Jorvani Cruz Villarreal, Emil Ljungberg, Nilojan Jehanathan, Milap Owens, Anika Li and Chad R. Borges
Biological products and specimens often require consistent ultracold storage to preserve their integrity. Existing time–temperature indicators (TTIs) are inadequate for monitoring ultracold conditions at the individual aliquot level. We adapted the autocatalytic permanganate–oxalate reaction to create visual TTIs functional below 0 °C. Using eutectic compositions of LiClO4, NaClO4, and Mg(ClO4)2, we depressed the melting points of the reaction mixtures to −18 °C, −37 °C, and −67 °C, respectively. The incorporation of perchlorate salts as antifreeze systems did not derail the kinetic behavior of the permanganate–oxalate reaction and allowed the reactions to pause below their melting points. Here, we developed and characterized eight customized TTIs, running from five minutes at 25 °C to 7 days at −20 °C. Temperature sensitivity was consistent with Arrhenius behavior (i.e., exponential increases in run time with linear decreases in temperature). The TTIs exhibited good accuracy and reproducibility, with within-batch and between-batch run-time precision at the targeted temperatures of ≤4.8% CV and ≤7.5% CV, respectively. The average absorbance vs. time trajectories, expressed as RMSD %CVs, were 4.5% for intra-batch and 10.4% for inter-batch runs. Indicators withstood multiple freeze/thaw cycles or extended pre-freezing periods with minimal impact on reaction kinetics. Once activated and stored below their melting points, TTIs maintained color intensity for at least 12 months. This work establishes the permanganate–oxalate system in eutectic perchlorate-based antifreeze solutions as a simple, inexpensive approach for ultracold-active TTIs, offering customizable kinetics and robust performance. The described TTIs can serve to improve quality monitoring of biologicals and biospecimens during ultracold storage and handling.
{"title":"Kinetically tunable, subzero-active, visual time–temperature indicators based on the permanganate–oxalate reaction†","authors":"Jorvani Cruz Villarreal, Emil Ljungberg, Nilojan Jehanathan, Milap Owens, Anika Li and Chad R. Borges","doi":"10.1039/D5RE00192G","DOIUrl":"https://doi.org/10.1039/D5RE00192G","url":null,"abstract":"<p >Biological products and specimens often require consistent ultracold storage to preserve their integrity. Existing time–temperature indicators (TTIs) are inadequate for monitoring ultracold conditions at the individual aliquot level. We adapted the autocatalytic permanganate–oxalate reaction to create visual TTIs functional below 0 °C. Using eutectic compositions of LiClO<small><sub>4</sub></small>, NaClO<small><sub>4</sub></small>, and Mg(ClO<small><sub>4</sub></small>)<small><sub>2</sub></small>, we depressed the melting points of the reaction mixtures to −18 °C, −37 °C, and −67 °C, respectively. The incorporation of perchlorate salts as antifreeze systems did not derail the kinetic behavior of the permanganate–oxalate reaction and allowed the reactions to pause below their melting points. Here, we developed and characterized eight customized TTIs, running from five minutes at 25 °C to 7 days at −20 °C. Temperature sensitivity was consistent with Arrhenius behavior (<em>i.e.</em>, exponential increases in run time with linear decreases in temperature). The TTIs exhibited good accuracy and reproducibility, with within-batch and between-batch run-time precision at the targeted temperatures of ≤4.8% CV and ≤7.5% CV, respectively. The average absorbance <em>vs.</em> time trajectories, expressed as RMSD %CVs, were 4.5% for intra-batch and 10.4% for inter-batch runs. Indicators withstood multiple freeze/thaw cycles or extended pre-freezing periods with minimal impact on reaction kinetics. Once activated and stored below their melting points, TTIs maintained color intensity for at least 12 months. This work establishes the permanganate–oxalate system in eutectic perchlorate-based antifreeze solutions as a simple, inexpensive approach for ultracold-active TTIs, offering customizable kinetics and robust performance. The described TTIs can serve to improve quality monitoring of biologicals and biospecimens during ultracold storage and handling.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 8","pages":" 1741-1757"},"PeriodicalIF":3.4,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144680940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neng mei Deng, Yang Liu, Lu lu Tang, Xu cheng Fu and Jun Zhao
Research has demonstrated that heterometallic–organic frameworks (HMOFs) and their derivatives showcase exceptional application potential across various domains, including gas adsorption, energy storage, and environmental purification, often outperforming their monometallic MOF counterparts. The GSF synthesis protocol detailed in this paper introduces a pioneering mechanochemical approach for the production of manganese-based HMOFs. This technique facilitates the continuous fabrication of HMOFs in the absence of solvents, thereby cutting down on the production costs of MOFs and mitigating the issue of organic solvent pollution. This study provides experimental evidence and theoretical support for the standardization and large-scale application of the GSF method, while also holding significant scientific and practical value for advancing the innovative development of green chemical synthesis technologies.
{"title":"Gas–solid two-phase flow low-temperature solid-phase method: a novel approach to mechanically synthesize heterometallic–organic frameworks","authors":"Neng mei Deng, Yang Liu, Lu lu Tang, Xu cheng Fu and Jun Zhao","doi":"10.1039/D5RE00177C","DOIUrl":"https://doi.org/10.1039/D5RE00177C","url":null,"abstract":"<p >Research has demonstrated that heterometallic–organic frameworks (HMOFs) and their derivatives showcase exceptional application potential across various domains, including gas adsorption, energy storage, and environmental purification, often outperforming their monometallic MOF counterparts. The GSF synthesis protocol detailed in this paper introduces a pioneering mechanochemical approach for the production of manganese-based HMOFs. This technique facilitates the continuous fabrication of HMOFs in the absence of solvents, thereby cutting down on the production costs of MOFs and mitigating the issue of organic solvent pollution. This study provides experimental evidence and theoretical support for the standardization and large-scale application of the GSF method, while also holding significant scientific and practical value for advancing the innovative development of green chemical synthesis technologies.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 2170-2177"},"PeriodicalIF":3.1,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Yu, Robert X. Gottlieb, Jeffrey R. Page, Julia A. Valla and Matthew D. Stuber
The hydrodeoxygenation (HDO) of guaiacol, a model compound for lignin-derived pyrolysis oils, was investigated using Ru and Ni catalysts supported on activated carbons derived from both commercial and renewable (food waste) sources. Comprehensive characterization of support properties including porosity, surface area, hydrophobicity, and morphology revealed their significant influence on catalyst performance. Liquid-phase HDO reactions were conducted in both aqueous and organic (decane) environments to evaluate solvent effects on reaction pathways and product distributions. Ru-based catalysts demonstrated superior activity compared to Ni-based catalysts, while supports with higher mesoporosity facilitated better metal dispersion and enhanced catalytic performance. Notably, food waste-derived activated carbon supports performed comparably or better than commercial activated carbon when combined with Ru, indicating their potential as sustainable catalyst supports. Mathematical optimization techniques were employed to estimate kinetic parameters and elucidate reaction pathways, revealing notable differences between aqueous and organic media. Specifically, methoxycyclohexanone dominated in organic medium, while cyclohexanol prevailed in aqueous medium. The optimization study identified that cyclohexanol was not an intermediate for cyclohexane production, contrary to conventional understanding. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis provided insights into adsorption phenomena, explaining carbon balance discrepancies observed particularly in aqueous-phase reactions. This integrated experimental and computational approach advances the understanding of guaiacol HDO reaction mechanisms and provides guidance for the rational design of efficient catalysts for bio-oil upgrading.
{"title":"An integrated reaction model of guaiacol hydrodeoxygenation using activated carbon supports: effects of support properties, metals, and solvents†","authors":"Lei Yu, Robert X. Gottlieb, Jeffrey R. Page, Julia A. Valla and Matthew D. Stuber","doi":"10.1039/D5RE00179J","DOIUrl":"https://doi.org/10.1039/D5RE00179J","url":null,"abstract":"<p >The hydrodeoxygenation (HDO) of guaiacol, a model compound for lignin-derived pyrolysis oils, was investigated using Ru and Ni catalysts supported on activated carbons derived from both commercial and renewable (food waste) sources. Comprehensive characterization of support properties including porosity, surface area, hydrophobicity, and morphology revealed their significant influence on catalyst performance. Liquid-phase HDO reactions were conducted in both aqueous and organic (decane) environments to evaluate solvent effects on reaction pathways and product distributions. Ru-based catalysts demonstrated superior activity compared to Ni-based catalysts, while supports with higher mesoporosity facilitated better metal dispersion and enhanced catalytic performance. Notably, food waste-derived activated carbon supports performed comparably or better than commercial activated carbon when combined with Ru, indicating their potential as sustainable catalyst supports. Mathematical optimization techniques were employed to estimate kinetic parameters and elucidate reaction pathways, revealing notable differences between aqueous and organic media. Specifically, methoxycyclohexanone dominated in organic medium, while cyclohexanol prevailed in aqueous medium. The optimization study identified that cyclohexanol was not an intermediate for cyclohexane production, contrary to conventional understanding. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis provided insights into adsorption phenomena, explaining carbon balance discrepancies observed particularly in aqueous-phase reactions. This integrated experimental and computational approach advances the understanding of guaiacol HDO reaction mechanisms and provides guidance for the rational design of efficient catalysts for bio-oil upgrading.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 2148-2169"},"PeriodicalIF":3.1,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selenium-based catalysts have emerged as promising tools for industrial application due to their environmentally-friendly features. In the past decade, people have reported a wide variety of selenium-based catalysts, such as organoselenium catalysts, polymer-supported selenium catalysts, carbon-supported selenium catalysts, and metal or non-metal oxide-supported selenium catalysts. These catalysts have been extensively applied in numerous reactions of practical importance. Notably, metal or non-metal oxide-supported inorganic selenium catalysts hold great promise for industrial use owing to the low cost and durability of their supports. This paper aims to comprehensively review the current progress and give a perspective.
{"title":"Metal and non-metal oxide-supported selenium as potential industrial catalysts","authors":"Meng Ge, Tao Ju, Yiyang Zhang and Daming Yong","doi":"10.1039/D5RE00066A","DOIUrl":"https://doi.org/10.1039/D5RE00066A","url":null,"abstract":"<p >Selenium-based catalysts have emerged as promising tools for industrial application due to their environmentally-friendly features. In the past decade, people have reported a wide variety of selenium-based catalysts, such as organoselenium catalysts, polymer-supported selenium catalysts, carbon-supported selenium catalysts, and metal or non-metal oxide-supported selenium catalysts. These catalysts have been extensively applied in numerous reactions of practical importance. Notably, metal or non-metal oxide-supported inorganic selenium catalysts hold great promise for industrial use owing to the low cost and durability of their supports. This paper aims to comprehensively review the current progress and give a perspective.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 8","pages":" 1730-1735"},"PeriodicalIF":3.4,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144680938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sneha Paul, Thangjam Sanjurani, Anjana Gorai and Pranjit Barman
Herein, we have presented the synthesis of a Cu(II) Schiff base metal complex immobilized on a silica-coated NiFe2O4 magnetic nanoparticle (MNP) surface, forming a novel heterogeneous and magnetically retrievable nanocatalyst, NiFe2O4@SiO2@CuSB. Comprehensive characterization through FT-IR, PXRD, SEM, EDS, TEM, SAED, VSM, BET, and XPS confirms the catalyst's structure, surface morphology, elemental composition, and properties. Using a one-pot multicomponent synthesis of naphthopyran derivatives, the catalytic performance of NiFe2O4@SiO2@CuSB was evaluated. This efficient, eco-friendly protocol enables the synthesis of naphthopyran derivatives using a diverse range of aldehydes, malononitrile, and 2-naphthol, exhibiting excellent functional group tolerance. The desired products have been synthesized in high yields without any byproducts. The heterogeneity of the solid nanocatalyst was assessed using a hot filtration test. This innovative catalyst offers a practical way to efficiently produce bioactive compounds, which have applications in medical chemistry.
{"title":"NiFe2O4@SiO2-immobilized copper Schiff base complex as a versatile heterogeneous catalyst for efficient one-pot multicomponent synthesis of bioactive naphthopyran derivatives†","authors":"Sneha Paul, Thangjam Sanjurani, Anjana Gorai and Pranjit Barman","doi":"10.1039/D5RE00146C","DOIUrl":"https://doi.org/10.1039/D5RE00146C","url":null,"abstract":"<p >Herein, we have presented the synthesis of a Cu(<small>II</small>) Schiff base metal complex immobilized on a silica-coated NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> magnetic nanoparticle (MNP) surface, forming a novel heterogeneous and magnetically retrievable nanocatalyst, NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small>@SiO<small><sub>2</sub></small>@CuSB. Comprehensive characterization through FT-IR, PXRD, SEM, EDS, TEM, SAED, VSM, BET, and XPS confirms the catalyst's structure, surface morphology, elemental composition, and properties. Using a one-pot multicomponent synthesis of naphthopyran derivatives, the catalytic performance of NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small>@SiO<small><sub>2</sub></small>@CuSB was evaluated. This efficient, eco-friendly protocol enables the synthesis of naphthopyran derivatives using a diverse range of aldehydes, malononitrile, and 2-naphthol, exhibiting excellent functional group tolerance. The desired products have been synthesized in high yields without any byproducts. The heterogeneity of the solid nanocatalyst was assessed using a hot filtration test. This innovative catalyst offers a practical way to efficiently produce bioactive compounds, which have applications in medical chemistry.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 2121-2136"},"PeriodicalIF":3.1,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work presents a comprehensive study on the catalytic and kinetic aspects of the ketonisation of acetic acid, a model volatile fatty acid, using Ce1−xZrxO2 as catalysts. Volatile fatty acids are promising biomass derived feedstock for production of drop-in sustainable aviation fuels through a series of cascade reactions, with ketonisation as the first step followed by aldol condensation and subsequent hydrogenation. A series of Ce1−xZrxO2 catalysts for ketonisation were prepared using a mechanochemical technique of ball milling, and their performance was evaluated for varying Ce/Zr mole ratios. Among the catalysts tested, Ce0.75Zr0.25O2 exhibited the highest conversion and selectivity towards the desired product, acetone. The catalyst characterisation showed the formation of nano-aggregates with an average particle size of 340.8 nm and a specific surface area of 66.2 m2 g−1. The kinetics of the reaction indicated a second-order dependence on acetic acid, while the products (acetone, water, and CO2) exhibited negative orders, suggesting competitive adsorption on the active sites of the catalyst. The activation energy for the reaction was determined to be 103.4 kJ mol−1 suggesting the surface reaction as the rate controlling step. These findings provide valuable insights into the catalytic behaviour and kinetics of the ketonisation reaction.
{"title":"Efficacy of mechanochemically prepared ceria–zirconia catalysts in ketonisation of acetic acid†","authors":"Krutarth Pandit, Gunjan Deshmukh, Dipti Wagh, Vikram Chatake, Aniruddha Pandit, Supriyo Kumar Mondal, Atul Bari, Nancy Artioli and Haresh Manyar","doi":"10.1039/D4RE00181H","DOIUrl":"https://doi.org/10.1039/D4RE00181H","url":null,"abstract":"<p >This work presents a comprehensive study on the catalytic and kinetic aspects of the ketonisation of acetic acid, a model volatile fatty acid, using Ce<small><sub>1−<em>x</em></sub></small>Zr<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small> as catalysts. Volatile fatty acids are promising biomass derived feedstock for production of drop-in sustainable aviation fuels through a series of cascade reactions, with ketonisation as the first step followed by aldol condensation and subsequent hydrogenation. A series of Ce<small><sub>1−<em>x</em></sub></small>Zr<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small> catalysts for ketonisation were prepared using a mechanochemical technique of ball milling, and their performance was evaluated for varying Ce/Zr mole ratios. Among the catalysts tested, Ce<small><sub>0.75</sub></small>Zr<small><sub>0.25</sub></small>O<small><sub>2</sub></small> exhibited the highest conversion and selectivity towards the desired product, acetone. The catalyst characterisation showed the formation of nano-aggregates with an average particle size of 340.8 nm and a specific surface area of 66.2 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. The kinetics of the reaction indicated a second-order dependence on acetic acid, while the products (acetone, water, and CO<small><sub>2</sub></small>) exhibited negative orders, suggesting competitive adsorption on the active sites of the catalyst. The activation energy for the reaction was determined to be 103.4 kJ mol<small><sup>−1</sup></small> suggesting the surface reaction as the rate controlling step. These findings provide valuable insights into the catalytic behaviour and kinetics of the ketonisation reaction.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 1994-2003"},"PeriodicalIF":3.1,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00181h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiyi Sun, Sen Yang, Chengcheng Cai, Xin Li, Huijing Ma, Yichan Wen, Yan Fang, Hongyu Song, Xufang Qian, Yixin Zhao and Tianfu Wang
The photovoltaic (PV)-driven electrolysis of polyethylene terephthalate (PET) plastic waste represents a sustainable pathway for resource recovery. Current research predominantly focuses on simulated electrolysis systems or integrated energy storage configurations, while practical implementation under real solar irradiation conditions remains insufficiently investigated. Herein, we report a direct PV-driven electrocatalytic strategy, capable of continuously and simultaneously upcycling PET using a NiOOH electrocatalyst. Remarkably, the catalyst exhibits stable operation for over 500 hours at 300 mA cm−2 in the laboratory, and it retains a Faradaic efficiency above 86% within 36 hours under real solar light PV-driven conditions. Through catalyst characterization, we reveal that current fluctuations inherent to solar intermittency induce structural degradation of active catalytic species, highlighting the critical need for enhanced stability optimization. This study provides a pioneering proof-of-concept direct PV-driven electrocatalytic strategy and presents a chemical engineering guideline for scaling PV-powered plastic upcycling technologies.
光伏(PV)驱动的电解聚对苯二甲酸乙二醇酯(PET)塑料废物代表了资源回收的可持续途径。目前的研究主要集中在模拟电解系统或集成储能配置上,而在真实太阳辐射条件下的实际实施仍然没有得到充分的研究。在此,我们报告了一种直接的pv驱动电催化策略,能够使用NiOOH电催化剂连续和同时升级PET。值得注意的是,该催化剂在实验室中在300 mA cm−2下稳定运行超过500小时,在实际太阳能光pv驱动条件下,36小时内保持86%以上的法拉第效率。通过催化剂表征,我们揭示了太阳能间歇性固有的电流波动诱导活性催化物种的结构降解,突出了增强稳定性优化的迫切需要。这项研究提供了一个开创性的概念验证,直接由光伏驱动的电催化策略,并为扩大光伏驱动的塑料升级回收技术提供了一个化学工程指南。
{"title":"Photovoltaic-driven electrocatalytic upcycling for polyethylene terephthalate plastic waste from simulated electrolysis to photovoltaic direct-driven electrolysis†","authors":"Jiyi Sun, Sen Yang, Chengcheng Cai, Xin Li, Huijing Ma, Yichan Wen, Yan Fang, Hongyu Song, Xufang Qian, Yixin Zhao and Tianfu Wang","doi":"10.1039/D5RE00166H","DOIUrl":"https://doi.org/10.1039/D5RE00166H","url":null,"abstract":"<p >The photovoltaic (PV)-driven electrolysis of polyethylene terephthalate (PET) plastic waste represents a sustainable pathway for resource recovery. Current research predominantly focuses on simulated electrolysis systems or integrated energy storage configurations, while practical implementation under real solar irradiation conditions remains insufficiently investigated. Herein, we report a direct PV-driven electrocatalytic strategy, capable of continuously and simultaneously upcycling PET using a NiOOH electrocatalyst. Remarkably, the catalyst exhibits stable operation for over 500 hours at 300 mA cm<small><sup>−2</sup></small> in the laboratory, and it retains a Faradaic efficiency above 86% within 36 hours under real solar light PV-driven conditions. Through catalyst characterization, we reveal that current fluctuations inherent to solar intermittency induce structural degradation of active catalytic species, highlighting the critical need for enhanced stability optimization. This study provides a pioneering proof-of-concept direct PV-driven electrocatalytic strategy and presents a chemical engineering guideline for scaling PV-powered plastic upcycling technologies.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 2114-2120"},"PeriodicalIF":3.1,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The thermal transformations of various thienyl and phenyl derivatives of o-divinylbenzene in acidic media were investigated in an integrated experimental–theoretical study. Several derivatives (9–12) led to cyclization products when heated under acidic conditions, while some (13 and 14) were found to be non-reactive. The reactivity or non-reactivity of the investigated compounds is closely related to the position of the preferred protonation site in the investigated compounds, as shown by DFT calculations. If the preferred position of proton entry into the molecule coincides with the protonation position required for cyclization, the reaction proceeds, otherwise the derivatives are non-reactive. By blocking a preferred protonation position with a suitable substituent in the non-reactive precursors, protonation can be prevented at the undesired site and proton entry can be redirected to the site that allows the reaction to proceed. A detailed insight into the mechanism of the thermal reactions of 9–12 was presented.
{"title":"Protonation pattern as a controlling factor of thermal reactions of aryl o-divinylbenzenes in acidic media: an integrated experimental–theoretical study†","authors":"Vilma Lovrinčević, Monika Znika, Jerome Le-Cunff, Ines Despotović and Dragana Vuk","doi":"10.1039/D5RE00052A","DOIUrl":"https://doi.org/10.1039/D5RE00052A","url":null,"abstract":"<p >The thermal transformations of various thienyl and phenyl derivatives of <em>o</em>-divinylbenzene in acidic media were investigated in an integrated experimental–theoretical study. Several derivatives (<strong>9–12</strong>) led to cyclization products when heated under acidic conditions, while some (<strong>13</strong> and <strong>14</strong>) were found to be non-reactive. The reactivity or non-reactivity of the investigated compounds is closely related to the position of the preferred protonation site in the investigated compounds, as shown by DFT calculations. If the preferred position of proton entry into the molecule coincides with the protonation position required for cyclization, the reaction proceeds, otherwise the derivatives are non-reactive. By blocking a preferred protonation position with a suitable substituent in the non-reactive precursors, protonation can be prevented at the undesired site and proton entry can be redirected to the site that allows the reaction to proceed. A detailed insight into the mechanism of the thermal reactions of <strong>9–12</strong> was presented.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 2080-2090"},"PeriodicalIF":3.1,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d5re00052a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Abranches Dias Castro, Juliana Ribeiro Paes and Sergio Antonio Fernandes
The unbridled exploitation of fossil resources for obtaining energy, chemical inputs, materials and fuels has generated growing environmental concerns, driving the search for more sustainable alternatives. In this context, the use of lignocellulosic biomasses for the production of biorenewable platform molecules, such as furfural (FF) and 5-hydroxymethylfurfural (HMF), has been widely studied. Among the strategies investigated, the use of niobium-based catalysts stands out due to their high catalytic efficiency, versatility, high acidity and stability. Therefore, this work investigated the valorization of corncob biomass through the synthesis of FF and HMF, using for the first time niobium pentachloride as a catalyst in a biphasic system (ethyl acetate and saturated aqueous NaCl solution). Different reaction parameters were investigated and it was found that the best conditions for the conversion of corncob biomass into furans were 12.5% wt niobium pentachloride, 200 °C and 180 min. Under these conditions, FF and HMF were both obtained with yields of 26%, in addition to obtaining levulinic acid (LA) with a yield of 3%. Furthermore, under these conditions, the formation of three more products was also observed: 5-ethoxymethylfurfural (EMF), 5-acetoxymethylfurfural (AMF) and ethyl levulinate (LE), with yields of 12%, 4% and 2%, respectively. In addition, cellulose, inulin and bamboo biomass were also evaluated as substrate.
{"title":"Niobium pentachloride in a biphasic catalytic system for valorization of corn cob biomass†","authors":"Gabriel Abranches Dias Castro, Juliana Ribeiro Paes and Sergio Antonio Fernandes","doi":"10.1039/D5RE00143A","DOIUrl":"https://doi.org/10.1039/D5RE00143A","url":null,"abstract":"<p >The unbridled exploitation of fossil resources for obtaining energy, chemical inputs, materials and fuels has generated growing environmental concerns, driving the search for more sustainable alternatives. In this context, the use of lignocellulosic biomasses for the production of biorenewable platform molecules, such as furfural (FF) and 5-hydroxymethylfurfural (HMF), has been widely studied. Among the strategies investigated, the use of niobium-based catalysts stands out due to their high catalytic efficiency, versatility, high acidity and stability. Therefore, this work investigated the valorization of corncob biomass through the synthesis of FF and HMF, using for the first time niobium pentachloride as a catalyst in a biphasic system (ethyl acetate and saturated aqueous NaCl solution). Different reaction parameters were investigated and it was found that the best conditions for the conversion of corncob biomass into furans were 12.5% wt niobium pentachloride, 200 °C and 180 min. Under these conditions, FF and HMF were both obtained with yields of 26%, in addition to obtaining levulinic acid (LA) with a yield of 3%. Furthermore, under these conditions, the formation of three more products was also observed: 5-ethoxymethylfurfural (EMF), 5-acetoxymethylfurfural (AMF) and ethyl levulinate (LE), with yields of 12%, 4% and 2%, respectively. In addition, cellulose, inulin and bamboo biomass were also evaluated as substrate.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 9","pages":" 2053-2061"},"PeriodicalIF":3.1,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144868501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandra Liz Simon, Nitin Kaistha and Vishal Agarwal
In the last few decades, several novel algorithms have been designed for finding critical points on a potential energy surface (PES) and the minimum energy paths connecting them. This has led to a considerable improvement in our understanding of reaction mechanisms and the kinetics of the underlying processes. These methods implicitly rely on computation of energy and forces on the PES, which are usually obtained via computationally demanding wave-function- or density-function-based ab initio methods. To mitigate the computational cost, efficient optimization algorithms are needed. Herein, we present two new first-order optimization algorithms: the adaptively accelerated relaxation engine (AARE), an enhanced molecular dynamics (MD) scheme, and the accelerated conjugate-gradient (Acc-CG) method, an improved version of the traditional conjugate gradient (CG) algorithm. We show the efficacy of these algorithms for unconstrained optimization on 2-dimensional and 4-dimensional test functions. Additionally, we also show the efficacy of these algorithms for optimizing an elastic band of images to the minimum energy path on 2-dimensional analytical potentials, heptamer island transitions, the HCN/CNH isomerization reaction, and the keto–enol tautomerization reaction.
{"title":"Accelerated relaxation engines for optimizing to a minimum energy path†","authors":"Sandra Liz Simon, Nitin Kaistha and Vishal Agarwal","doi":"10.1039/D5RE00180C","DOIUrl":"https://doi.org/10.1039/D5RE00180C","url":null,"abstract":"<p >In the last few decades, several novel algorithms have been designed for finding critical points on a potential energy surface (PES) and the minimum energy paths connecting them. This has led to a considerable improvement in our understanding of reaction mechanisms and the kinetics of the underlying processes. These methods implicitly rely on computation of energy and forces on the PES, which are usually obtained <em>via</em> computationally demanding wave-function- or density-function-based <em>ab initio</em> methods. To mitigate the computational cost, efficient optimization algorithms are needed. Herein, we present two new first-order optimization algorithms: the adaptively accelerated relaxation engine (AARE), an enhanced molecular dynamics (MD) scheme, and the accelerated conjugate-gradient (Acc-CG) method, an improved version of the traditional conjugate gradient (CG) algorithm. We show the efficacy of these algorithms for unconstrained optimization on 2-dimensional and 4-dimensional test functions. Additionally, we also show the efficacy of these algorithms for optimizing an elastic band of images to the minimum energy path on 2-dimensional analytical potentials, heptamer island transitions, the HCN/CNH isomerization reaction, and the keto–enol tautomerization reaction.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2285-2299"},"PeriodicalIF":3.1,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145121337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}