Photoluminescence (PL) has been increasingly applied in anticounterfeiting and encryption as counterfeiting becomes more prevalent. However, common luminescent encryption techniques are based on static PL measurements and are easy to counterfeit. In this work, we have developed a thermal vapor deposition (TVD) approach using melem as the unique starting material to synthesize highly homogeneous carbon nitride (CN) thin films featuring unique dynamic PL switching properties. After being irradiated by a white LED, the blue PL intensity of the CN film increases significantly and then fades in darkness, demonstrating excellent recyclability. Experimental results prove that CN films contain cyano groups in the structure, and density functional theory (DFT) calculations indicate that the integration of cyano groups results in traps within the bandgap of CN, suggesting that the dynamic PL switching effect is essentially associated with the fullness of the trap states. We have therefore developed an advanced luminescent device for the secure transmission of encrypted information through controlled illumination. It can be easily read with a portable UV (365 nm) lamp and effectively erased using the white LED, thereby preventing information leakage and showing great potential for many applications.
Photocatalytic CO2 hydrogenation reactions can produce high-value-added chemicals for industry, solving the environmental problems caused by excessive CO2 emissions. Iron oxides are commonly used in photocatalytic reactions due to their various structures and suitable band gaps. Nevertheless, the structural evolution and real active components during photocatalytic CO2 hydrogenation reaction are rarely studied. Herein, a variety of iron oxides including α-Fe2O3, γ-Fe2O3, Fe3O4 and FeO were derived from Prussian blue precursors to investigate the CO2 hydrogenation performance, structural evolution and active components. Especially, the typical α- and γ-Fe2O3 are converted to Fe3O4 during the reaction, while Fe/FexOy remains structurally stable. Meanwhile, it is confirmed that Fe3O4 is the main active component for CO production and the formation of hydrocarbons (CH4 and C2–C4) are highly dependent on the Fe/FexOy heterojunctions. The optimal yields of CO, CH4 and C2–C4 hydrocarbons over the best catalyst (FeFe-550) can achieve 4 mmol g−1 h−1, 350 μmol g−1 h−1 and 150 μmol g−1 h−1, respectively due to their suitable metal/oxide component distribution. This work examines the structural evolution of different iron oxide catalysts in the photocatalytic CO2 hydrogenation reaction, identifies the active components as well as reveals the relationship between components and the products, and offers valuable insights into the efficient utilization of CO2.
The construction of double active sites for pollutant adsorption and peroxymonosulfate (PMS) activation on the surface of catalyst is conducive to further enhancing the pollutant-removing effect. Herein, a N,O co-doped carbon-encapsulated tricobalt tetraoxide (Co3O4@N,O–C) with double active sites is prepared by a one-step laser carbonization method. The optimized Co3O4@N,O–C shows excellent tetracycline (TC) removal ability, in which the k value reaches 0.608 min−1. On the surface of Co3O4@N,O–C, TC is adsorbed to the N site, and PMS is activated at the O site. Building double active sites on the catalyst surface not only avoids competition for the active site, but also confines the pollutant molecules to the surface of the catalyst, thus shortening the migration distance between reactive oxygen species (ROS) and the pollutant and boosting the removal efficiency of pollutants. In addition, the Co3O4@N,O–C/PMS system exhibits both good resistance to environmental interference and cyclic stability. Finally, a practical continuous flow reactor based on Co3O4@N,O–C catalyst is built, which shows a stable and efficient TC degradation performance.
Given the diversity and complexity of coexisting oil/dyes/heavy metal ions/microorganisms in wastewater and volatile organic compounds (VOCs) in the air, developing separation materials featured in higher separation efficiency and lower energy consumption for oil and water separation, pollutant removal, and anti-fouling is urgently needed, but it remains a major challenge till now. Herein, a multifunctional Ti3C2 MXene membrane with unique double pillar support was proposed by liquid phase ultrasonication and vacuum filtration to overcome the above challenge. Introducing cetyl-trimethyl ammonium bromide (CTAB) and calcium chloride/sodium alginate (CaCl2/SA) to the MXene membrane as crossed double pillars and superhydrophilic surface increases the tolerance and wettability of the membrane. The fabricated doubly pillared MXene (d-Ti3C2) membrane exhibits superior oil/water (O/W) separation efficiency (99.76%) with flux (1.284 L m−2 h−1) for canola oil and organic dye removing efficiency for methyl blue (MB) 99.85%, malachite green (MG) 100%, and methyl violet (MV) 99.72%, respectively, which is 1.05, 1.44, 1.22, and 1.28 fold compared with pre-pillared Ti3C2 (p-Ti3C2). The superior anti-oil/dye/fouling is attributed to lower oil conglutination, high hydrophily, and antibacterial activity. The versatile MXene membrane also shows distinguished separation of VOCs (η > 99%) from polluted air. The experimental and molecular dynamics (MD) computational simulation results illustrate that the superior separation efficiency of the Ti3C2 MXene membrane is ascribed to the unique doubly pillared space channel. This study paves a new road to further research on one step integration strategy for complex O/W separation, wastewater and VOCs removal, and anti-fouling via tuning nano/macro architecture.