In this study, we investigate the valorization of 5-(hydroxymethyl)furfural (5-HMF), a versatile and pivotal renewable C6 platform chemical, into a C12 heteroaromatic triol, 5,5′-bis(hydroxymethyl)furoin (DHMF), and a C12 heteroaromatic diol, 5,5′-bis(hydroxymethyl)furil (BHMF). The carboligation of 5-HMF to DHMF is catalyzed by an N-heterocyclic carbene, 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene (TPT), generated in situ from its stable methoxy adduct, 5-methoxy-1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazoline (TPA-OMe). This reaction achieves quantitative yield in dimethyl carbonate, a more environmentally friendly solvent. The resulting DHMF precipitate was readily purified via simple filtration and washing. Moreover, an enhanced selective oxidation was conducted at the secondary hydroxyl group of DHMF to generate the ketone group of BHMF in quantitative yield by using organo-catalysts, anionic exchanger, and NaOH. We proposed and subsequently validated a cyclic catalysis mechanism for the oxidation through the colorimetric detection of the by-product, H2O2, in the reaction. All synthetic processes to produce these C12 triol-furoin and diol-furil compounds were successfully demonstrated on a scale ranging from 20 to 400 grams. The feasibility of these processes was established with high yields achieved under moderate reaction conditions and ambient pressure, making them suitable for large-scale production. Consequently, these C12 multi-functional chemicals can find applications in the production of bio-based aromatic polymers such as polyesters, polyurethanes, and polycarbonates.
{"title":"C12 aromatic triol-furoin and diol-furil from bio-based 5-(hydroxymethyl)furfural: enhanced selective synthesis, scale-up and mechanistic insight into cyclic catalysis†","authors":"Thi Tuyet Thuy Vu, Shentan Liu, Mantas Jonušis, Simona Jonušienė, Jinsik Choi, Mohamed Ismail, Nicola Rehnberg, Rajni Hatti-Kaul and Sang-Hyun Pyo","doi":"10.1039/D4RE00212A","DOIUrl":"https://doi.org/10.1039/D4RE00212A","url":null,"abstract":"<p >In this study, we investigate the valorization of 5-(hydroxymethyl)furfural (5-HMF), a versatile and pivotal renewable C6 platform chemical, into a C12 heteroaromatic triol, 5,5′-bis(hydroxymethyl)furoin (DHMF), and a C12 heteroaromatic diol, 5,5′-bis(hydroxymethyl)furil (BHMF). The carboligation of 5-HMF to DHMF is catalyzed by an N-heterocyclic carbene, 1,3,4-triphenyl-4,5-dihydro-1<em>H</em>-1,2,4-triazol-5-ylidene (TPT), generated <em>in situ</em> from its stable methoxy adduct, 5-methoxy-1,3,4-triphenyl-4,5-dihydro-1<em>H</em>-1,2,4-triazoline (TPA-OMe). This reaction achieves quantitative yield in dimethyl carbonate, a more environmentally friendly solvent. The resulting DHMF precipitate was readily purified <em>via</em> simple filtration and washing. Moreover, an enhanced selective oxidation was conducted at the secondary hydroxyl group of DHMF to generate the ketone group of BHMF in quantitative yield by using organo-catalysts, anionic exchanger, and NaOH. We proposed and subsequently validated a cyclic catalysis mechanism for the oxidation through the colorimetric detection of the by-product, H<small><sub>2</sub></small>O<small><sub>2</sub></small>, in the reaction. All synthetic processes to produce these C12 triol-furoin and diol-furil compounds were successfully demonstrated on a scale ranging from 20 to 400 grams. The feasibility of these processes was established with high yields achieved under moderate reaction conditions and ambient pressure, making them suitable for large-scale production. Consequently, these C12 multi-functional chemicals can find applications in the production of bio-based aromatic polymers such as polyesters, polyurethanes, and polycarbonates.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 70-78"},"PeriodicalIF":3.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00212a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne Gaffney, Debtanu Maiti, Debasish Kuila and Gennaro Mafia
With the ever-increasing demand for plastics, sustainable recycling methods are key necessities. The current plastics industry can manage to recycle only 10% of the 400 million metric tons of plastic produced globally. Waste plastics, in the current infrastructure, land up mostly in landfills. Although a lot of research efforts have been spent on processing and recycling co-mingled mixed plastics, energy-efficient sustainable and scalable routes for plastic upcycling are still lacking. Catalytic valorization of waste plastic feedstock is one of the potential scalable routes for plastic upcycling. Silica-alumina based materials, and zeolites have shown a lot of promise. A major interest lies in restricting catalyst deactivation, and refining product selectivity and yield for such catalytic processes. This article highlights ChemPren technology as a clean energy solution to waste plastic recycling. Co-mingled, mixed plastic feedstock along with spray dried, attrition resistant, ZSM-5 containing catalysts is preprocessed with an extruder to form optimally sized particles and fed into a fluidized bed reactor for short contact times to produce selectively and in high yields ethylenes, propylenes and butylenes. This techno-economic perspective indicates that the ChemPren technology can produce propylene at $0.16 per lb, whereas the current selling price of virgin propylene is $0.54 per lb. This technology can serve as a platform for mixed plastic upcycling, with more advancements necessary in the form of robust and resilient catalysts and reactor operation strategies for tuning product selectivity.
{"title":"ChemPren: a new and economical technology for conversion of waste plastics to light olefins","authors":"Anne Gaffney, Debtanu Maiti, Debasish Kuila and Gennaro Mafia","doi":"10.1039/D4RE00354C","DOIUrl":"https://doi.org/10.1039/D4RE00354C","url":null,"abstract":"<p >With the ever-increasing demand for plastics, sustainable recycling methods are key necessities. The current plastics industry can manage to recycle only 10% of the 400 million metric tons of plastic produced globally. Waste plastics, in the current infrastructure, land up mostly in landfills. Although a lot of research efforts have been spent on processing and recycling co-mingled mixed plastics, energy-efficient sustainable and scalable routes for plastic upcycling are still lacking. Catalytic valorization of waste plastic feedstock is one of the potential scalable routes for plastic upcycling. Silica-alumina based materials, and zeolites have shown a lot of promise. A major interest lies in restricting catalyst deactivation, and refining product selectivity and yield for such catalytic processes. This article highlights ChemPren technology as a clean energy solution to waste plastic recycling. Co-mingled, mixed plastic feedstock along with spray dried, attrition resistant, ZSM-5 containing catalysts is preprocessed with an extruder to form optimally sized particles and fed into a fluidized bed reactor for short contact times to produce selectively and in high yields ethylenes, propylenes and butylenes. This techno-economic perspective indicates that the ChemPren technology can produce propylene at $0.16 per lb, whereas the current selling price of virgin propylene is $0.54 per lb. This technology can serve as a platform for mixed plastic upcycling, with more advancements necessary in the form of robust and resilient catalysts and reactor operation strategies for tuning product selectivity.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3100-3104"},"PeriodicalIF":3.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linjiang Zhu, Yuxin Wang, Linyan Pan, Enyong Lin, Jiayan Wang and Xiaolong Chen
L-5-Methyltetrahydrofolate (L-5-MTHF) is an active form of folate and widely used as a nutraceutical due to its high bioavailability. Herein, we report an efficient one-pot three-enzyme cascade reaction for the production of L-5-MTHF starting from synthetic folic acid (FA). The newly-designed synthesis route was validated by enzyme screening and process optimization. The highly-active dihydrofolate reductase from Lactobacillus bulgaricus (LbuDHFR) was identified for asymmetric hydrogenation towards unnatural substrate FA, which could remarkably increase the synthetic efficiency. Dimethylsulfoniopropionate-dependent demethylase (DmdA) was successfully employed for directly converting tetrahydrofolate into L-5-MTHF using a cheap methyl donor. RcoDmdA from marine bacteria Ruegeria conchae was selected due to its high tolerance against the inhibition of the demethylated by-product. The optimal one-pot enzymatic synthesis could completely convert 34 mM of FA into 32.5 mM of L-5-MTHF with a molar conversion rate of 95.6%. No FA, dihydrofolate or tetrahydrofolate were detected in the final reaction mixture. Therefore, the new one-pot enzymatic method, circumventing the need for a transition metal catalyst, an unstable strong reductant and crystallization resolution, is proved to be simple, cost-effective, and easy to scale up for the green synthesis of L-5-MTHF.
L-5-甲基四氢叶酸(L-5-MTHF)是叶酸的一种活性形式,因其生物利用率高而被广泛用作营养保健品。在此,我们报告了一种以合成叶酸(FA)为起点的高效一锅三酶级联反应生产 L-5-MTHF。我们通过酶筛选和工艺优化验证了新设计的合成路线。从保加利亚乳杆菌(LbuDHFR)中发现了高活性的二氢叶酸还原酶,可对非天然底物 FA 进行不对称氢化,从而显著提高合成效率。利用廉价的甲基供体,成功地利用二甲基磺酰基丙酸依赖性脱甲基酶(DmdA)将四氢叶酸直接转化为 L-5-MTHF。由于 RcoDmdA 对去甲基化副产物的抑制具有很强的耐受性,因此它被选自海洋细菌 Ruegeria conchae。最佳的单锅酶法合成可将 34 mM 的 FA 完全转化为 32.5 mM 的 L-5-MTHF,摩尔转化率为 95.6%。在最终的反应混合物中没有检测到 FA、二氢叶酸或四氢叶酸。因此,新的一锅酶法无需过渡金属催化剂、不稳定的强还原剂和结晶解析,被证明是一种简单、经济、易于推广的 L-5-MTHF 绿色合成方法。
{"title":"One-pot enzymatic synthesis of l-5-methyltetrahydrofolate from folic acid using enzyme cascades†","authors":"Linjiang Zhu, Yuxin Wang, Linyan Pan, Enyong Lin, Jiayan Wang and Xiaolong Chen","doi":"10.1039/D4RE00237G","DOIUrl":"https://doi.org/10.1039/D4RE00237G","url":null,"abstract":"<p > <small>L</small>-5-Methyltetrahydrofolate (<small>L</small>-5-MTHF) is an active form of folate and widely used as a nutraceutical due to its high bioavailability. Herein, we report an efficient one-pot three-enzyme cascade reaction for the production of <small>L</small>-5-MTHF starting from synthetic folic acid (FA). The newly-designed synthesis route was validated by enzyme screening and process optimization. The highly-active dihydrofolate reductase from <em>Lactobacillus bulgaricus</em> (<em>Lbu</em>DHFR) was identified for asymmetric hydrogenation towards unnatural substrate FA, which could remarkably increase the synthetic efficiency. Dimethylsulfoniopropionate-dependent demethylase (DmdA) was successfully employed for directly converting tetrahydrofolate into <small>L</small>-5-MTHF using a cheap methyl donor. <em>Rco</em>DmdA from marine bacteria <em>Ruegeria conchae</em> was selected due to its high tolerance against the inhibition of the demethylated by-product. The optimal one-pot enzymatic synthesis could completely convert 34 mM of FA into 32.5 mM of <small>L</small>-5-MTHF with a molar conversion rate of 95.6%. No FA, dihydrofolate or tetrahydrofolate were detected in the final reaction mixture. Therefore, the new one-pot enzymatic method, circumventing the need for a transition metal catalyst, an unstable strong reductant and crystallization resolution, is proved to be simple, cost-effective, and easy to scale up for the green synthesis of <small>L</small>-5-MTHF.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3110-3115"},"PeriodicalIF":3.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi-Bao Zhang, Yin-Ning Zhou, Hao Chen, Zheng-Hong Luo, Liyang Zhou, Guojun Yu, Wenwu Liu and Shiping Zhu
This work aims to study the heat transfer performance of a sophisticated industrial suspension polymerization reactor, which is distinguished by its complex blade structure and capability in efficient heat removal as well as its precise control over temperature distribution through adjusting the flow ratio of cooling water in the agitator and jacket. To achieve this goal, the impact of flow ratio and agitator speed on the heat removal rate and fluid temperature gradient is systematically investigated by CFD simulation. Several indicators are developed to quantitatively assess the reactor's heat transfer capability and fluid temperature uniformity. In addition, a thorough investigation is undertaken to analyze the possible mechanisms by which these factors exert their influence on the heat transfer performance of the reactor. Finally, some strategies for optimal performance through adjusting operational parameters of this type of reactors are proposed.
{"title":"Digital strategies to improve the product quality and production efficiency of fluorinated polymers: 2. Heat removal performance of reactor with internal and external cooling systems†","authors":"Xi-Bao Zhang, Yin-Ning Zhou, Hao Chen, Zheng-Hong Luo, Liyang Zhou, Guojun Yu, Wenwu Liu and Shiping Zhu","doi":"10.1039/D4RE00203B","DOIUrl":"https://doi.org/10.1039/D4RE00203B","url":null,"abstract":"<p >This work aims to study the heat transfer performance of a sophisticated industrial suspension polymerization reactor, which is distinguished by its complex blade structure and capability in efficient heat removal as well as its precise control over temperature distribution through adjusting the flow ratio of cooling water in the agitator and jacket. To achieve this goal, the impact of flow ratio and agitator speed on the heat removal rate and fluid temperature gradient is systematically investigated by CFD simulation. Several indicators are developed to quantitatively assess the reactor's heat transfer capability and fluid temperature uniformity. In addition, a thorough investigation is undertaken to analyze the possible mechanisms by which these factors exert their influence on the heat transfer performance of the reactor. Finally, some strategies for optimal performance through adjusting operational parameters of this type of reactors are proposed.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 106-118"},"PeriodicalIF":3.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solvent selection is crucial for optimizing reaction outcomes of various reactions. Herein, we conducted nitrobenzene hydrogenation in a tubular-flow reactor coated with a Pd/TiO2 catalyst using 17 different solvents and exhaustively studied the solvent effect through statistical analysis. Results show that protic solvents provide higher conversion and aniline production than aprotic ones, but solvent study could not be interpreted using simple regression alone. Rigorous analyses revealed that the hydrogen donor and acceptor abilities of a solvent are the most important factors assisting nitrobenzene reduction. Importantly, solvent solubility in H2O and dipole moment are key sub-factors influencing nitrobenzene conversion and aniline yields, which were validated using the statistical analysis of 57 solvent parameters. Our regression model predicts that 2,2,2-trifluoroethanol is a suitable solvent for hydrogenation reactions.
{"title":"A solvent-selection strategy for the hydrogenation reaction inside a tubular-flow reactor through a statistical approach†","authors":"Benny Wahyudianto, Takehiro Yamaki, Nobuo Hara, Yoshihiro Takebayashi and Sho Kataoka","doi":"10.1039/D4RE00309H","DOIUrl":"https://doi.org/10.1039/D4RE00309H","url":null,"abstract":"<p >Solvent selection is crucial for optimizing reaction outcomes of various reactions. Herein, we conducted nitrobenzene hydrogenation in a tubular-flow reactor coated with a Pd/TiO<small><sub>2</sub></small> catalyst using 17 different solvents and exhaustively studied the solvent effect through statistical analysis. Results show that protic solvents provide higher conversion and aniline production than aprotic ones, but solvent study could not be interpreted using simple regression alone. Rigorous analyses revealed that the hydrogen donor and acceptor abilities of a solvent are the most important factors assisting nitrobenzene reduction. Importantly, solvent solubility in H<small><sub>2</sub></small>O and dipole moment are key sub-factors influencing nitrobenzene conversion and aniline yields, which were validated using the statistical analysis of 57 solvent parameters. Our regression model predicts that 2,2,2-trifluoroethanol is a suitable solvent for hydrogenation reactions.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 2","pages":" 311-319"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Zhou, Zhen Liu, Zhihua Zhu, Zuoxiang Zeng and Li Sun
An examination of the temporal dynamics of the moisture curing process of polyurethane (PUR) hot melt adhesives under varied humidity (65–85% RH) and temperature (20–40 °C) was performed via in situ Fourier transform infrared (FTIR) spectroscopy. The commencement of the moisture curing for PUR was substantiated by a reduction in peak intensity at 2271 cm−1. The data revealed that the nascent phase of the moisture curing reaction aligns with the first-order reaction kinetics. Further, there was a noticeable acceleration in the rate of the PUR's moisture curing reaction with an increment in environmental humidity and temperature. Density functional theory (DFT) was harnessed to delve into the effects of additional water clusters on the PUR's moisture curing progression. The theoretical model proposed that these additional water molecules catalyzed the hydrogen transfer, thus bolstering the moisture curing reaction, a finding that corroborated with our empirical observations.
{"title":"The kinetics of the polyurethane moisture curing reaction: a combined experimental and DFT mechanistic study†","authors":"Jie Zhou, Zhen Liu, Zhihua Zhu, Zuoxiang Zeng and Li Sun","doi":"10.1039/D4RE00385C","DOIUrl":"https://doi.org/10.1039/D4RE00385C","url":null,"abstract":"<p >An examination of the temporal dynamics of the moisture curing process of polyurethane (PUR) hot melt adhesives under varied humidity (65–85% RH) and temperature (20–40 °C) was performed <em>via in situ</em> Fourier transform infrared (FTIR) spectroscopy. The commencement of the moisture curing for PUR was substantiated by a reduction in peak intensity at 2271 cm<small><sup>−1</sup></small>. The data revealed that the nascent phase of the moisture curing reaction aligns with the first-order reaction kinetics. Further, there was a noticeable acceleration in the rate of the PUR's moisture curing reaction with an increment in environmental humidity and temperature. Density functional theory (DFT) was harnessed to delve into the effects of additional water clusters on the PUR's moisture curing progression. The theoretical model proposed that these additional water molecules catalyzed the hydrogen transfer, thus bolstering the moisture curing reaction, a finding that corroborated with our empirical observations.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 38-47"},"PeriodicalIF":3.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydrogen is widely used in industrial chemistry and acts as a promising clean energy carrier that can be produced from different hydrocarbons and water. Currently, the main sources of hydrogen are fossil fuels; however, they are associated with large CO2 emissions. Alternatively, green hydrogen produced from water electrolysis using renewable energy is still far from large-scale industrial application owing to the poor reliability of renewable energy and water electrolysis. Therefore, the production of blue hydrogen, coupled with the CO2 capture process, will play a dominant role in the near future in commercial hydrogen production. In this review, membrane reactor technologies based on ceramic-based dense membranes are comprehensively introduced. Membrane reactors are classified into three types according to the properties of the conductive carrier of membrane materials: (1) mixed protonic and electronic conductor (MPEC) membrane reactors, (2) mixed oxide-ionic and electronic conductor (MOEC) membrane reactors, and (3) mixed oxide-ionic and carbonate-ionic conductor (MOCC) membrane reactors. Their working principle, membrane materials, hydrogen sources, operating conditions, and performance are summarized. Finally, the challenges and prospectives of these membrane reactors are discussed for their future development.
{"title":"Mixed-conducting ceramic membrane reactors for hydrogen production","authors":"Jingjing Tong, Peng Zhang, Fuwei Zhuang, Yanyan Zheng, Binyan Liu, Xiangping Qiao and Xuefeng Zhu","doi":"10.1039/D4RE00372A","DOIUrl":"https://doi.org/10.1039/D4RE00372A","url":null,"abstract":"<p >Hydrogen is widely used in industrial chemistry and acts as a promising clean energy carrier that can be produced from different hydrocarbons and water. Currently, the main sources of hydrogen are fossil fuels; however, they are associated with large CO<small><sub>2</sub></small> emissions. Alternatively, green hydrogen produced from water electrolysis using renewable energy is still far from large-scale industrial application owing to the poor reliability of renewable energy and water electrolysis. Therefore, the production of blue hydrogen, coupled with the CO<small><sub>2</sub></small> capture process, will play a dominant role in the near future in commercial hydrogen production. In this review, membrane reactor technologies based on ceramic-based dense membranes are comprehensively introduced. Membrane reactors are classified into three types according to the properties of the conductive carrier of membrane materials: (1) mixed protonic and electronic conductor (MPEC) membrane reactors, (2) mixed oxide-ionic and electronic conductor (MOEC) membrane reactors, and (3) mixed oxide-ionic and carbonate-ionic conductor (MOCC) membrane reactors. Their working principle, membrane materials, hydrogen sources, operating conditions, and performance are summarized. Finally, the challenges and prospectives of these membrane reactors are discussed for their future development.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3072-3099"},"PeriodicalIF":3.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00372a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanifrahmawan Sudibyo, Daniela V. Cabrera, Rodrigo Labatut, Calvin J. Supriyanto, Budhijanto Budhijanto and Adhika Widyaparaga
A trifunctional catalyst facilitating a series of hydroxylation, oxidative ring opening, and aqueous-phase reforming reactions was developed to convert phenolic wastewater into syngas. The definitive screening design experiment at 250 °C for 5 h with 1.75% H2O2 and 2 wt% catalyst loading demonstrated the importance of Fe, Mn, and Ni among the first-row transition metals to be impregnated into hydrotalcite to acquire the trifunctional feature. The surface chemistry characterization revealed that they improved the amount of strong and weak Brønsted (SBrA and WBrA) and Lewis (SLA and WLA) acidic active sites. The mechanistic roles of these sites via semi-continuous kinetic investigation at 200–300 °C for 1–5 h with 1.75% H2O2 and 2 wt% catalyst loading were unraveled: (1) SBrA (surface metal oxyhydroxides) facilitated hydroxylation and homolytic cleavage producing hydroxyphenols; (2) WBrA (surface metal hydroxides) promoted ring opening of hydroxyphenols yielding oxo- and di-carboxylic acids; (3) WLA (mineral phase with a tetrahedral coordination) catalyzed reforming of acids into syngas; and (4) SLA (mineral phase with an octahedral coordination) improved the H2 yield by promoting the water–gas shift reaction. The optimal content of Fe, Mn, and Ni was 49.4, 21.2, and 29.4 wt%, respectively, from 20 wt% of active metals on the support to achieve the maximal organic carbon removal (∼82%) and H2 yield (∼80%) with a CO-to-H2 ratio of 0.6, useful for chemical building block synthesis. The optimized catalyst demonstrated high activity and reusability, with a turnover number and frequency of ∼1 × 106 and ∼6 × 104 s−1, respectively, marking a breakthrough in sustainable syngas production.
{"title":"Syngas production from phenolic pollutants via a series of hydroxylation, ring cleavage, and aqueous-phase reforming catalyzed by a hydrotalcite-supported Fe–Mn–Ni alloy†","authors":"Hanifrahmawan Sudibyo, Daniela V. Cabrera, Rodrigo Labatut, Calvin J. Supriyanto, Budhijanto Budhijanto and Adhika Widyaparaga","doi":"10.1039/D4RE00348A","DOIUrl":"https://doi.org/10.1039/D4RE00348A","url":null,"abstract":"<p >A trifunctional catalyst facilitating a series of hydroxylation, oxidative ring opening, and aqueous-phase reforming reactions was developed to convert phenolic wastewater into syngas. The definitive screening design experiment at 250 °C for 5 h with 1.75% H<small><sub>2</sub></small>O<small><sub>2</sub></small> and 2 wt% catalyst loading demonstrated the importance of Fe, Mn, and Ni among the first-row transition metals to be impregnated into hydrotalcite to acquire the trifunctional feature. The surface chemistry characterization revealed that they improved the amount of strong and weak Brønsted (SBrA and WBrA) and Lewis (SLA and WLA) acidic active sites. The mechanistic roles of these sites <em>via</em> semi-continuous kinetic investigation at 200–300 °C for 1–5 h with 1.75% H<small><sub>2</sub></small>O<small><sub>2</sub></small> and 2 wt% catalyst loading were unraveled: (1) SBrA (surface metal oxyhydroxides) facilitated hydroxylation and homolytic cleavage producing hydroxyphenols; (2) WBrA (surface metal hydroxides) promoted ring opening of hydroxyphenols yielding oxo- and di-carboxylic acids; (3) WLA (mineral phase with a tetrahedral coordination) catalyzed reforming of acids into syngas; and (4) SLA (mineral phase with an octahedral coordination) improved the H<small><sub>2</sub></small> yield by promoting the water–gas shift reaction. The optimal content of Fe, Mn, and Ni was 49.4, 21.2, and 29.4 wt%, respectively, from 20 wt% of active metals on the support to achieve the maximal organic carbon removal (∼82%) and H<small><sub>2</sub></small> yield (∼80%) with a CO-to-H<small><sub>2</sub></small> ratio of 0.6, useful for chemical building block synthesis. The optimized catalyst demonstrated high activity and reusability, with a turnover number and frequency of ∼1 × 10<small><sup>6</sup></small> and ∼6 × 10<small><sup>4</sup></small> s<small><sup>−1</sup></small>, respectively, marking a breakthrough in sustainable syngas production.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3285-3298"},"PeriodicalIF":3.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saartjie M. Gouws, Julien Brocus, Laurent Cassayre, Jean-Jacques Letourneau and Marion Carrier
In this study, a novel method was developed to understand the liquid-state reactions occurring inside the intermediate liquid component (ILC) during biomass fast pyrolysis. A new experimental setup using a heated 300 μm inner diameter capillary microchannel with flow visualization was designed to study isothermal kinetics and reaction mechanisms of liquid-state sugar hydrolysis reactions. Heat- and flow patterns were investigated to confirm the intrinsic character of the kinetic measurements. Following the conventional dimensional analysis, observations with a high-speed camera and computational fluid dynamics modelling (CFD) in COMSOL Multiphysics® were used to confirm the hydrodynamic slug-flow pattern and the scale function of the temperature. The microfluidic reactor can operate within a temperature range of 453–533 K, up to 7 MPa, and a residence time within the hot section of 5 to 80 s, which is controlled by the volumetric flow rate. The novelty of this reactor is that under the specified operating conditions and residence times, it can provide isothermal measurements of intrinsic reaction kinetics, which have never been reported for hydrolysis systems. After hydrolysis in the microfluidic reactor, liquid samples were analysed off-line through HPLC to determine the sugar conversion and product yields. A fitting kinetic approach was developed to treat the kinetic data and extract intrinsic kinetic parameters describing sugar hydrolysis, key reactions occurring in the softening phase of biomass fast pyrolysis that are too often overlooked. It is proposed to integrate this experimental kinetic information into complete biomass fast pyrolysis models to take into consideration the solvent-like reactional environment.
{"title":"Microfluidic reactor development for isothermal kinetic measurements of sugar hydrolysis and global kinetics determination by the model-fitting approach†","authors":"Saartjie M. Gouws, Julien Brocus, Laurent Cassayre, Jean-Jacques Letourneau and Marion Carrier","doi":"10.1039/D4RE00297K","DOIUrl":"https://doi.org/10.1039/D4RE00297K","url":null,"abstract":"<p >In this study, a novel method was developed to understand the liquid-state reactions occurring inside the intermediate liquid component (ILC) during biomass fast pyrolysis. A new experimental setup using a heated 300 μm inner diameter capillary microchannel with flow visualization was designed to study isothermal kinetics and reaction mechanisms of liquid-state sugar hydrolysis reactions. Heat- and flow patterns were investigated to confirm the intrinsic character of the kinetic measurements. Following the conventional dimensional analysis, observations with a high-speed camera and computational fluid dynamics modelling (CFD) in COMSOL Multiphysics® were used to confirm the hydrodynamic slug-flow pattern and the scale function of the temperature. The microfluidic reactor can operate within a temperature range of 453–533 K, up to 7 MPa, and a residence time within the hot section of 5 to 80 s, which is controlled by the volumetric flow rate. The novelty of this reactor is that under the specified operating conditions and residence times, it can provide isothermal measurements of intrinsic reaction kinetics, which have never been reported for hydrolysis systems. After hydrolysis in the microfluidic reactor, liquid samples were analysed off-line through HPLC to determine the sugar conversion and product yields. A fitting kinetic approach was developed to treat the kinetic data and extract intrinsic kinetic parameters describing sugar hydrolysis, key reactions occurring in the softening phase of biomass fast pyrolysis that are too often overlooked. It is proposed to integrate this experimental kinetic information into complete biomass fast pyrolysis models to take into consideration the solvent-like reactional environment.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 48-69"},"PeriodicalIF":3.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Here we demonstrate that Ga,Al-*BEA zeolites are effective bifunctional catalysts for para-xylene (p-xylene) production from bio-derived 2,5-dimethylfuran (DMF) through tandem Diels–Alder/dehydration reactions. A series of catalysts was synthesized via direct (one-pot) and post-synthesis techniques to introduce Brønsted and Lewis acid sites. The synthesis approach employed in this study avoids cost- and time-intensive processes typically associated with the preparation of metal-substituted *BEA zeolite catalysts for p-xylene production. Our findings reveal that Ga,Al-*BEA catalysts enhance DMF conversion and p-xylene selectivity in comparison to Al-*BEA zeolite. The pairing of Ga and Al in a single catalyst yields fewer byproducts, such as 2,5-hexanedione, 1-methyl-4-propyl-benzene, alkylated products, and oligomers. Comparisons of zeolites prepared with different Ga content reveal a higher turnover frequency for DMF conversion to p-xylene over Ga,Al-*BEA catalysts prepared by a one-pot synthesis compared to Al-*BEA catalysts. We observed a correlation between Ga content and p-xylene selectivity and yield, which is attributed to the Brønsted acidity of Ga framework sites (with reduced acid strength compared to Al sites) and to the Lewis acidity of extra-framework Ga species. The latter contribution was confirmed by analysis of Ga-impregnated Al-*BEA zeolites, which are less active than framework species but have a positive effect on p-xylene selectivity. Our collective findings indicate that tuning zeolite acidity by optimizing the amount of heteroatom incorporation in the crystal framework to tailor the speciation and strength of acid sites is beneficial to maximize p-xylene production from renewable resources.
{"title":"Selective production of para-xylene from biomass-derived 2,5-dimethylfuran through tandem Diels–Alder/dehydration reactions with a bifunctional Ga,Al-zeolite catalyst†","authors":"Jaeyul Kim, Sungmin Han and Jeffrey D. Rimer","doi":"10.1039/D4RE00362D","DOIUrl":"https://doi.org/10.1039/D4RE00362D","url":null,"abstract":"<p >Here we demonstrate that Ga,Al-*BEA zeolites are effective bifunctional catalysts for <em>para</em>-xylene (<em>p</em>-xylene) production from bio-derived 2,5-dimethylfuran (DMF) through tandem Diels–Alder/dehydration reactions. A series of catalysts was synthesized <em>via</em> direct (one-pot) and post-synthesis techniques to introduce Brønsted and Lewis acid sites. The synthesis approach employed in this study avoids cost- and time-intensive processes typically associated with the preparation of metal-substituted *BEA zeolite catalysts for <em>p</em>-xylene production. Our findings reveal that Ga,Al-*BEA catalysts enhance DMF conversion and <em>p</em>-xylene selectivity in comparison to Al-*BEA zeolite. The pairing of Ga and Al in a single catalyst yields fewer byproducts, such as 2,5-hexanedione, 1-methyl-4-propyl-benzene, alkylated products, and oligomers. Comparisons of zeolites prepared with different Ga content reveal a higher turnover frequency for DMF conversion to <em>p</em>-xylene over Ga,Al-*BEA catalysts prepared by a one-pot synthesis compared to Al-*BEA catalysts. We observed a correlation between Ga content and <em>p</em>-xylene selectivity and yield, which is attributed to the Brønsted acidity of Ga framework sites (with reduced acid strength compared to Al sites) and to the Lewis acidity of extra-framework Ga species. The latter contribution was confirmed by analysis of Ga-impregnated Al-*BEA zeolites, which are less active than framework species but have a positive effect on <em>p</em>-xylene selectivity. Our collective findings indicate that tuning zeolite acidity by optimizing the amount of heteroatom incorporation in the crystal framework to tailor the speciation and strength of acid sites is beneficial to maximize <em>p</em>-xylene production from renewable resources.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3277-3284"},"PeriodicalIF":3.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}