首页 > 最新文献

Reaction Chemistry & Engineering最新文献

英文 中文
Application of the three-reactor hydrogenation process in the recycling utilization of waste lubricating oil and study on the catalyst deactivation mechanism 三反应器加氢工艺在废润滑油循环利用中的应用及催化剂失活机理研究
IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-19 DOI: 10.1039/D4RE00323C
You Fang, Peng Zhang, Mengya Guo, Shuke Guo, Fujiang Wang and Mingxing Tang

In the recycling of waste lubricating oil, the rapid deactivation of catalysts during the hydrotreating process limits their industrial application. In this paper, a three-reactor process is proposed for the refining of waste lubricating oil, which is compared with the conventional two-reactor process. Experimental results reveal that the three-reactor technique demonstrates enhanced performance in hydrodesulfurization (HDS), hydrodechlorination (HDCl), hydrodenitrogenation (HDN), hydro-decolorization, and demetallization, effectively doubling the service life of the catalysts. Characterization of the deactivated catalysts identifies carbon deposition, silicon (Si) poisoning, and boron (B) poisoning as the primary factors contributing to catalyst deactivation. The presence of a protective agent (the second catalyst) within the three-reactor process effectively removes Si and B, thereby mitigating the Si and B poisoning of the primary hydrogenation catalyst, and extending the catalyst's lifespan. This approach offers a viable solution to the challenge of frequent catalyst deactivation encountered during the high-value utilization of waste lubricating oils, thereby providing an effective pathway for overcoming this issue in the chemical industry.

在废润滑油的回收利用中,加氢处理过程中催化剂的快速失活限制了其工业应用。本文提出了一种用于精炼废润滑油的三反应器工艺,并与传统的双反应器工艺进行了比较。实验结果表明,三反应器技术在加氢脱硫 (HDS)、加氢脱氯 (HDCl)、加氢脱氮 (HDN)、加氢脱色和脱金属方面表现出更高的性能,有效地将催化剂的使用寿命延长了一倍。对失活催化剂的特性分析表明,碳沉积、硅(Si)中毒和硼(B)中毒是导致催化剂失活的主要因素。在三反应器工艺中加入保护剂(第二种催化剂)可有效去除硅和硼,从而减轻硅和硼对一级加氢催化剂的毒害,延长催化剂的使用寿命。这种方法为解决废润滑油高值化利用过程中经常出现的催化剂失活问题提供了可行的解决方案,从而为化工行业解决这一问题提供了有效途径。
{"title":"Application of the three-reactor hydrogenation process in the recycling utilization of waste lubricating oil and study on the catalyst deactivation mechanism","authors":"You Fang, Peng Zhang, Mengya Guo, Shuke Guo, Fujiang Wang and Mingxing Tang","doi":"10.1039/D4RE00323C","DOIUrl":"10.1039/D4RE00323C","url":null,"abstract":"<p >In the recycling of waste lubricating oil, the rapid deactivation of catalysts during the hydrotreating process limits their industrial application. In this paper, a three-reactor process is proposed for the refining of waste lubricating oil, which is compared with the conventional two-reactor process. Experimental results reveal that the three-reactor technique demonstrates enhanced performance in hydrodesulfurization (HDS), hydrodechlorination (HDCl), hydrodenitrogenation (HDN), hydro-decolorization, and demetallization, effectively doubling the service life of the catalysts. Characterization of the deactivated catalysts identifies carbon deposition, silicon (Si) poisoning, and boron (B) poisoning as the primary factors contributing to catalyst deactivation. The presence of a protective agent (the second catalyst) within the three-reactor process effectively removes Si and B, thereby mitigating the Si and B poisoning of the primary hydrogenation catalyst, and extending the catalyst's lifespan. This approach offers a viable solution to the challenge of frequent catalyst deactivation encountered during the high-value utilization of waste lubricating oils, thereby providing an effective pathway for overcoming this issue in the chemical industry.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3257-3266"},"PeriodicalIF":3.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00323c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible carbon fibres with magnetic ZIF-67 as a core layer and in situ grown NiMn-LDH nanosheets as a shell layer for microwave absorption† 以磁性 ZIF-67 为芯层、以原位生长的镍锰-LDH 纳米片为壳层的柔性碳纤维用于吸收微波
IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-18 DOI: 10.1039/D4RE00353E
Xiaofang Ma, Ying Huang, Xiaoxiao Zhao, Meng Yu, Yan Gao, Bing Gao and Sijiao Xiang

Fabrication of high-performance microwave absorbers by assembling multi-dimensional nanocomponents into core–shell electromagnetic structures has been shown to be a new manufacturing strategy. In this work, a novel core–shell carbon-fibres@ZIF-67@NiMn-layered double hydroxide (NiMn-LDH) film with excellent electromagnetic wave absorption was obtained by electrospinning ZIF-67 inside carbon fibres and subsequent solvothermal process with NiMn-LDH. With the synergistic effects of Co particles in ZIF-67 increasing magnetic loss, the appropriate proportion of the carbon fibres as a carbon source improves dielectric loss and provides a carrier for NiMn-LDH. Furthermore, NiMn-LDH at the outer shell improves impendence matching. Co/carbon fibres@NiMn-LDH (Co/CF@NiMn-LDH) was composited at a thickness of 2.8 mm with minimum reflection loss (R of −53 dB), and it also has good flexibility. The EAB of the obtained CF@NiMn-LDH composite reaches 6.7 GHz. This work provides a reference for the application of flexible carbon matrix composites in the electromagnetic wave absorption field.

通过将多维纳米元件组装成核壳电磁结构来制造高性能微波吸收器已被证明是一种新的制造策略。在这项工作中,通过在碳纤维内电纺丝 ZIF-67,然后溶热 NiMn-LDH,获得了具有优异电磁波吸收性能的新型核壳碳纤维@ZIF-67@镍锰层状双氢氧化物(NiMn-LDH)薄膜。通过 ZIF-67 中 Co 粒子增加磁损耗的协同效应,适当比例的碳纤维作为碳源不仅能改善介电损耗,还能为 NiMn-LDH 提供载体。而镍锰-LDH 位于外壳处,可改善阻抗匹配。复合厚度为 2.8 mm 的钴/碳光纤@镍锰-LDH(Co/CFs@镍锰-LDH)具有最小的反射损耗(R 为 -53 dB),而且还具有良好的柔韧性。所获得的 CFs@NiMn-LDH 的 EAB 达到 6.7 GHz。这项工作为柔性碳基复合材料在电磁波吸收领域的应用提供了参考。
{"title":"Flexible carbon fibres with magnetic ZIF-67 as a core layer and in situ grown NiMn-LDH nanosheets as a shell layer for microwave absorption†","authors":"Xiaofang Ma, Ying Huang, Xiaoxiao Zhao, Meng Yu, Yan Gao, Bing Gao and Sijiao Xiang","doi":"10.1039/D4RE00353E","DOIUrl":"10.1039/D4RE00353E","url":null,"abstract":"<p >Fabrication of high-performance microwave absorbers by assembling multi-dimensional nanocomponents into core–shell electromagnetic structures has been shown to be a new manufacturing strategy. In this work, a novel core–shell carbon-fibres@ZIF-67@NiMn-layered double hydroxide (NiMn-LDH) film with excellent electromagnetic wave absorption was obtained by electrospinning ZIF-67 inside carbon fibres and subsequent solvothermal process with NiMn-LDH. With the synergistic effects of Co particles in ZIF-67 increasing magnetic loss, the appropriate proportion of the carbon fibres as a carbon source improves dielectric loss and provides a carrier for NiMn-LDH. Furthermore, NiMn-LDH at the outer shell improves impendence matching. Co/carbon fibres@NiMn-LDH (Co/CF@NiMn-LDH) was composited at a thickness of 2.8 mm with minimum reflection loss (<em>R</em> of −53 dB), and it also has good flexibility. The EAB of the obtained CF@NiMn-LDH composite reaches 6.7 GHz. This work provides a reference for the application of flexible carbon matrix composites in the electromagnetic wave absorption field.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3299-3310"},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing 2D metal halide perovskite thin films as highly tuneable surfaces for orientation control of energetic materials† 利用二维金属卤化物过氧化物薄膜作为高能材料取向控制的高度可调表面
IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-18 DOI: 10.1039/D4RE00206G
Natalie Smith-Papin, Meagan Phister, Ashley Conley, Nathan Swami, Zbigniew Dreger and Gaurav Giri

The development of high performing and stable energetic materials (EMs) is a focus for a variety of applications including explosives, propellants, and pyrotechnics. To enhance stability, energetic crystals are often interfaced with materials such as chemical binders, which can introduce a variety of physiochemical phenomena ultimately leading to unpredictable stability and performance within the composite. Therefore, a thorough understanding of how energetic crystals behave when interfaced with various chemical functionalities is crucial for designing safer, high performing energetic formulations. This work provides a fundamental insight into interactions between a high performing energetic material, CL-20 (hexanitrohexaazaisowurtzitane), and other materials' surfaces. Highly controlled, tunable 2D metal-halide perovskite (2D MHP) templates with tunable periodicity and chemistry were created and used as a template layer to influence nucleation and growth of CL-20 crystals. All MHP/CL-20 bilayer films exhibit small, nonuniform crystalline deposit morphology for the CL-20 crystals with β-CL-20 polymorphic structure. While most MHP films template the formation of β-CL-20 crystals with a (111) preferential orientation, PbPMA2Cl4/β-CL-20 films crystallize with a (020) preferential orientation. The results presented herein suggest interfacial energy minimization between the two bilayer components is the dominant driving force behind the CL-20 preferential orientations. This methodology can potentially be used for developing techniques for growing energetic crystals with desired morphology, packing density and crystallographic orientation.

开发高性能和稳定的高能材料(EMs)是炸药、推进剂和烟火剂等各种应用的重点。为了提高稳定性,高能晶体通常会与化学粘合剂等材料发生相互作用,这可能会引入各种物理化学现象,最终导致复合材料的稳定性和性能难以预测。因此,全面了解高能晶体与各种化学功能材料的相互作用对于设计更安全、高性能的高能配方至关重要。这项研究从根本上揭示了高性能高能材料 CL-20(六硝基六氮唑乌齐坦)与其他材料表面之间的相互作用。该研究创建了具有可调周期性和化学性的高度可控、可调的二维金属卤化物包晶(二维 MHP)模板,并将其用作模板层,以影响 CL-20 晶体的成核和生长。对于具有 β-CL-20 多晶体结构的 CL-20 晶体,所有 MHP/CL-20 双层薄膜都表现出小而不均匀的结晶沉积形态。大多数 MHP 薄膜模板形成的 β-CL-20 晶体具有 (111) 优选取向,而 PbPMA2Cl4/β-CL-20 薄膜的结晶则具有 (020) 优选取向。本文介绍的结果表明,两个双层成分之间的界面能最小化是 CL-20 优选取向背后的主要驱动力。这种方法可用于开发具有所需形态、堆积密度和晶体取向的高能晶体生长技术。
{"title":"Utilizing 2D metal halide perovskite thin films as highly tuneable surfaces for orientation control of energetic materials†","authors":"Natalie Smith-Papin, Meagan Phister, Ashley Conley, Nathan Swami, Zbigniew Dreger and Gaurav Giri","doi":"10.1039/D4RE00206G","DOIUrl":"10.1039/D4RE00206G","url":null,"abstract":"<p >The development of high performing and stable energetic materials (EMs) is a focus for a variety of applications including explosives, propellants, and pyrotechnics. To enhance stability, energetic crystals are often interfaced with materials such as chemical binders, which can introduce a variety of physiochemical phenomena ultimately leading to unpredictable stability and performance within the composite. Therefore, a thorough understanding of how energetic crystals behave when interfaced with various chemical functionalities is crucial for designing safer, high performing energetic formulations. This work provides a fundamental insight into interactions between a high performing energetic material, CL-20 (hexanitrohexaazaisowurtzitane), and other materials' surfaces. Highly controlled, tunable 2D metal-halide perovskite (2D MHP) templates with tunable periodicity and chemistry were created and used as a template layer to influence nucleation and growth of CL-20 crystals. All MHP/CL-20 bilayer films exhibit small, nonuniform crystalline deposit morphology for the CL-20 crystals with β-CL-20 polymorphic structure. While most MHP films template the formation of β-CL-20 crystals with a (111) preferential orientation, PbPMA<small><sub>2</sub></small>Cl<small><sub>4</sub></small>/β-CL-20 films crystallize with a (020) preferential orientation. The results presented herein suggest interfacial energy minimization between the two bilayer components is the dominant driving force behind the CL-20 preferential orientations. This methodology can potentially be used for developing techniques for growing energetic crystals with desired morphology, packing density and crystallographic orientation.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3248-3256"},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00206g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of a simple rule for the design of micro- or meso-scale cooled reactors in a heat transfer limited regime 为庆祝 Klavs Jensen 70 岁生日,邀请向主题刊物投稿 在传热受限条件下,应用简单规则设计微型或中型冷却反应器
IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-18 DOI: 10.1039/D4RE00128A
Kishori Deshpande, Jianping Zeng, Ravindra Dixit, David West and David Jean

Flow chemistry has greatly expanded the reaction toolbox by demonstrating a wide range of individual chemical transformations. For commercial scale processes, it provides an appealing alternative to batch reactors by reducing production costs, increasing product yield and overall process robustness. We describe an approach for continuous processing of a specialty chemical manufactured using a batch process with a typical yield of 150 kg per hour and concomitant adiabatic temperature increase of up to 250 °C. This necessitates controlled feed addition causing longer processing time, lower productivity, and undesirable polymerization reactions. We present a continuous process that addresses the challenges of thermal management and reaction selectivity using flow chemistry thereby enabling up to 12-fold reduction in residence time with a comparable product profile. Fundamental reactor engineering and design principles and associated safety considerations used for designing the reactor and continuous process are described. Guided by this analysis, a continuous process using a ¼ inch tubular reactor is investigated. The results indicate residence time reduction from 6 hours to 30 minutes for comparable feed conversion of 87% and similar product composition. Greater than 90% conversion could not be achieved in the current reactor configuration and associated reactor runaway analysis suggests feed decomposition due to pressure fluctuations or insufficient reactants in the reactor. The analysis highlights the need for designing a reactor with better pressure control using a back pressure regulator and choosing a smaller diameter tube. These insights underscore the importance of applying fundamental reactor engineering principles for designing safe and efficient processes at an industrial scale.

流化学通过展示各种单独的化学转化,极大地扩展了反应工具箱。对于商业规模的工艺而言,流动化学可降低生产成本,提高产品产量和整体工艺的稳定性,是批式反应器的一个极具吸引力的替代方案。我们介绍了一种使用间歇式工艺连续加工特种化学品的方法,其典型产量为 150 公斤/小时,同时绝热升温高达 250 摄氏度。这就需要对进料添加量进行控制,从而导致加工时间延长、生产率降低以及不良聚合反应的发生。我们提出了一种连续工艺,利用流动化学方法解决了热管理和反应选择性方面的难题,从而使停留时间缩短了 12 倍,但产品性能相当。我们介绍了用于设计反应器和连续工艺的基本反应器工程和设计原则以及相关的安全考虑因素。在这一分析的指导下,对使用 ¼ 英寸管式反应器的连续工艺进行了研究。结果表明,在进料转化率为 87% 和产品成分相似的情况下,停留时间从 6 小时缩短到 30 分钟。目前的反应器配置无法实现 90% 以上的转化率,相关的反应器失控分析表明,反应器中的压力波动或反应物不足会导致进料分解。分析结果表明,在设计反应器时,需要使用背压调节器更好地控制压力,并选择直径较小的管道。这些见解强调了应用基本的反应器工程原理来设计工业规模的安全高效工艺的重要性。
{"title":"Application of a simple rule for the design of micro- or meso-scale cooled reactors in a heat transfer limited regime","authors":"Kishori Deshpande, Jianping Zeng, Ravindra Dixit, David West and David Jean","doi":"10.1039/D4RE00128A","DOIUrl":"10.1039/D4RE00128A","url":null,"abstract":"<p >Flow chemistry has greatly expanded the reaction toolbox by demonstrating a wide range of individual chemical transformations. For commercial scale processes, it provides an appealing alternative to batch reactors by reducing production costs, increasing product yield and overall process robustness. We describe an approach for continuous processing of a specialty chemical manufactured using a batch process with a typical yield of 150 kg per hour and concomitant adiabatic temperature increase of up to 250 °C. This necessitates controlled feed addition causing longer processing time, lower productivity, and undesirable polymerization reactions. We present a continuous process that addresses the challenges of thermal management and reaction selectivity using flow chemistry thereby enabling up to 12-fold reduction in residence time with a comparable product profile. Fundamental reactor engineering and design principles and associated safety considerations used for designing the reactor and continuous process are described. Guided by this analysis, a continuous process using a ¼ inch tubular reactor is investigated. The results indicate residence time reduction from 6 hours to 30 minutes for comparable feed conversion of 87% and similar product composition. Greater than 90% conversion could not be achieved in the current reactor configuration and associated reactor runaway analysis suggests feed decomposition due to pressure fluctuations or insufficient reactants in the reactor. The analysis highlights the need for designing a reactor with better pressure control using a back pressure regulator and choosing a smaller diameter tube. These insights underscore the importance of applying fundamental reactor engineering principles for designing safe and efficient processes at an industrial scale.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3311-3317"},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radio-frequency heating for catalytic propane dehydrogenation† 用于催化丙烷脱氢的射频加热技术
IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-16 DOI: 10.1039/D4RE00422A
Ankush Rout, Somtochukwu Lambert, Aswin Nair, Kailash Arole, Debalina Sengupta, Mark A. Barteau, Benjamin A. Wilhite and Micah J. Green

In this paper, we have demonstrated radio frequency (RF) heating of susceptor nanomaterials coupled with conventional catalysts to enable a new class of heterogeneous catalytic reactors with localized, volumetric heating. The recent emphasis on industrial decarbonization has highlighted the need to reduce greenhouse gas emissions from chemical process heating. Existing industrial scale catalytic reactors use fuel-fired furnaces to achieve high temperatures which contributes to CO2 emissions and requires on-site infrastructure. Compared to conventional heating, this work uses a power-to-chemicals route, where RF fields (1–200 MHz) are utilized to volumetrically heat RF-responsive carbon nanomaterials integrated with the catalyst. With the option of using renewable electricity sources, the greenhouse gas emissions associated with the process can be reduced, thereby contributing to industrial decarbonization. We demonstrate the use of an RF applicator to drive the highly endothermic propane dehydrogenation reaction on a Pt/alumina catalyst using carbon nanotubes as the RF susceptors. The propane conversion and propylene yield using RF heating were similar to those obtained when the reactor was heated externally in an oven (conventional heating (CH)) at 500 °C. After each reaction cycle, the catalyst was successfully regenerated by RF heating in air to remove deposited carbon.

在本文中,我们展示了用射频(RF)加热与传统催化剂耦合的可疑纳米材料,从而实现了一种具有局部体积加热功能的新型异相催化反应器。最近对工业脱碳的重视突出了减少化学工艺加热产生的温室气体排放的必要性。现有的工业规模催化反应器使用燃料燃烧炉来达到高温,这会造成二氧化碳排放,并且需要现场基础设施。与传统的加热方式相比,这项工作采用了从电力到化学品的途径,即利用射频场(1-200 MHz)对与催化剂集成在一起的射频响应碳纳米材料进行体积加热。由于可以选择使用可再生电力资源,因此可以减少与该工艺相关的温室气体排放,从而为工业脱碳做出贡献。我们展示了如何使用射频加热器在以碳纳米管为射频感应器的铂/氧化铝催化剂上驱动高内热丙烷脱氢反应。采用射频加热的丙烷转化率和丙烯产率与在 500 °C 的烘箱(常规加热 (CH))中对反应器进行外部加热时的转化率和产率相似。每个反应周期结束后,催化剂在空气中通过射频加热成功再生,以去除沉积的碳。
{"title":"Radio-frequency heating for catalytic propane dehydrogenation†","authors":"Ankush Rout, Somtochukwu Lambert, Aswin Nair, Kailash Arole, Debalina Sengupta, Mark A. Barteau, Benjamin A. Wilhite and Micah J. Green","doi":"10.1039/D4RE00422A","DOIUrl":"10.1039/D4RE00422A","url":null,"abstract":"<p >In this paper, we have demonstrated radio frequency (RF) heating of susceptor nanomaterials coupled with conventional catalysts to enable a new class of heterogeneous catalytic reactors with localized, volumetric heating. The recent emphasis on industrial decarbonization has highlighted the need to reduce greenhouse gas emissions from chemical process heating. Existing industrial scale catalytic reactors use fuel-fired furnaces to achieve high temperatures which contributes to CO<small><sub>2</sub></small> emissions and requires on-site infrastructure. Compared to conventional heating, this work uses a power-to-chemicals route, where RF fields (1–200 MHz) are utilized to volumetrically heat RF-responsive carbon nanomaterials integrated with the catalyst. With the option of using renewable electricity sources, the greenhouse gas emissions associated with the process can be reduced, thereby contributing to industrial decarbonization. We demonstrate the use of an RF applicator to drive the highly endothermic propane dehydrogenation reaction on a Pt/alumina catalyst using carbon nanotubes as the RF susceptors. The propane conversion and propylene yield using RF heating were similar to those obtained when the reactor was heated externally in an oven (conventional heating (CH)) at 500 °C. After each reaction cycle, the catalyst was successfully regenerated by RF heating in air to remove deposited carbon.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3211-3221"},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00422a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spherical CuFeS2@FeSe2 structure as a binder-free electrode and its performance in asymmetric supercapacitors 球形 CuFeS2@FeSe2 结构作为无粘合剂电极及其在不对称超级电容器中的性能
IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-16 DOI: 10.1039/D4RE00144C
Tahereh Nikkhah Amirabad and Ali A. Ensafi

Transition metal chalcogenides (TMCs), such as FeSe2, FeS2, and CuS, have attracted considerable attention for energy storage due to their multi-electron transfer capabilities and high capacities. This study presents the synthesis of spherical CuFeS2 through a binder-free hydrothermal process, incorporating selenium powder to form hollow spheres of CuFeS2 encapsulated by FeSe2 nano-planes (CuFeS2@FeSe2). Utilizing a modified electrode without a binder and adopting a spherical CuFeS2@FeSe2 structure significantly enhance the performance of asymmetric supercapacitors. The absence of a binder eliminates potential issues associated with binding agents, ensuring a more efficient charge transfer. The spherical configuration, with FeSe2 layers surrounding and encapsulating the CuFeS2 core, contributes to improved capacitance and stability. The unique structure allows for better utilization of active materials, enhancing the specific capacitance of the electrode. This modified electrode demonstrates remarkable cyclic stability, indicating its potential for long-term practical applications. This unique nanostructure was characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), demonstrating enhanced nanomaterial conductivity. Electrochemical performance analyses, including cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS), reveal a specific capacity of 1306 A g−1 at a current density of 2 A g−1 in a three-electrode system. Furthermore, as a positive electrode in an asymmetric supercapacitor device (CuFeS2@FeSe2||AC), paired with activated carbon@NF (AC) as a negative electrode, the system achieves an efficient energy density of 152.01 W h kg−1 with superior durability, retaining 91.03% capacity after 3000 cycles.

过渡金属瑀(TMC),如 FeSe2、FeS2 和 CuS,因其多电子转移能力和高容量而在储能领域备受关注。本研究通过无粘合剂水热法合成了球形 CuFeS2,将硒粉末加入其中,形成了由 FeSe2 纳米平面包裹的 CuFeS2 空心球(CuFeS2@FeSe2)。利用不含粘合剂的改良电极和球形 CuFeS2@FeSe2 结构可显著提高不对称超级电容器的性能。无粘合剂消除了与结合剂相关的潜在问题,确保了更高效的电荷转移。球形结构中的 FeSe2 层环绕并包裹着 CuFeS2 内核,有助于提高电容和稳定性。这种独特的结构可以更好地利用活性材料,提高电极的比电容。这种改性电极具有显著的循环稳定性,表明其具有长期实际应用的潜力。通过场发射扫描电子显微镜 (FE-SEM)、电子衍射 X 射线光谱 (EDX)、透射电子显微镜 (TEM) 和 X 射线光电子能谱 (XPS) 对这种独特的纳米结构进行了表征,证明了纳米材料导电性的增强。电化学性能分析(包括循环伏安法(CV)、电静态充放电法(GCD)和电化学阻抗光谱法(EIS))显示,在三电极系统中,电流密度为 2 A g-¹ 时,比容量为 1306 A g-¹。此外,作为不对称超级电容器装置(CuFeS2@FeSe2||AC)的正极,配以活性碳@NF(AC)作为负极,该系统实现了 152.01 Wh kg-¹ 的高效能量密度和卓越的耐用性,在 3000 次循环后仍能保持 91.03% 的容量。
{"title":"Spherical CuFeS2@FeSe2 structure as a binder-free electrode and its performance in asymmetric supercapacitors","authors":"Tahereh Nikkhah Amirabad and Ali A. Ensafi","doi":"10.1039/D4RE00144C","DOIUrl":"10.1039/D4RE00144C","url":null,"abstract":"<p >Transition metal chalcogenides (TMCs), such as FeSe<small><sub>2</sub></small>, FeS<small><sub>2</sub></small>, and CuS, have attracted considerable attention for energy storage due to their multi-electron transfer capabilities and high capacities. This study presents the synthesis of spherical CuFeS<small><sub>2</sub></small> through a binder-free hydrothermal process, incorporating selenium powder to form hollow spheres of CuFeS<small><sub>2</sub></small> encapsulated by FeSe<small><sub>2</sub></small> nano-planes (CuFeS<small><sub>2</sub></small>@FeSe<small><sub>2</sub></small>). Utilizing a modified electrode without a binder and adopting a spherical CuFeS<small><sub>2</sub></small>@FeSe<small><sub>2</sub></small> structure significantly enhance the performance of asymmetric supercapacitors. The absence of a binder eliminates potential issues associated with binding agents, ensuring a more efficient charge transfer. The spherical configuration, with FeSe<small><sub>2</sub></small> layers surrounding and encapsulating the CuFeS<small><sub>2</sub></small> core, contributes to improved capacitance and stability. The unique structure allows for better utilization of active materials, enhancing the specific capacitance of the electrode. This modified electrode demonstrates remarkable cyclic stability, indicating its potential for long-term practical applications. This unique nanostructure was characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), demonstrating enhanced nanomaterial conductivity. Electrochemical performance analyses, including cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS), reveal a specific capacity of 1306 A g<small><sup>−1</sup></small> at a current density of 2 A g<small><sup>−1</sup></small> in a three-electrode system. Furthermore, as a positive electrode in an asymmetric supercapacitor device (CuFeS<small><sub>2</sub></small>@FeSe<small><sub>2</sub></small>||AC), paired with activated carbon@NF (AC) as a negative electrode, the system achieves an efficient energy density of 152.01 W h kg<small><sup>−1</sup></small> with superior durability, retaining 91.03% capacity after 3000 cycles.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3267-3276"},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of methyl benzoate intensified by p-toluenesulfonic acid-based deep eutectic solvents† 对甲苯磺酸型深共晶溶剂促进苯甲酸甲酯的合成
IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-16 DOI: 10.1039/D4RE00352G
Dian Jin, Xindi Feng, Li Sun, Zuoxiang Zeng and Zhen Liu

Methyl benzoate (MB) is a chemical raw material used in various fields. However, the conventional approach to synthesizing MB is characterized by difficulties such as equipment corrosion, by-product generation, and recycling challenges. In light of these challenges, this work proposes the utilization of deep eutectic solvents (DESs) as both extractants and catalysts in a reactive extraction process. In particular, p-toluenesulfonic acid-based deep eutectic solvents (PTSA-based DESs) were tested as potential candidates, with choline chloride (ChCl) and imidazole (Im) chosen as hydrogen bonding acceptors (HBAs). The feasibility of DESs consisting of ChCl and PTSA was assessed using the COSMO-RS theory. The optimal process conditions were determined. Under the optimal conditions, the yield of MB reached 93.46%, and the performance of [ChCl–PTSA] remained stable after five cycles. We also used the group contribution method and COSMO-RS to derive separate kinetic models, with activation energies of 43.71 kJ mol−1 and 38.71 kJ mol−1. Our work highlights the potential of [ChCl : PTSA] in the industrial production of MB.

苯甲酸甲酯(MB)是一种化学原料,广泛应用于各个领域。然而,合成苯甲酸甲酯的传统方法存在设备腐蚀、副产品生成和回收等难题。有鉴于此,本研究提出利用深共晶溶剂(DES)作为反应萃取工艺中的萃取剂和催化剂。其中,对甲苯磺酸基深共晶溶剂(PTSA-based DESs)作为潜在候选物质进行了测试,氯化胆碱(ChCl)和咪唑(Im)被选为氢键接受体(HBAs)。使用 COSMO-RS 理论评估了由 ChCl 和 PTSA 组成的 DES 的可行性。确定了最佳工艺条件。在最佳条件下,MB 的产率达到 93.46%,[ChCl-PTSA]的性能在五个循环后保持稳定。我们还利用群贡献法和 COSMO-RS 分别推导出了活化能为 43.71 kJ mol-1 和 38.71 kJ mol-1 的动力学模型。我们的工作凸显了 [ChCl : PTSA] 在甲基溴工业生产中的潜力。
{"title":"Synthesis of methyl benzoate intensified by p-toluenesulfonic acid-based deep eutectic solvents†","authors":"Dian Jin, Xindi Feng, Li Sun, Zuoxiang Zeng and Zhen Liu","doi":"10.1039/D4RE00352G","DOIUrl":"10.1039/D4RE00352G","url":null,"abstract":"<p >Methyl benzoate (MB) is a chemical raw material used in various fields. However, the conventional approach to synthesizing MB is characterized by difficulties such as equipment corrosion, by-product generation, and recycling challenges. In light of these challenges, this work proposes the utilization of deep eutectic solvents (DESs) as both extractants and catalysts in a reactive extraction process. In particular, <em>p</em>-toluenesulfonic acid-based deep eutectic solvents (PTSA-based DESs) were tested as potential candidates, with choline chloride (ChCl) and imidazole (Im) chosen as hydrogen bonding acceptors (HBAs). The feasibility of DESs consisting of ChCl and PTSA was assessed using the COSMO-RS theory. The optimal process conditions were determined. Under the optimal conditions, the yield of MB reached 93.46%, and the performance of [ChCl–PTSA] remained stable after five cycles. We also used the group contribution method and COSMO-RS to derive separate kinetic models, with activation energies of 43.71 kJ mol<small><sup>−1</sup></small> and 38.71 kJ mol<small><sup>−1</sup></small>. Our work highlights the potential of [ChCl : PTSA] in the industrial production of MB.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3179-3190"},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzyme-catalyzed polyurethane adhesive degradation† 酶催化聚氨酯粘合剂降解
IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-11 DOI: 10.1039/D4RE00253A
Angela Romano, Antonella Rosato, Laura Sisti, Giulio Zanaroli, Svajus Joseph Asadauskas, Paulina Nemaniutė, Dalia Bražinskienė, Asta Grigucevičienė and Grazia Totaro

Polyurethanes represent a class of highly versatile synthetic polymers, suitable for a wide range of applications. Their biological degradation is of great interest since it can allow the design of specific formulations by selecting suitable building blocks and it can contribute to the development of sustainable recycling processes. In the current study, a commercial hydrolytic enzyme (cutinase from Humicola insolens, HiC) was investigated for its ability to degrade various polyurethane adhesive formulations, by focusing first on macrodiols, then on specific polyurethanes. The aim was to identify solvent-based polyurethane formulations susceptible to enzymatic hydrolysis. First, a semi-quantitative assay, namely the emulsion turbidity test, was carried out on some macrodiols. Then, weight loss tests were carried out on specific solvent-based polyurethane formulations, and three promising formulations have shown 90, 60 and 40% degradation, after 96 h of incubation with HiC. A study of the enzymatic degradation mechanism of macrodiols and the most degradable polyurethanes was also carried out, through the characterization of the solid residues after the enzymatic degradation by infrared spectroscopy, calorimetric and thermogravimetric analysis, and the identification and/or quantification of the monomers released during the hydrolysis of macrodiols within the liquid fraction (by high-performance liquid chromatography). According to the results, a prevalent exo-type action mode for HiC against some macrodiols was found under the conditions tested, while, from a chemical point of view, the degradation seems to determine, on the polyurethane residues, a general increase in crosslinking.

聚氨酯是一类用途广泛的合成聚合物,适用于多种应用领域。聚氨酯的生物降解引起了人们的极大兴趣,因为生物降解可以通过选择合适的构建模块来设计特定的配方,并有助于开发可持续的回收工艺。在当前的研究中,研究人员对一种商用水解酶(HiC,来自无水胡敏菌)进行了研究,以了解其降解各种聚氨酯粘合剂配方的能力,首先关注的是大环二醇,然后是特定的聚氨酯。目的是确定易受酶水解作用影响的溶剂型聚氨酯配方。首先,对一些大环二醇进行了半定量检测,即乳液浊度测试。然后,对特定的溶剂型聚氨酯配方进行了失重测试,三种有前景的配方在与 HiC 培养 96 小时后分别出现了 90%、60% 和 40% 的降解。此外,还通过红外光谱分析、量热分析和热重分析对酶降解后的固体残留物进行了表征,并通过高效液相色谱法对水解大环二醇过程中液体部分释放的单体进行了鉴定和/或定量,从而对大环二醇和最易降解聚氨酯的酶降解机制进行了研究。结果表明,在测试条件下,HiC 对某些大环二醇的作用模式普遍为外切型,而从化学角度来看,降解似乎决定了聚氨酯残留物的交联度普遍提高。
{"title":"Enzyme-catalyzed polyurethane adhesive degradation†","authors":"Angela Romano, Antonella Rosato, Laura Sisti, Giulio Zanaroli, Svajus Joseph Asadauskas, Paulina Nemaniutė, Dalia Bražinskienė, Asta Grigucevičienė and Grazia Totaro","doi":"10.1039/D4RE00253A","DOIUrl":"10.1039/D4RE00253A","url":null,"abstract":"<p >Polyurethanes represent a class of highly versatile synthetic polymers, suitable for a wide range of applications. Their biological degradation is of great interest since it can allow the design of specific formulations by selecting suitable building blocks and it can contribute to the development of sustainable recycling processes. In the current study, a commercial hydrolytic enzyme (cutinase from <em>Humicola insolens</em>, HiC) was investigated for its ability to degrade various polyurethane adhesive formulations, by focusing first on macrodiols, then on specific polyurethanes. The aim was to identify solvent-based polyurethane formulations susceptible to enzymatic hydrolysis. First, a semi-quantitative assay, namely the emulsion turbidity test, was carried out on some macrodiols. Then, weight loss tests were carried out on specific solvent-based polyurethane formulations, and three promising formulations have shown 90, 60 and 40% degradation, after 96 h of incubation with HiC. A study of the enzymatic degradation mechanism of macrodiols and the most degradable polyurethanes was also carried out, through the characterization of the solid residues after the enzymatic degradation by infrared spectroscopy, calorimetric and thermogravimetric analysis, and the identification and/or quantification of the monomers released during the hydrolysis of macrodiols within the liquid fraction (by high-performance liquid chromatography). According to the results, a prevalent exo-type action mode for HiC against some macrodiols was found under the conditions tested, while, from a chemical point of view, the degradation seems to determine, on the polyurethane residues, a general increase in crosslinking.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3133-3145"},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00253a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic and mechanistic studies of the multicomponent reaction of 2-(phenylethynyl)benzaldehyde, primary amine and diphenylphosphine oxide† 2-(苯乙炔基)苯甲醛、伯胺和二苯基氧化膦的多组分反应的合成和机理研究†。
IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-11 DOI: 10.1039/D4RE00387J
Kármen Szabó, Zsolt Kelemen, Pál Tamás Szabó and Erika Bálint

The synthesis of potentially biologically active phosphinoyl functionalized N-(2-(phenylethynyl)benzyl)amine, 1,2-dihydro-isoquinoline and 2H-isoindoline via a multicomponent reaction of 2-(phenylethynyl)benzaldehyde, amine and diphenylphosphine oxide is described for the first time. Depending on the catalyst and the conditions used, the same one-pot three-component reaction can selectively lead to the mentioned three different products. The formation of the cyclic products was investigated by a comprehensive catalyst screening, as well as by quantum chemical calculations. It was found that for the synthesis of phosphinoyl functionalized N-(2-(phenylethynyl)benzyl)amine, there is no need to use any catalyst. For the complete formation of isoquinoline ring containing phosphine oxide, zirconium(IV) chloride was the most efficient catalyst and 2H-isoindol-1-ylphosphine oxide was synthesized selectively by a silver acetate catalyst. Furthermore, dihydro-isoquinolin-1-ylphosphine oxide was converted into the thermodynamically more stable 2H-isoindol-1-ylphosphine oxide.

首次描述了通过 2-(苯乙炔基)苯甲醛、胺和二苯基氧化膦的多组分反应合成具有潜在生物活性的膦酰官能化 N-(2-(苯乙炔基)苄基)胺、1,2-二氢异喹啉和 2H-异吲哚啉。根据催化剂和使用条件的不同,同一单锅三组分反应可选择性地生成上述三种不同的产物。通过催化剂的全面筛选和量子化学计算,研究了环状产物的形成。研究发现,合成膦酰官能化 N-(2-(苯乙炔基)苄基)胺无需使用任何催化剂。要完全形成含有氧化膦的异喹啉环,氯化锆(IV)是最有效的催化剂,醋酸银催化剂可选择性地合成 2H-isoindol-1-ylphosphine oxide。此外,二氢-异喹啉-1-基氧化膦被转化为热力学上更稳定的 2H-异吲哚-1-基氧化膦。
{"title":"Synthetic and mechanistic studies of the multicomponent reaction of 2-(phenylethynyl)benzaldehyde, primary amine and diphenylphosphine oxide†","authors":"Kármen Szabó, Zsolt Kelemen, Pál Tamás Szabó and Erika Bálint","doi":"10.1039/D4RE00387J","DOIUrl":"10.1039/D4RE00387J","url":null,"abstract":"<p >The synthesis of potentially biologically active phosphinoyl functionalized <em>N</em>-(2-(phenylethynyl)benzyl)amine, 1,2-dihydro-isoquinoline and 2<em>H</em>-isoindoline <em>via</em> a multicomponent reaction of 2-(phenylethynyl)benzaldehyde, amine and diphenylphosphine oxide is described for the first time. Depending on the catalyst and the conditions used, the same one-pot three-component reaction can selectively lead to the mentioned three different products. The formation of the cyclic products was investigated by a comprehensive catalyst screening, as well as by quantum chemical calculations. It was found that for the synthesis of phosphinoyl functionalized <em>N</em>-(2-(phenylethynyl)benzyl)amine, there is no need to use any catalyst. For the complete formation of isoquinoline ring containing phosphine oxide, zirconium(<small>IV</small>) chloride was the most efficient catalyst and 2<em>H</em>-isoindol-1-ylphosphine oxide was synthesized selectively by a silver acetate catalyst. Furthermore, dihydro-isoquinolin-1-ylphosphine oxide was converted into the thermodynamically more stable 2<em>H</em>-isoindol-1-ylphosphine oxide.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3222-3230"},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simplified chemical kinetic model with a reaction mechanism based on a multidimensional average error iteration method for ammonia and ammonia/hydrogen combustion† 基于多维平均误差迭代法的简化化学动力学模型与氨和氨/氢燃烧的反应机理
IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1039/D4RE00274A
Daiyao Yue, Chongkai Zhao, Rui Sun, Jieyu Jiang, Chunjie Sui, Xin Zhong and Bin Zhang

Ammonia (NH3) is emerging as a promising fuel due to its high energy density, high hydrogen content, and zero carbon emissions from combustion. The study of chemical kinetics in NH3 combustion offers theoretical approaches to address its low reactivity and high nitrogen oxide (NOx) emissions, especially in binary fuels with hydrogen (H2), which have been shown to positively affect NH3 combustion systems. However, existing NH3/H2 models have various defects under different conditions. In this study, we develop a simplified NH3/H2 chemical kinetics model that is comprehensively validated using a large amount of representative experimental literature data, including ignition delay time, laminar flame speeds, and species concentration profiles. The model is analyzed using an innovative multidimensional average error iteration method, ensuring that the overall average error remains within 5%. Subsequently, the model is simplified by removing unnecessary components and reaction steps through the direct relation graph with error propagation method, reducing computational consumption. The combustion results of the pure NH3 and NH3/H2 mixtures under most conditions are highly consistent with those of the new model. By conducting sensitivity and productivity analyses, we determined the key reactions controlling fuel reactivity under different H2 ratios and the important interactions between intermediate products are described in detail. Additionally, the different reaction directions of NH3 and the principle of NOx generation under high H2 conditions are elucidated through these analyses and reaction pathway diagrams.

氨(NH3)因其高能量密度、高氢含量和燃烧零碳排放而成为一种前景广阔的燃料。对 NH3 燃烧中化学动力学的研究为解决其反应性低和氮氧化物(NOx)排放量高的问题提供了理论方法,特别是在含有氢气(H2)的二元燃料中,已证明氢气对 NH3 燃烧系统有积极影响。然而,现有的 NH3/H2 模型在不同条件下存在各种缺陷。在本研究中,我们建立了一个简化的 NH3/H2 化学动力学模型,并利用大量有代表性的实验文献数据(包括点火延迟时间、层流火焰速度和物种浓度曲线)对该模型进行了全面验证。该模型采用创新的多维平均误差迭代法进行分析,确保总体平均误差保持在 5%以内。随后,通过直接关系图与误差传播方法,去除不必要的成分和反应步骤,简化了模型,减少了计算消耗。纯 NH3 和 NH3/H2 混合物在大多数条件下的燃烧结果与新模型高度一致。通过敏感性和生产率分析,我们确定了不同 H2 比率下控制燃料反应性的关键反应,并详细描述了中间产物之间的重要相互作用。此外,通过这些分析和反应路径图,还阐明了高 H2 条件下 NH3 的不同反应方向和氮氧化物的生成原理。
{"title":"A simplified chemical kinetic model with a reaction mechanism based on a multidimensional average error iteration method for ammonia and ammonia/hydrogen combustion†","authors":"Daiyao Yue, Chongkai Zhao, Rui Sun, Jieyu Jiang, Chunjie Sui, Xin Zhong and Bin Zhang","doi":"10.1039/D4RE00274A","DOIUrl":"10.1039/D4RE00274A","url":null,"abstract":"<p >Ammonia (NH<small><sub>3</sub></small>) is emerging as a promising fuel due to its high energy density, high hydrogen content, and zero carbon emissions from combustion. The study of chemical kinetics in NH<small><sub>3</sub></small> combustion offers theoretical approaches to address its low reactivity and high nitrogen oxide (NO<small><sub><em>x</em></sub></small>) emissions, especially in binary fuels with hydrogen (H<small><sub>2</sub></small>), which have been shown to positively affect NH<small><sub>3</sub></small> combustion systems. However, existing NH<small><sub>3</sub></small>/H<small><sub>2</sub></small> models have various defects under different conditions. In this study, we develop a simplified NH<small><sub>3</sub></small>/H<small><sub>2</sub></small> chemical kinetics model that is comprehensively validated using a large amount of representative experimental literature data, including ignition delay time, laminar flame speeds, and species concentration profiles. The model is analyzed using an innovative multidimensional average error iteration method, ensuring that the overall average error remains within 5%. Subsequently, the model is simplified by removing unnecessary components and reaction steps through the direct relation graph with error propagation method, reducing computational consumption. The combustion results of the pure NH<small><sub>3</sub></small> and NH<small><sub>3</sub></small>/H<small><sub>2</sub></small> mixtures under most conditions are highly consistent with those of the new model. By conducting sensitivity and productivity analyses, we determined the key reactions controlling fuel reactivity under different H<small><sub>2</sub></small> ratios and the important interactions between intermediate products are described in detail. Additionally, the different reaction directions of NH<small><sub>3</sub></small> and the principle of NO<small><sub><em>x</em></sub></small> generation under high H<small><sub>2</sub></small> conditions are elucidated through these analyses and reaction pathway diagrams.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3153-3171"},"PeriodicalIF":3.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Reaction Chemistry & Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1