopic glioma while effectively inhibiting glioma growth with minimal side effects in vivo. Furthermore, we elucidate the mechanism by which AFt-Gd3 NPs inhibit glioma growth: inducing apoptosis through chemodynamic therapy, blocking glutamine metabolism, and inhibiting energy metabolism.
{"title":"Development of a theranostic tri-nuclear gadolinium(III) complex based on apoferritin for multitarget therapy of orthotopic glioma","authors":"Xueyu Man , Guochao Li , Minghui Zhu , Shanhe Li , Gang Xu , Zhenlei Zhang , Hong Liang , Feng Yang","doi":"10.1016/j.cjsc.2025.100711","DOIUrl":"10.1016/j.cjsc.2025.100711","url":null,"abstract":"<div><div>To effectively penetrate the blood-brain barrier (BBB) and integrate magnetic resonance imaging (MRI) diagnosis and multitarget therapy for orthotopic glioma, we proposed to develop a multinuclear gadolinium (Gd) complex based on apoferritin (AFt). To this end, we rationally designed and synthesized a trinuclear Gd(III) complex (<strong>Gd3</strong>) with strong T<sub>1</sub>-weighted MRI performance and remarkable cytotoxicity against glioma cells <em>in vitro</em>. Subsequently, we constructed an AFt-<strong>Gd3</strong> nanoparticle (NP) delivery system. AFt-<strong>Gd3</strong> NPs not only penetrate BBB but also provide significant T<sub>1</sub>-weighted MRI contrast for orthotopic glioma while effectively inhibiting glioma growth with minimal side effects <em>in vivo</em>. Furthermore, we elucidate the mechanism by which AFt-<strong>Gd3</strong> NPs inhibit glioma growth: inducing apoptosis through chemodynamic therapy, blocking glutamine metabolism, and inhibiting energy metabolism.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 11","pages":"Article 100711"},"PeriodicalIF":10.3,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145658843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1016/j.cjsc.2025.100733
Tianyang Dong , Xingyuan Wen , Xingzhi Wu , Ying Jiang , Chong Wang , Ruizhi Liu , Junyi Li , Wenfa Zhou , Yinglin Song , Xiaofeng Shi , Rui Wen , Chunru Wang , Li Jiang , Chunli Bai
In this paper, the third-order nonlinear optical (NLO) properties of covalent organic framework (COF) materials with conjugated amphoteric ion structure are studied for the first time. A highly ordered crystalline ultrathin films of the ionic COF material PySQ-iCOF was successfully fabricated using a solid-liquid interface method, meanwhile the building units extracted to be independent small molecule, 1-PySA, were synthesized for comparative studies. Compared to 1-PySA, PySQ-iCOF possesses not only a larger conjugated system but also exhibits enhanced polarization and charge transfer capabilities. The NLO properties of PySQ-iCOF and the small molecule 1-PySA were investigated using Z-scan technique at a wavelength of 532 nm, revealing the PySQ-iCOF thin film exhibits outstanding NLO performance. Specifically, it demonstrates saturable absorption under nanosecond (ns) pulse laser irradiation (β = −9.59 × 10−6 m/W), while exhibiting reverse saturable absorption under femtosecond (fs) pulse conditions (β = 6.91 × 10−8 m/W). Furthermore, the PySQ-iCOF film exhibits strong negative refractive nonlinearity, −6 × 10−12 m2/W for ns and −3.8 × 10−13 m2/W for fs, respectively. Transient absorption spectroscopy studies indicate that the pulse-width-dependent nonlinear absorption characteristics of the PySQ-iCOF film originate from the generation of triplet excited states. Both nonlinear absorption coefficient and nonlinear refractive index of the PySQ-iCOF film surpass those of most reported organic materials measured under comparable conditions, which provides huge potential in all-optical manipulating and switching at the nanoscale as outstanding NLO materials.
{"title":"Ionic covalent organic frameworks enable laser-pulse-duration-dependent high third-order nonlinear optical responses","authors":"Tianyang Dong , Xingyuan Wen , Xingzhi Wu , Ying Jiang , Chong Wang , Ruizhi Liu , Junyi Li , Wenfa Zhou , Yinglin Song , Xiaofeng Shi , Rui Wen , Chunru Wang , Li Jiang , Chunli Bai","doi":"10.1016/j.cjsc.2025.100733","DOIUrl":"10.1016/j.cjsc.2025.100733","url":null,"abstract":"<div><div>In this paper, the third-order nonlinear optical (NLO) properties of covalent organic framework (COF) materials with conjugated amphoteric ion structure are studied for the first time. A highly ordered crystalline ultrathin films of the ionic COF material PySQ-iCOF was successfully fabricated using a solid-liquid interface method, meanwhile the building units extracted to be independent small molecule, 1-PySA, were synthesized for comparative studies. Compared to 1-PySA, PySQ-iCOF possesses not only a larger conjugated system but also exhibits enhanced polarization and charge transfer capabilities. The NLO properties of PySQ-iCOF and the small molecule 1-PySA were investigated using Z-scan technique at a wavelength of 532 nm, revealing the PySQ-iCOF thin film exhibits outstanding NLO performance. Specifically, it demonstrates saturable absorption under nanosecond (ns) pulse laser irradiation (<em>β</em> = −9.59 × 10<sup>−6</sup> m/W), while exhibiting reverse saturable absorption under femtosecond (fs) pulse conditions (<em>β</em> = 6.91 × 10<sup>−8</sup> m/W). Furthermore, the PySQ-iCOF film exhibits strong negative refractive nonlinearity, −6 × 10<sup>−12</sup> m<sup>2</sup>/W for ns and −3.8 × 10<sup>−13</sup> m<sup>2</sup>/W for fs, respectively. Transient absorption spectroscopy studies indicate that the pulse-width-dependent nonlinear absorption characteristics of the PySQ-iCOF film originate from the generation of triplet excited states. Both nonlinear absorption coefficient and nonlinear refractive index of the PySQ-iCOF film surpass those of most reported organic materials measured under comparable conditions, which provides huge potential in all-optical manipulating and switching at the nanoscale as outstanding NLO materials.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 10","pages":"Article 100733"},"PeriodicalIF":10.3,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145398056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1016/j.cjsc.2025.100728
Huarui Han , Yangrui Xu , Yu Cheng , Liguang Tang , Jie Jin , Xinlin Liu , Changchang Ma , Ziyang Lu
Photocatalytic CO2 reduction is a promising route toward carbon neutrality, yet its practical application is hindered by the high activation energy barrier of CO2, rapid recombination of photo-generated electrons, and poor product selectivity of traditional catalysts. Frustrated Lewis pairs (FLPs), which feature spatially separated Lewis acid and base sites, have recently emerged as a novel strategy to overcome these limitations. This review systematically examines the progress in FLPs-based photocatalytic systems. We focus on the construction strategies for FLPs active sites, the optimization of charge carrier dynamics, and the synergistic electron transfer mechanisms with photoactive components. Central theme is the elucidation of microscopic mechanisms governing CO2 activation, key intermediate conversion, and the efficient utilization of photogenerated electrons. By synthesizing current knowledge and outlining future prospects, this review aims to provide a theoretical framework that guides the rational design of highly active and selective catalysts for solar-driven CO2 reduction.
{"title":"Frustrated Lewis pairs in CO2 photoreduction: A review on synergistic activation and charge separation","authors":"Huarui Han , Yangrui Xu , Yu Cheng , Liguang Tang , Jie Jin , Xinlin Liu , Changchang Ma , Ziyang Lu","doi":"10.1016/j.cjsc.2025.100728","DOIUrl":"10.1016/j.cjsc.2025.100728","url":null,"abstract":"<div><div>Photocatalytic CO<sub>2</sub> reduction is a promising route toward carbon neutrality, yet its practical application is hindered by the high activation energy barrier of CO<sub>2</sub>, rapid recombination of photo-generated electrons, and poor product selectivity of traditional catalysts. Frustrated Lewis pairs (FLPs), which feature spatially separated Lewis acid and base sites, have recently emerged as a novel strategy to overcome these limitations. This review systematically examines the progress in FLPs-based photocatalytic systems. We focus on the construction strategies for FLPs active sites, the optimization of charge carrier dynamics, and the synergistic electron transfer mechanisms with photoactive components. Central theme is the elucidation of microscopic mechanisms governing CO<sub>2</sub> activation, key intermediate conversion, and the efficient utilization of photogenerated electrons. By synthesizing current knowledge and outlining future prospects, this review aims to provide a theoretical framework that guides the rational design of highly active and selective catalysts for solar-driven CO<sub>2</sub> reduction.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 10","pages":"Article 100728"},"PeriodicalIF":10.3,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145398060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1016/j.cjsc.2025.100714
Yi-Chang Yang , Rui-Xi Wang , Li-Ming Wu , Ling Chen
The donor-acceptor hydrogen bonding strategy has been proposed to enforce coplanar packing of anisotropic π-conjugated units, thereby maximizing the material's achievable birefringence. Herein, employing this strategy, we successfully obtain two highly coplanar birefringent crystals, FAHC2O4 and FAH2C3N3S3 (FA+: CH5N2+, formamidinium). FAHC2O4 shows a wide bandgap (4.20 eV), while FAH2C3N3S3 exhibits a narrower bandgap (2.96 eV) due to the involvement of sulfur atom. Both crystals display notable birefringence in their respective material classes: 0.275@546 nm and 0.504@546 nm, respectively. X-ray crystallography and computational studies attribute the pronounced birefringence to their π-conjugated moieties and their near-coplanar configurations. Comparative analysis of FAHC2O4 and FAH2C3N3S3 further establishes that the hydrogen bond strength directly influences the molecular coplanarity degree. These findings provide new insights for applying the donor-acceptor hydrogen bonding strategy in the rational design of high-performance birefringent materials.
{"title":"Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals","authors":"Yi-Chang Yang , Rui-Xi Wang , Li-Ming Wu , Ling Chen","doi":"10.1016/j.cjsc.2025.100714","DOIUrl":"10.1016/j.cjsc.2025.100714","url":null,"abstract":"<div><div>The donor-acceptor hydrogen bonding strategy has been proposed to enforce coplanar packing of anisotropic π-conjugated units, thereby maximizing the material's achievable birefringence. Herein, employing this strategy, we successfully obtain two highly coplanar birefringent crystals, FAHC<sub>2</sub>O<sub>4</sub> and FAH<sub>2</sub>C<sub>3</sub>N<sub>3</sub>S<sub>3</sub> (FA<sup>+</sup>: CH<sub>5</sub>N<sub>2</sub><sup>+</sup>, formamidinium). FAHC<sub>2</sub>O<sub>4</sub> shows a wide bandgap (4.20 eV), while FAH<sub>2</sub>C<sub>3</sub>N<sub>3</sub>S<sub>3</sub> exhibits a narrower bandgap (2.96 eV) due to the involvement of sulfur atom. Both crystals display notable birefringence in their respective material classes: 0.275@546 nm and 0.504@546 nm, respectively. X-ray crystallography and computational studies attribute the pronounced birefringence to their π-conjugated moieties and their near-coplanar configurations. Comparative analysis of FAHC<sub>2</sub>O<sub>4</sub> and FAH<sub>2</sub>C<sub>3</sub>N<sub>3</sub>S<sub>3</sub> further establishes that the hydrogen bond strength directly influences the molecular coplanarity degree. These findings provide new insights for applying the donor-acceptor hydrogen bonding strategy in the rational design of high-performance birefringent materials.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 10","pages":"Article 100714"},"PeriodicalIF":10.3,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145398089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1016/j.cjsc.2025.100702
Yan-Jia Lin, Qing-Xin Zeng, Xiao-Min Shen, Shou-Tian Zheng, Xin-Xiong Li
Crystalline metal cluster-based organic-inorganic hybrid materials have emerged as a significant frontier in materials chemistry due to their unique structural designability and tunable properties. The bifunctional ligand 2-(hydroxymethyl)-2-(4-pyridyl)-1,3-propanediol (H3L), featuring both hard hydroxyl donors on one side and a soft pyridyl group on the other side, enables selective metal coordination via hard-soft acid-base (HSAB) theory and directs hierarchical metal cluster assembly. This review systematically summarizes the recent advances on metal cluster-based materials coordinated by H3L, including their syntheses, crystal structures, and related physicochemical properties.
{"title":"Construction of metal cluster-based materials directed by a bifunctional pyridyl tripodal alcohol ligand according to hard and soft acid-base theory","authors":"Yan-Jia Lin, Qing-Xin Zeng, Xiao-Min Shen, Shou-Tian Zheng, Xin-Xiong Li","doi":"10.1016/j.cjsc.2025.100702","DOIUrl":"10.1016/j.cjsc.2025.100702","url":null,"abstract":"<div><div>Crystalline metal cluster-based organic-inorganic hybrid materials have emerged as a significant frontier in materials chemistry due to their unique structural designability and tunable properties. The bifunctional ligand 2-(hydroxymethyl)-2-(4-pyridyl)-1,3-propanediol (H<sub>3</sub>L), featuring both hard hydroxyl donors on one side and a soft pyridyl group on the other side, enables selective metal coordination via hard-soft acid-base (HSAB) theory and directs hierarchical metal cluster assembly. This review systematically summarizes the recent advances on metal cluster-based materials coordinated by H<sub>3</sub>L, including their syntheses, crystal structures, and related physicochemical properties.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 10","pages":"Article 100702"},"PeriodicalIF":10.3,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145398058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1016/j.cjsc.2025.100695
Ziqi Chen , Miriding Mutailipu
Birefringent materials play a crucial role in light polarization, with important applications in fiber-optic communications. However, developing such materials for the solar-blind region and shorter wavelengths remains challenging due to the inherent trade-off between birefringence and bandgap. In this work, we introduce a strategic assembly of cyanuric rings with biuret units—the latter identified for the first time as a birefringence-active motif—resulting in two new compounds: [H5C2N3O2][H3C3N3O3] (1) and [H5C2N3O2][H3C3N3O3]·xH2O (x ≈ 0.43) (2). Through hydrogen bonding-driven structural optimization, compound 2 achieves a 50% increase in birefringence (Δn = 0.403 @ 546 nm) compared to 1, while retaining a short cutoff edge of 208 nm. This advancement demonstrates that hydrogen-bond-guided structural design, combined with novel functional units, can overcome the traditional birefringence-bandgap conflict, opening new possibilities for short-wavelength birefringent materials with strong optical anisotropy.
{"title":"Achieving the birefringence-bandgap trade-off: Hydrogen-bond engineered biuret-cyanurate","authors":"Ziqi Chen , Miriding Mutailipu","doi":"10.1016/j.cjsc.2025.100695","DOIUrl":"10.1016/j.cjsc.2025.100695","url":null,"abstract":"<div><div>Birefringent materials play a crucial role in light polarization, with important applications in fiber-optic communications. However, developing such materials for the solar-blind region and shorter wavelengths remains challenging due to the inherent trade-off between birefringence and bandgap. In this work, we introduce a strategic assembly of cyanuric rings with biuret units—the latter identified for the first time as a birefringence-active motif—resulting in two new compounds: [H<sub>5</sub>C<sub>2</sub>N<sub>3</sub>O<sub>2</sub>][H<sub>3</sub>C<sub>3</sub>N<sub>3</sub>O<sub>3</sub>] (<strong>1</strong>) and [H<sub>5</sub>C<sub>2</sub>N<sub>3</sub>O<sub>2</sub>][H<sub>3</sub>C<sub>3</sub>N<sub>3</sub>O<sub>3</sub>]·<em>x</em>H<sub>2</sub>O (<em>x</em> ≈ 0.43) (<strong>2</strong>). Through hydrogen bonding-driven structural optimization, compound <strong>2</strong> achieves a 50% increase in birefringence (Δ<em>n</em> = 0.403 @ 546 nm) compared to <strong>1</strong>, while retaining a short cutoff edge of 208 nm. This advancement demonstrates that hydrogen-bond-guided structural design, combined with novel functional units, can overcome the traditional birefringence-bandgap conflict, opening new possibilities for short-wavelength birefringent materials with strong optical anisotropy.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 10","pages":"Article 100695"},"PeriodicalIF":10.3,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145398093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1016/j.cjsc.2025.100735
Ying Xu , Yan Pu , Qiong Zhang, Xi Kang, Manzhou Zhu
It remains highly challenging to achieve the high-order nonlinear optical (NLO) properties of atomically precise metal nanoclusters via template-maintained manipulation. Here, based on the M1Ag24(SR)18 (M = Ag/Au/Pt/Pd; SR = 2,4-dimethylthiophenol) cluster template, we demonstrated that the innermost kernel alloying rendered these nanoclusters highly controllable towards the nonlinear optics. The Pd-alloyed Pd1Ag24(SR)18 only displayed single-photon-excited fluorescence, while the homo-silver Ag25(SR)18 nanocluster generated the two-photon-excited fluorescence characterization. The Au- and Pt-doped M1Ag24(SR)18 nanoclusters showed high-order three- and four-photon-excited fluorescence, respectively, demonstrating that the order-by-order control over the nonlinear optics of nanoclusters has been accomplished. Moreover, Pt1Ag24(SR)18 with high-order NLO characterization exhibited the best optical limiting performance under 1000 nm excitation, in agreement with its most prominent NLO property. Overall, this work presents an intriguing cluster template that enables successive order control over the nonlinear optics of atomically precise metal nanoclusters, hopefully paving the way for developing cluster-based nanomaterials with customized optical characterizations.
通过模板维持操作来实现原子精密金属纳米团簇的高阶非线性光学(NLO)特性仍然是一个极具挑战性的问题。基于M1Ag24(SR)18 (M = Ag/Au/Pt/Pd; SR = 2,4-二甲基噻吩)簇模板,我们证明了最内层的核合金使这些纳米簇具有高度的非线性光学可控性。钯合金的Pd1Ag24(SR)18纳米团簇仅显示单光子激发荧光,而均银的Ag25(SR)18纳米团簇产生双光子激发荧光表征。Au和pt掺杂的M1Ag24(SR)18纳米团簇分别表现出高阶的三光子和四光子激发荧光,表明对纳米团簇非线性光学的有序控制已经完成。此外,具有高阶NLO表征的Pt1Ag24(SR)18在1000 nm激发下表现出最佳的光限制性能,这与其最突出的NLO特性相一致。总的来说,这项工作提出了一个有趣的簇模板,可以对原子精确金属纳米簇的非线性光学进行连续顺序控制,有望为开发具有定制光学特性的簇基纳米材料铺平道路。
{"title":"Order-by-order control over the nonlinear optical properties of atomically precise nanoclusters","authors":"Ying Xu , Yan Pu , Qiong Zhang, Xi Kang, Manzhou Zhu","doi":"10.1016/j.cjsc.2025.100735","DOIUrl":"10.1016/j.cjsc.2025.100735","url":null,"abstract":"<div><div>It remains highly challenging to achieve the high-order nonlinear optical (NLO) properties of atomically precise metal nanoclusters via template-maintained manipulation. Here, based on the M<sub>1</sub>Ag<sub>24</sub>(SR)<sub>18</sub> (M = Ag/Au/Pt/Pd; SR = 2,4-dimethylthiophenol) cluster template, we demonstrated that the innermost kernel alloying rendered these nanoclusters highly controllable towards the nonlinear optics. The Pd-alloyed Pd<sub>1</sub>Ag<sub>24</sub>(SR)<sub>18</sub> only displayed single-photon-excited fluorescence, while the homo-silver Ag<sub>25</sub>(SR)<sub>18</sub> nanocluster generated the two-photon-excited fluorescence characterization. The Au- and Pt-doped M<sub>1</sub>Ag<sub>24</sub>(SR)<sub>18</sub> nanoclusters showed high-order three- and four-photon-excited fluorescence, respectively, demonstrating that the order-by-order control over the nonlinear optics of nanoclusters has been accomplished. Moreover, Pt<sub>1</sub>Ag<sub>24</sub>(SR)<sub>18</sub> with high-order NLO characterization exhibited the best optical limiting performance under 1000 nm excitation, in agreement with its most prominent NLO property. Overall, this work presents an intriguing cluster template that enables successive order control over the nonlinear optics of atomically precise metal nanoclusters, hopefully paving the way for developing cluster-based nanomaterials with customized optical characterizations.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 10","pages":"Article 100735"},"PeriodicalIF":10.3,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145398057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}