首页 > 最新文献

中国物理C最新文献

英文 中文
Searches for multi-Z boson productions and anomalous gauge boson couplings at a muon collider* * Supported in part by the National Natural Science Foundation of China (12150005, 12075004, 12061141002) and MOST (2018YFA0403900) 在μ子对撞机上搜索多Z玻色子产生和反常规玻色子耦合* * 部分受国家自然科学基金(12150005、12075004、12061141002)和科技部(2018YFA0403900)资助
IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2024-10-01 DOI: 10.1088/1674-1137/ad5661
Ruobing Jiang, Chuqiao Jiang, Alim Ruzi, Tianyi Yang, Yong Ban, Qiang Li
Multi-boson productions can be exploited as novel probes either for standard model precision tests or new physics searches, and have become a popular research topic in ongoing LHC experiments and future collider studies, including those for electron–positron and muon–muon colliders. In this study, we focus on two examples, i.e., direct productions through annihilation at a muon collider, and productions through vector boson scattering (VBS) at a muon collider, with an integrated luminosity of . Various channels are considered, including and +2jets. The expected significance on these multi-Z boson production processes is reported based on a detailed Monte Carlo study and signal background analysis. Sensitivities on anomalous gauge boson couplings are also presented.
多玻色子的产生可以作为标准模型精确检验或新物理搜索的新探针,并已成为正在进行的大型强子对撞机实验和未来对撞机研究(包括电子-正电子对撞机和μ介子-μ介子对撞机的研究)的热门研究课题。在本研究中,我们重点讨论了两个例子,即在μ介子对撞机上通过湮灭直接产生和在μ介子对撞机上通过矢量玻色子散射(VBS)产生,其综合光度分别为......和......。 我们考虑了各种渠道,包括和+2jets。根据详细的蒙特卡洛研究和信号背景分析,报告了这些多Z玻色子产生过程的预期意义。此外,还介绍了对反常规玻色子耦合的敏感性。
{"title":"Searches for multi-Z boson productions and anomalous gauge boson couplings at a muon collider* * Supported in part by the National Natural Science Foundation of China (12150005, 12075004, 12061141002) and MOST (2018YFA0403900)","authors":"Ruobing Jiang, Chuqiao Jiang, Alim Ruzi, Tianyi Yang, Yong Ban, Qiang Li","doi":"10.1088/1674-1137/ad5661","DOIUrl":"https://doi.org/10.1088/1674-1137/ad5661","url":null,"abstract":"Multi-boson productions can be exploited as novel probes either for standard model precision tests or new physics searches, and have become a popular research topic in ongoing LHC experiments and future collider studies, including those for electron–positron and muon–muon colliders. In this study, we focus on two examples, <italic toggle=\"yes\">i.e</italic>., <inline-formula>\u0000<tex-math><?CDATA $ {text{Z}} {text{Z}} {text{Z}} $?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_103102_M1.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> direct productions through <inline-formula>\u0000<tex-math><?CDATA $ mu^+mu^- $?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_103102_M2.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> annihilation at a <inline-formula>\u0000<tex-math><?CDATA $ 1, {text{TeV}} $?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_103102_M3.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> muon collider, and <inline-formula>\u0000<tex-math><?CDATA $ {text{Z}} {text{Z}} $?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_103102_M4.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> productions through vector boson scattering (VBS) at a <inline-formula>\u0000<tex-math><?CDATA $ 10, {text{TeV}} $?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_103102_M5.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> muon collider, with an integrated luminosity of <inline-formula>\u0000<tex-math><?CDATA $10; text{ab}^{-1}$?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_103102_M6.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>. Various channels are considered, including <inline-formula>\u0000<tex-math><?CDATA $ {text{Z}} {text{Z}} {text{Z}} rightarrow 4ell2nu $?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_103102_M7.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> and <inline-formula>\u0000<tex-math><?CDATA $ {text{Z}} {text{Z}} {text{Z}} rightarrow 4ell $?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_103102_M8.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>+2jets. The expected significance on these multi-Z boson production processes is reported based on a detailed Monte Carlo study and signal background analysis. Sensitivities on anomalous gauge boson couplings are also presented.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"36 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross section measurement for the 232Th(n, f ) reaction in the 4.50−5.40 MeV region using a time projection chamber* * This study was financially Supported by the National Natural Science Foundation of China (12075008), the Key Laboratory of Nuclear Data foundation (6142A08200103), the Basic and Applied Basic Research Foundation of Guangdong Province, China (2021B1515120027), and the State Key Laboratory of Nuclear Physics and Technology, Peking University (NPT2021KFJ57) 使用时间投影室测量 4.50-5.40 MeV 区 232Th(n, f ) 反应的截面* * 本研究得到国家自然科学基金(12075008)、核数据基础重点实验室(6142A08200103)、广东省基础与应用基础研究基金(2021B1515120027)和北京大学核物理与核技术国家重点实验室(NPT2021KFJ57)的资助。
IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2024-10-01 DOI: 10.1088/1674-1137/ad5ae6
Haofan Bai, Han Yi, Yankun Sun, Yiwei Hu, Jie Liu, Zepeng Wu, Cong Xia, Wenkai Ren, Wentian Cao, Tieshuan Fan, Guohui Zhang, Ruirui Fan, Yang Li, Wei Jiang, Yonghao Chen, You Lv, Changjun Ning, Weihua Jia, Zhiyong Zhang, Haolei Chen, Zhen Chen, Maoyuan Zhao, Changqing Feng, Shubin Liu
Accurate cross sections of neutron induced fission reactions are required in the design of advanced nuclear systems and the development of fission theory. Time projection chambers (TPCs), with their track reconstruction and particle identification capabilities, are considered the best detectors for high-precision fission cross section measurements. The TPC developed by the back-streaming white neutron source (Back-n) team of the China Spallation Neutron Source (CSNS) was used as the fission fragment detector in measurements. In this study, the cross sections of the 232Th(n, f) reaction at five neutron energies in the 4.50−5.40 MeV region were measured. The fission fragments and α particles were well identified using our TPC, which led to a higher detection efficiency of the fission fragments and smaller uncertainty of the measured cross sections. Ours is the first measurement of the 232Th(n, f) reaction using a TPC for the detection of fission fragments. With uncertainties less than 5%, our cross sections are consistent with the data in different evaluation libraries, including JENDL-4.0, ROSFOND-2010, CENDL-3.2, ENDF/B-VIII.0, and BROND-3.1, whose uncertainties can be reduced after future improvement of the measurement.
先进核系统的设计和裂变理论的发展都需要精确的中子诱导裂变反应截面。时间投影室(TPC)具有轨迹重建和粒子识别能力,被认为是高精度裂变截面测量的最佳探测器。中国溅射中子源(CSNS)后流白中子源(Back-n)团队研制的时间投影室被用作裂变碎片探测器。本研究测量了 232Th(n,f)反应在 4.50-5.40 MeV 区域的五个中子能量下的截面。使用我们的 TPC 可以很好地识别裂变碎片和 α 粒子,这使得裂变碎片的探测效率更高,测量截面的不确定性更小。我们是首次使用 TPC 对 232Th(n,f)反应进行裂变碎片探测。在不确定度小于 5%的情况下,我们的横截面与不同评估库中的数据一致,包括 JENDL-4.0、ROSFOND-2010、CENDL-3.2、ENDF/B-VIII.0 和 BROND-3.1。
{"title":"Cross section measurement for the 232Th(n, f ) reaction in the 4.50−5.40 MeV region using a time projection chamber* * This study was financially Supported by the National Natural Science Foundation of China (12075008), the Key Laboratory of Nuclear Data foundation (6142A08200103), the Basic and Applied Basic Research Foundation of Guangdong Province, China (2021B1515120027), and the State Key Laboratory of Nuclear Physics and Technology, Peking University (NPT2021KFJ57)","authors":"Haofan Bai, Han Yi, Yankun Sun, Yiwei Hu, Jie Liu, Zepeng Wu, Cong Xia, Wenkai Ren, Wentian Cao, Tieshuan Fan, Guohui Zhang, Ruirui Fan, Yang Li, Wei Jiang, Yonghao Chen, You Lv, Changjun Ning, Weihua Jia, Zhiyong Zhang, Haolei Chen, Zhen Chen, Maoyuan Zhao, Changqing Feng, Shubin Liu","doi":"10.1088/1674-1137/ad5ae6","DOIUrl":"https://doi.org/10.1088/1674-1137/ad5ae6","url":null,"abstract":"Accurate cross sections of neutron induced fission reactions are required in the design of advanced nuclear systems and the development of fission theory. Time projection chambers (TPCs), with their track reconstruction and particle identification capabilities, are considered the best detectors for high-precision fission cross section measurements. The TPC developed by the back-streaming white neutron source (Back-n) team of the China Spallation Neutron Source (CSNS) was used as the fission fragment detector in measurements. In this study, the cross sections of the <sup>232</sup>Th(<italic toggle=\"yes\">n</italic>, <italic toggle=\"yes\">f</italic>) reaction at five neutron energies in the 4.50−5.40 MeV region were measured. The fission fragments and α particles were well identified using our TPC, which led to a higher detection efficiency of the fission fragments and smaller uncertainty of the measured cross sections. Ours is the first measurement of the <sup>232</sup>Th(<italic toggle=\"yes\">n, f</italic>) reaction using a TPC for the detection of fission fragments. With uncertainties less than 5%, our cross sections are consistent with the data in different evaluation libraries, including JENDL-4.0, ROSFOND-2010, CENDL-3.2, ENDF/B-VIII.0, and BROND-3.1, whose uncertainties can be reduced after future improvement of the measurement.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"105 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collective flow and fluid behavior in p/d/3He+Au collisions at GeV* * Supported in part by the National Natural Science Foundation of China (12247107, 12075007, 12147173 (Baochi Fu)) GeV p/d/3He+Au对撞中的集体流和流体行为* * 国家自然科学基金部分资助(12247107、12075007、12147173(傅抱石)
IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2024-10-01 DOI: 10.1088/1674-1137/ad5ae8
Zeming Wu, Baochi Fu, Shujun Zhao, Runsheng Liu, Huichao Song
By varying the intrinsic initial geometry, p/d/3He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) provide a unique opportunity to understand the collective behavior and probe possible sub-nucleon fluctuations in small systems. In this study, we employed the hybrid model under TRENTo initial conditions to study the collective flow and fluid behavior in p/d/3He+Au collisions. With fine-tuned parameters, can describe the and data from the PHENIX and STAR collaborations. However, for certain parameter sets with initial sub-nucleon fluctuations, the hydrodynamic simulations already go beyond their limits with an average Knudsen number clearly larger than unity. Our calculations demonstrate that, for a meaningful evaluation of the fluid behavior in small systems, model simulations must also pay attention to the validity range of hydrodynamics.
相对论重离子对撞机(RHIC)上的 p/d/3He+Au 对撞通过改变固有的初始几何形状,为了解小系统中的集体行为和探测可能的亚核子波动提供了一个独特的机会。在这项研究中,我们采用了 TRENTo 初始条件下的混合模型来研究 p/d/3He+Au 对撞中的集体流动和流体行为。在参数微调的情况下,可以描述 PHENIX 和 STAR 合作的数据。然而,对于某些具有初始亚核子波动的参数集,流体力学模拟已经超出了它们的极限,平均克努森数明显大于一。我们的计算表明,为了对小系统中的流体行为进行有意义的评估,模型模拟还必须注意流体力学的有效范围。
{"title":"Collective flow and fluid behavior in p/d/3He+Au collisions at GeV* * Supported in part by the National Natural Science Foundation of China (12247107, 12075007, 12147173 (Baochi Fu))","authors":"Zeming Wu, Baochi Fu, Shujun Zhao, Runsheng Liu, Huichao Song","doi":"10.1088/1674-1137/ad5ae8","DOIUrl":"https://doi.org/10.1088/1674-1137/ad5ae8","url":null,"abstract":"By varying the intrinsic initial geometry, <italic toggle=\"yes\">p</italic>/<italic toggle=\"yes\">d</italic>/<sup>3</sup>He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) provide a unique opportunity to understand the collective behavior and probe possible sub-nucleon fluctuations in small systems. In this study, we employed the hybrid model <inline-formula>\u0000<tex-math><?CDATA $ {mathrm{iEBE-VISHNU}}$?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_104102_M2.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> under TRENTo initial conditions to study the collective flow and fluid behavior in <italic toggle=\"yes\">p</italic>/<italic toggle=\"yes\">d</italic>/<sup>3</sup>He+Au collisions. With fine-tuned parameters, <inline-formula>\u0000<tex-math><?CDATA $ {mathrm{iEBE-VISHNU}}$?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_104102_M3.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> can describe the <inline-formula>\u0000<tex-math><?CDATA $ v_2(p_T) $?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_104102_M4.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> and <inline-formula>\u0000<tex-math><?CDATA $ v_3(p_T) $?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_104102_M5.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> data from the PHENIX and STAR collaborations. However, for certain parameter sets with initial sub-nucleon fluctuations, the hydrodynamic simulations already go beyond their limits with an average Knudsen number <inline-formula>\u0000<tex-math><?CDATA $ langle K_n rangle $?></tex-math>\u0000<inline-graphic xlink:href=\"cpc_48_10_104102_M6.jpg\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> clearly larger than unity. Our calculations demonstrate that, for a meaningful evaluation of the fluid behavior in small systems, model simulations must also pay attention to the validity range of hydrodynamics.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"18 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ring-shaped shadow of a rotating naked singularity with a complete photon sphere* 具有完整光子球的旋转裸奇点的环形阴影*
IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2024-09-30 DOI: 10.1088/1674-1137/ad5660
Mingzhi Wang, 明智 王, Guanghai Guo, 广海 郭, Pengfei Yan, 鹏飞 闫, Songbai Chen, 松柏 陈, Jiliang Jing and 继良 荆
We investigate the shadows of the Konoplya-Zhidenko naked singularity. In the spacetime of the Konoplya-Zhidenko naked singularity, not only an unstable retrograde light ring (LR) but also an unstable prograde LR exists, leading to the formation of a complete photon sphere (PS). Due to the absence of an event horizon, a dark disc-shaped shadow does not appear; instead, a ring-shaped shadow is observed. The ring-shaped shadow appears as an infinite number of relativistic Einstein rings in the image of the naked singularity. For some parameter values, only the unstable retrograde LR exists, resulting in an incomplete unstable PS and thus giving rise to an arc-shaped shadow for the Konoplya-Zhidenko naked singularity. The shadow of the Konoplya-Zhidenko naked singularity gradually shifts to the right as the rotation parameter a increases and gradually becomes smaller as the deformation parameter increases. Moreover, stable LRs and stable photon spherical orbits can exist in the Konoplya-Zhidenko naked singularity spacetime, but they have no effect on the image of the naked singularity. This study demonstrates that a rotating naked singularity can exhibit not only an arc-shaped shadow but also a ring-shaped shadow.
我们研究了科诺普利亚-日登科裸奇点的阴影。在科诺普廖亚-日登科裸奇点的时空中,不仅存在不稳定的逆行光环(LR),还存在不稳定的顺行光环,从而形成了一个完整的光子球(PS)。由于不存在事件视界,因此不会出现暗圆盘状阴影;相反,会观察到环状阴影。环形阴影在裸奇点的图像中表现为无数个相对论爱因斯坦环。在某些参数值下,只存在不稳定的逆行 LR,导致不完整的不稳定 PS,从而产生了 Konoplya-Zhidenko 裸奇点的弧形阴影。随着旋转参数 a 的增大,Konoplya-Zhidenko 裸奇点的阴影逐渐向右移动,随着变形参数的增大,阴影逐渐变小。此外,在 Konoplya-Zhidenko 裸奇点时空中可以存在稳定的 LR 和稳定的光子球面轨道,但它们对裸奇点的图像没有影响。这项研究表明,旋转裸奇点不仅可以呈现弧形阴影,还可以呈现环形阴影。
{"title":"The ring-shaped shadow of a rotating naked singularity with a complete photon sphere*","authors":"Mingzhi Wang, 明智 王, Guanghai Guo, 广海 郭, Pengfei Yan, 鹏飞 闫, Songbai Chen, 松柏 陈, Jiliang Jing and 继良 荆","doi":"10.1088/1674-1137/ad5660","DOIUrl":"https://doi.org/10.1088/1674-1137/ad5660","url":null,"abstract":"We investigate the shadows of the Konoplya-Zhidenko naked singularity. In the spacetime of the Konoplya-Zhidenko naked singularity, not only an unstable retrograde light ring (LR) but also an unstable prograde LR exists, leading to the formation of a complete photon sphere (PS). Due to the absence of an event horizon, a dark disc-shaped shadow does not appear; instead, a ring-shaped shadow is observed. The ring-shaped shadow appears as an infinite number of relativistic Einstein rings in the image of the naked singularity. For some parameter values, only the unstable retrograde LR exists, resulting in an incomplete unstable PS and thus giving rise to an arc-shaped shadow for the Konoplya-Zhidenko naked singularity. The shadow of the Konoplya-Zhidenko naked singularity gradually shifts to the right as the rotation parameter a increases and gradually becomes smaller as the deformation parameter increases. Moreover, stable LRs and stable photon spherical orbits can exist in the Konoplya-Zhidenko naked singularity spacetime, but they have no effect on the image of the naked singularity. This study demonstrates that a rotating naked singularity can exhibit not only an arc-shaped shadow but also a ring-shaped shadow.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"20 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of the number of ψ(3686) events taken at BESIII* * The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 12150004, 11635010, 11735014, 11835012, 11935015, 11935016, 11935018, 11961141012, 12025502, 12035009, 12035013, 12061131003, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265, 12221005, 12225509, 12235017; the Program of Science and Technology Development Plan of Jilin Province of China under Contract Nos. 20210508047RQ and 20230101021JC; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 455635585, Collaborative Research Center CRC 1044, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Research Foundation of Korea under Contract No. NRF-2022R1A2C1092335; National Science and Technology fund of Mongolia; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation of Thailand under Contract No. B16F640076; Polish National Science Centre under Contract No. 2019/35/O/ST2/02907; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374. BESIII 拍摄到的ψ(3686)事件数量的测定* * BESIII 合作组感谢 BEPCII 和 IHEP 计算中心工作人员的大力支持。20210508047RQ 和 20230101021JC;中国科学院(CAS)大型科学设施计划;中国科学院粒子物理卓越中心(CCEPP);国家自然科学基金委和中国科学院联合大型科学设施基金(合同号:U1832207);中国科学院前沿科学重点研究计划(合同号:QYZDJ-SSW);中国科学院粒子物理卓越中心(CCEPP);国家自然科学基金委和中国科学院联合大型科学设施基金(合同号:U1832207);中国科学院前沿科学重点研究计划(合同号:QYZDJ-SSW)。QYZDJ-SSW-SLH003、QYZDJ-SSW-SLH040;中科院 "百人计划";核与粒子物理研究所(INPAC)和上海粒子物理与宇宙学重点实验室;欧盟 "地平线 2020 "研究与创新计划 Marie Sklodowska-Curie 补助金协议(合同号:894790);德国科学研究基金会(GFI)。894790;德国研究基金会 DFG,合同号:455635585,合作研究中心 CRC 1044,FOR5327,GRK 2149;意大利国家核物理研究所;土耳其发展部,合同号:DPT2006K-1204。DPT2006K-120470;韩国国家研究基金会,合同号:NRF-2022R1A2C1092335;蒙古国家科学技术基金;泰国国家科学研究与创新基金(NSRF)(通过人力资源与机构发展、研究与创新项目管理部门),合同号:B16F640076;波兰国家科学中心,合同号:2019/35/O/ST2/02907;瑞典研究理事会;美国能源部,合同号:DE-FG02-05ER41374。
IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2024-09-01 DOI: 10.1088/1674-1137/ad595b
M. Ablikim, M. N. Achasov, P. Adlarson, O. Afedulidis, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, G. R. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. Y. Chen, S. K. Choi, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, L. Ge, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, Z. L. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, S. L. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, J. H. Jeong, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, X. Q. Jia, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. S. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, J. J. Lane, P. Larin, L. Lavezzi, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, Ke Li, L. J. Li, L. K. Li, Lei Li, M. H. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, S. X. Li, T. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Z. Li, Xiaoyu Li, Y. G. Li, Z. J. Li, Z. X. Li, Z. Y. Li, C. Liang, H. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, D. X. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. H. Liu, Fang Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, C. F. Qiao, X. K. Qiao, J. J. Qin, L. Q. Qin, L. Y. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, K. J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, H. C. Shi, J. L. Shi, J. Y. Shi, Q. Q. Shi, S. Y. Shi, X. Shi, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, M. Tang, Y. A. Tang, L. Y. Tao, Q. T. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, Y. Wan, S. J. Wang, B. Wang, B. L. Wang, Bo Wang, D. Y. Wang, F. Wang, H. J. Wang, J. J. Wang, J. P. Wang, K. Wang, L. L. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, Ziyi Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, X. H. Wu, Y. Wu, Y. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, S. Y. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. Xu, W. L. Xu, X. P. Xu, Y. C. Xu, Z. P. Xu, Z. S. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, Tao Yang, Y. Yang, Y. F. Yang, Y. X. Yang, Yifan Yang, Z. W. Yang, Z. P. Yao, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. A. Zafar, F. R. Zeng, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. C. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, P. Zhang, Q. Y. Zhang, R. Y. Zhang, Shuihan Zhang, Shulei Zhang, X. D. Zhang, X. M. Zhang, X. Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Yan Zhang, Yao Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, L. P. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, S. Q. Zhu, T. J. Zhu, W. D. Zhu, Y. C. Zhu, Z. A. Zhu, J. H. Zou, J. Zu, (BESIII Collaboration)
The number of ψ(3686) events collected by the BESIII detector during the 2021 run period is determined to be (2259.3±11.1)×106 by counting inclusive ψ(3686) hadronic events. The uncertainty is systematic and the statistical uncertainty is negligible. Meanwhile, the numbers of ψ(3686) events collected during the 2009 and 2012 run periods are updated to be (107.7±0.6)×106 and (345.4±2.6)×106, respectively. Both numbers are consistent with the previous measurements within one standard deviation. The total number of ψ(3686) events in the three data samples is (2712.4±14.3)×106.
通过对包含ψ(3686)强子事件的计数,BESIII探测器在2021年运行期间收集到的ψ(3686)事件的数量被确定为(2259.3±11.1)×106。不确定性是系统性的,统计不确定性可以忽略不计。同时,2009年和2012年运行期间收集到的ψ(3686)事件数量分别更新为(107.7±0.6)×106和(345.4±2.6)×106。这两个数字与之前的测量结果一致,误差在一个标准偏差之内。三个数据样本中的ψ(3686)事件总数为(2712.4±14.3)×106。
{"title":"Determination of the number of ψ(3686) events taken at BESIII* * The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 12150004, 11635010, 11735014, 11835012, 11935015, 11935016, 11935018, 11961141012, 12025502, 12035009, 12035013, 12061131003, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265, 12221005, 12225509, 12235017; the Program of Science and Technology Development Plan of Jilin Province of China under Contract Nos. 20210508047RQ and 20230101021JC; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 455635585, Collaborative Research Center CRC 1044, FOR5327, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Research Foundation of Korea under Contract No. NRF-2022R1A2C1092335; National Science and Technology fund of Mongolia; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation of Thailand under Contract No. B16F640076; Polish National Science Centre under Contract No. 2019/35/O/ST2/02907; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374.","authors":"M. Ablikim, M. N. Achasov, P. Adlarson, O. Afedulidis, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, G. R. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. Y. Chen, S. K. Choi, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, L. Ge, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, Z. L. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, S. L. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, J. H. Jeong, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, X. Q. Jia, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. S. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, J. J. Lane, P. Larin, L. Lavezzi, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, Ke Li, L. J. Li, L. K. Li, Lei Li, M. H. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, S. X. Li, T. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Z. Li, Xiaoyu Li, Y. G. Li, Z. J. Li, Z. X. Li, Z. Y. Li, C. Liang, H. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, D. X. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. H. Liu, Fang Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, C. F. Qiao, X. K. Qiao, J. J. Qin, L. Q. Qin, L. Y. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, K. J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, H. C. Shi, J. L. Shi, J. Y. Shi, Q. Q. Shi, S. Y. Shi, X. Shi, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, M. Tang, Y. A. Tang, L. Y. Tao, Q. T. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, Y. Wan, S. J. Wang, B. Wang, B. L. Wang, Bo Wang, D. Y. Wang, F. Wang, H. J. Wang, J. J. Wang, J. P. Wang, K. Wang, L. L. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, Ziyi Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, X. H. Wu, Y. Wu, Y. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, S. Y. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. Xu, W. L. Xu, X. P. Xu, Y. C. Xu, Z. P. Xu, Z. S. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, Tao Yang, Y. Yang, Y. F. Yang, Y. X. Yang, Yifan Yang, Z. W. Yang, Z. P. Yao, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. A. Zafar, F. R. Zeng, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. C. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, P. Zhang, Q. Y. Zhang, R. Y. Zhang, Shuihan Zhang, Shulei Zhang, X. D. Zhang, X. M. Zhang, X. Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Yan Zhang, Yao Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, L. P. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, S. Q. Zhu, T. J. Zhu, W. D. Zhu, Y. C. Zhu, Z. A. Zhu, J. H. Zou, J. Zu, (BESIII Collaboration)","doi":"10.1088/1674-1137/ad595b","DOIUrl":"https://doi.org/10.1088/1674-1137/ad595b","url":null,"abstract":"The number of <italic toggle=\"yes\">ψ</italic>(3686) events collected by the BESIII detector during the 2021 run period is determined to be (2259.3±11.1)×10<sup>6</sup> by counting inclusive <italic toggle=\"yes\">ψ</italic>(3686) hadronic events. The uncertainty is systematic and the statistical uncertainty is negligible. Meanwhile, the numbers of <italic toggle=\"yes\">ψ</italic>(3686) events collected during the 2009 and 2012 run periods are updated to be (107.7±0.6)×10<sup>6</sup> and (345.4±2.6)×10<sup>6</sup>, respectively. Both numbers are consistent with the previous measurements within one standard deviation. The total number of <italic toggle=\"yes\">ψ</italic>(3686) events in the three data samples is (2712.4±14.3)×10<sup>6</sup>.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"216 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Top-quark rare decays with flavor violation* 顶夸克稀有衰变与味道违反*
IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2024-08-31 DOI: 10.1088/1674-1137/ad53bb
Ming-Yue Liu, 明月 刘, Shu-Min Zhao, 树民 赵, Song Gao, 松 高, Xing-Yu Han, 星宇 韩, Tai-Fu Feng and 太傅 冯
In the present study, we investigated the decays of the top quark: , , , and . They are extremely rare processes in the standard model (SM). As the extension of the minimal supersymmetric standard model (MSSM), the SSM features new superfields such as the right-handed neutrinos and three Higgs singlets. We analyzed the effects of different sensitive parameters on the results and made reasonable theoretical predictions, thereby providing a useful reference for future experimental development. Considering the constraint set by the updated experimental data, the numerical results show that the branching ratios of the four processes, i.e., , can reach the same order of magnitude as their experimental upper limits. Among them, has the most evident effect on these processes and is the main parameter; , , , , , , and are also important parameters for the processes, and have effects on the numerical results.
在本研究中,我们研究了顶夸克的衰变:和它们是标准模型(SM)中极其罕见的过程。作为最小超对称标准模型(MSSM)的扩展,SSM具有新的超场,如右手中微子和三个希格斯单子。我们分析了不同敏感参数对结果的影响,并做出了合理的理论预测,从而为未来的实验发展提供了有益的参考。考虑到最新实验数据的约束,数值结果表明,四个过程的分支比,即 ,可以达到与其实验上限相同的数量级。其中,对这些过程的影响最为明显,是主要参数;、、、、、和也是这些过程的重要参数,对数值结果也有影响。
{"title":"Top-quark rare decays with flavor violation*","authors":"Ming-Yue Liu, 明月 刘, Shu-Min Zhao, 树民 赵, Song Gao, 松 高, Xing-Yu Han, 星宇 韩, Tai-Fu Feng and 太傅 冯","doi":"10.1088/1674-1137/ad53bb","DOIUrl":"https://doi.org/10.1088/1674-1137/ad53bb","url":null,"abstract":"In the present study, we investigated the decays of the top quark: , , , and . They are extremely rare processes in the standard model (SM). As the extension of the minimal supersymmetric standard model (MSSM), the SSM features new superfields such as the right-handed neutrinos and three Higgs singlets. We analyzed the effects of different sensitive parameters on the results and made reasonable theoretical predictions, thereby providing a useful reference for future experimental development. Considering the constraint set by the updated experimental data, the numerical results show that the branching ratios of the four processes, i.e., , can reach the same order of magnitude as their experimental upper limits. Among them, has the most evident effect on these processes and is the main parameter; , , , , , , and are also important parameters for the processes, and have effects on the numerical results.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"18 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of jet and underlying event properties across various models as a function of charged particle multiplicity at 7 TeV* 作为 7 TeV 带电粒子倍率函数的各种模型的射流和基本事件特性对比分析*
IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2024-08-31 DOI: 10.1088/1674-1137/ad5ae9
Maryam Waqar, Haifa I. Alrebdi, Muhammad Waqas, K.S. Al-mugren and Muhammad Ajaz
In this study, a comprehensive analysis of jets and underlying events as a function of charged particle multiplicity in proton-proton (pp) collisions at a center-of-mass energy of TeV is conducted. Various Monte Carlo (MC) event generators, including Pythia8.308, EPOS1.99, EPOSLHC, EPOS4 , and EPOS4 , are employed to predict particle production. The predictions from these models are compared with experimental data from the CMS collaboration. The charged particles are categorized into those associated with underlying events and those linked to jets, and the analysis is restricted to charged particles with and GeV/c. By comparing the MC predictions with CMS data, we find that EPOS , EPOSLHC, and Pythia8 consistently reproduce the experimental results for all charged particles, underlying events, intrajets, and leading charged particles. For charged jet rates with GeV/c, EPOS4 and Pythia8 perform exceptionally well. In the case of charged jet rates with GeV/c, EPOSLHC reproduces satisfactorily good results, whereas EPOS4 exhibits good agreement with the data at higher charged particle multiplicities compared to the other models. This can be attributed to the conversion of energy into flow when "Hydro=on," leading to an increase in multiplicity. The EPOSLHC model describes the data better owing to the new collective flow effects, correlated flow treatment, and parameterization compared to EPOS1.99. However, the examination of the jet spectrum and normalized charged density reveals that EPOS4 , EPOS4 , and EPOSLHC exhibit good agreement with the experimental results, whereas Pythia8 and EPOS1.99 do not perform as well owing to the lack of correlated flow treatment.
本研究全面分析了在质心能量为 TeV 的质子-质子(pp)对撞中作为带电粒子倍率函数的喷流和基本事件。采用了各种蒙特卡罗(MC)事件发生器,包括 Pythia8.308、EPOS1.99、EPOSLHC、EPOS4 和 EPOS4,来预测粒子的产生。这些模型的预测结果与 CMS 合作的实验数据进行了比较。带电粒子被分为与基本事件相关的粒子和与射流相关的粒子,分析仅限于和 GeV/c 的带电粒子。通过比较 MC 预测和 CMS 数据,我们发现 EPOS、EPOSLHC 和 Pythia8 始终如一地再现了所有带电粒子、底层事件、内部喷流和前导带电粒子的实验结果。对于 GeV/c 的带电射流率,EPOS4 和 Pythia8 的表现尤为出色。在带电射流率为 GeV/c 的情况下,EPOSLHC 重现了令人满意的结果,而 EPOS4 与其他模型相比,在带电粒子倍率较高的情况下表现出与数据的良好一致性。这可以归因于 "Hydro=on "时能量转化为流量,导致倍率增加。与 EPOS1.99 相比,EPOSLHC 模型由于采用了新的集体流效应、相关流处理方法和参数化方法,因此能更好地描述数据。然而,对射流频谱和归一化带电密度的研究表明,EPOS4、EPOS4 和 EPOSLHC 与实验结果的一致性很好,而 Pythia8 和 EPOS1.99 由于缺乏相关流处理而表现不佳。
{"title":"Comparative analysis of jet and underlying event properties across various models as a function of charged particle multiplicity at 7 TeV*","authors":"Maryam Waqar, Haifa I. Alrebdi, Muhammad Waqas, K.S. Al-mugren and Muhammad Ajaz","doi":"10.1088/1674-1137/ad5ae9","DOIUrl":"https://doi.org/10.1088/1674-1137/ad5ae9","url":null,"abstract":"In this study, a comprehensive analysis of jets and underlying events as a function of charged particle multiplicity in proton-proton (pp) collisions at a center-of-mass energy of TeV is conducted. Various Monte Carlo (MC) event generators, including Pythia8.308, EPOS1.99, EPOSLHC, EPOS4 , and EPOS4 , are employed to predict particle production. The predictions from these models are compared with experimental data from the CMS collaboration. The charged particles are categorized into those associated with underlying events and those linked to jets, and the analysis is restricted to charged particles with and GeV/c. By comparing the MC predictions with CMS data, we find that EPOS , EPOSLHC, and Pythia8 consistently reproduce the experimental results for all charged particles, underlying events, intrajets, and leading charged particles. For charged jet rates with GeV/c, EPOS4 and Pythia8 perform exceptionally well. In the case of charged jet rates with GeV/c, EPOSLHC reproduces satisfactorily good results, whereas EPOS4 exhibits good agreement with the data at higher charged particle multiplicities compared to the other models. This can be attributed to the conversion of energy into flow when \"Hydro=on,\" leading to an increase in multiplicity. The EPOSLHC model describes the data better owing to the new collective flow effects, correlated flow treatment, and parameterization compared to EPOS1.99. However, the examination of the jet spectrum and normalized charged density reveals that EPOS4 , EPOS4 , and EPOSLHC exhibit good agreement with the experimental results, whereas Pythia8 and EPOS1.99 do not perform as well owing to the lack of correlated flow treatment.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"46 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A versatile framework for analyzing galaxy image data by incorporating Human-in-the-loop in a large vision model* 将 "人在回路 "纳入大型视觉模型,建立分析星系图像数据的多功能框架*。
IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2024-08-31 DOI: 10.1088/1674-1137/ad50ab
Ming-Xiang Fu, 溟翔 傅, Yu Song, 宇 宋, Jia-Meng Lv, 佳蒙 吕, Liang Cao, 亮 曹, Peng Jia, 鹏 贾, Nan Li, 楠 李, Xiang-Ru Li, 乡儒 李, Ji-Feng Liu, 继峰 刘, A-Li Luo, 阿理 罗, Bo Qiu, 波 邱, Shi-Yin Shen, 世银 沈, Liang-Ping Tu, 良平 屠, Li-Li Wang, 丽丽 王, Shou-Lin Wei, 守林 卫, Hai-Feng Yang, 海峰 杨, Zhen-Ping Yi, 振萍 衣, Zhi-Qiang Zou and 志强 邹
The exponential growth of astronomical datasets provides an unprecedented opportunity for humans to gain insight into the Universe. However, effectively analyzing this vast amount of data poses a significant challenge. In response, astronomers are turning to deep learning techniques, but these methods are limited by their specific training sets, leading to considerable duplicate workloads. To overcome this issue, we built a framework for the general analysis of galaxy images based on a large vision model (LVM) plus downstream tasks (DST), including galaxy morphological classification, image restoration, object detection, parameter extraction, and more. Considering the low signal-to-noise ratios of galaxy images and the imbalanced distribution of galaxy categories, we designed our LVM to incorporate a Human-in-the-loop (HITL) module, which leverages human knowledge to enhance the reliability and interpretability of processing galaxy images interactively. The proposed framework exhibits notable few-shot learning capabilities and versatile adaptability for all the abovementioned tasks on galaxy images in the DESI Legacy Imaging Surveys. In particular, for the object detection task, which was trained using 1000 data points, our DST in the LVM achieved an accuracy of 96.7%, while ResNet50 plus Mask R-CNN reached an accuracy of 93.1%. For morphological classification, to obtain an area under the curve (AUC) of ~0.9, LVM plus DST and HITL only requested 1/50 of the training sets that ResNet18 requested. In addition, multimodal data can be integrated, which creates possibilities for conducting joint analyses with datasets spanning diverse domains in the era of multi-messenger astronomy.
天文数据集的指数级增长为人类深入了解宇宙提供了前所未有的机会。然而,有效分析这些海量数据是一项重大挑战。为此,天文学家们开始转向深度学习技术,但这些方法受限于其特定的训练集,导致了相当大的重复工作量。为了克服这一问题,我们建立了一个基于大型视觉模型(LVM)和下游任务(DST)的星系图像通用分析框架,包括星系形态分类、图像复原、物体检测、参数提取等。考虑到星系图像的低信噪比和星系类别分布的不平衡性,我们在设计 LVM 时加入了 "人在环"(HITL)模块,该模块利用人类知识来提高交互式处理星系图像的可靠性和可解释性。针对DESI遗留成像巡天中星系图像上的上述所有任务,所提出的框架表现出了显著的少镜头学习能力和多功能适应性。特别是在使用 1000 个数据点训练的天体检测任务中,我们在 LVM 中的 DST 的准确率达到了 96.7%,而 ResNet50 加上 Mask R-CNN 的准确率达到了 93.1%。在形态分类方面,为了获得 ~0.9 的曲线下面积 (AUC),LVM 加上 DST 和 HITL 只需要 ResNet18 所需的训练集的 1/50。此外,在多信使天文学时代,多模态数据可以整合在一起,这为与跨不同领域的数据集进行联合分析创造了可能性。
{"title":"A versatile framework for analyzing galaxy image data by incorporating Human-in-the-loop in a large vision model*","authors":"Ming-Xiang Fu, 溟翔 傅, Yu Song, 宇 宋, Jia-Meng Lv, 佳蒙 吕, Liang Cao, 亮 曹, Peng Jia, 鹏 贾, Nan Li, 楠 李, Xiang-Ru Li, 乡儒 李, Ji-Feng Liu, 继峰 刘, A-Li Luo, 阿理 罗, Bo Qiu, 波 邱, Shi-Yin Shen, 世银 沈, Liang-Ping Tu, 良平 屠, Li-Li Wang, 丽丽 王, Shou-Lin Wei, 守林 卫, Hai-Feng Yang, 海峰 杨, Zhen-Ping Yi, 振萍 衣, Zhi-Qiang Zou and 志强 邹","doi":"10.1088/1674-1137/ad50ab","DOIUrl":"https://doi.org/10.1088/1674-1137/ad50ab","url":null,"abstract":"The exponential growth of astronomical datasets provides an unprecedented opportunity for humans to gain insight into the Universe. However, effectively analyzing this vast amount of data poses a significant challenge. In response, astronomers are turning to deep learning techniques, but these methods are limited by their specific training sets, leading to considerable duplicate workloads. To overcome this issue, we built a framework for the general analysis of galaxy images based on a large vision model (LVM) plus downstream tasks (DST), including galaxy morphological classification, image restoration, object detection, parameter extraction, and more. Considering the low signal-to-noise ratios of galaxy images and the imbalanced distribution of galaxy categories, we designed our LVM to incorporate a Human-in-the-loop (HITL) module, which leverages human knowledge to enhance the reliability and interpretability of processing galaxy images interactively. The proposed framework exhibits notable few-shot learning capabilities and versatile adaptability for all the abovementioned tasks on galaxy images in the DESI Legacy Imaging Surveys. In particular, for the object detection task, which was trained using 1000 data points, our DST in the LVM achieved an accuracy of 96.7%, while ResNet50 plus Mask R-CNN reached an accuracy of 93.1%. For morphological classification, to obtain an area under the curve (AUC) of ~0.9, LVM plus DST and HITL only requested 1/50 of the training sets that ResNet18 requested. In addition, multimodal data can be integrated, which creates possibilities for conducting joint analyses with datasets spanning diverse domains in the era of multi-messenger astronomy.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"46 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting secondary spin with extreme mass ratio inspirals in scalar-tensor theory* 用标量张量理论中的极端质量比吸气探测次级自旋*
IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2024-08-31 DOI: 10.1088/1674-1137/ad50ba
Hong Guo, 弘 郭, Chao Zhang, 超 张, Yunqi Liu, 云旗 刘, Rui-Hong Yue, 瑞宏 岳, Yun-Gui Gong, 云贵 龚, Bin Wang and 斌 王
In this study, we investigate the detectability of the secondary spin in an extreme mass ratio inspiral (EMRI) system within a modified gravity model coupled with a scalar field. The central black hole, which reduces to a Kerr one, is circularly spiralled by a scalar-charged spinning secondary body on the equatorial plane. The analysis reveals that the presence of the scalar field amplifies the secondary spin effect, allowing for a lower limit of the detectability and an improved resolution of the secondary spin when the scalar charge is sufficiently large. Our findings suggest that secondary spin detection is more feasible when the primary mass is not large, and TianQin is the optimal choice for detection.
在这项研究中,我们研究了在一个与标量场耦合的修正引力模型中的极端质量比吸积(EMRI)系统中二次自旋的可探测性。中心黑洞简化为克尔黑洞,在赤道面上被一个带标量电荷的自旋二次天体环绕。分析表明,标量场的存在放大了二次自旋效应,使得二次自旋的可探测性达到下限,并在标量电荷足够大时提高了二次自旋的分辨率。我们的研究结果表明,当原初质量不大时,二次自旋探测更为可行,而天琴是探测的最佳选择。
{"title":"Detecting secondary spin with extreme mass ratio inspirals in scalar-tensor theory*","authors":"Hong Guo, 弘 郭, Chao Zhang, 超 张, Yunqi Liu, 云旗 刘, Rui-Hong Yue, 瑞宏 岳, Yun-Gui Gong, 云贵 龚, Bin Wang and 斌 王","doi":"10.1088/1674-1137/ad50ba","DOIUrl":"https://doi.org/10.1088/1674-1137/ad50ba","url":null,"abstract":"In this study, we investigate the detectability of the secondary spin in an extreme mass ratio inspiral (EMRI) system within a modified gravity model coupled with a scalar field. The central black hole, which reduces to a Kerr one, is circularly spiralled by a scalar-charged spinning secondary body on the equatorial plane. The analysis reveals that the presence of the scalar field amplifies the secondary spin effect, allowing for a lower limit of the detectability and an improved resolution of the secondary spin when the scalar charge is sufficiently large. Our findings suggest that secondary spin detection is more feasible when the primary mass is not large, and TianQin is the optimal choice for detection.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"57 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the impact of anti-shadowing effect on unintegrated gluon distributions in the MD-BFKL equation* 探索反阴影效应对 MD-BFKL 方程中未积分胶子分布的影响*
IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2024-08-31 DOI: 10.1088/1674-1137/ad5bd5
Xiaopeng Wang, 晓鹏 王, Yanbing Cai, 燕兵 蔡, Xurong Chen and 旭荣 陈
This paper presents a comprehensive analysis of the MD-BFKL equation, considering both shadowing and anti-shadowing effects in gluon recombination processes. By deriving analytical expressions for unintegrated gluon distributions through the solution of the MD-BFKL equation, with and without the incorporation of the anti-shadowing effect, we offer new insights into the influence of these effects on the behavior of unintegrated gluon distributions. Our results, when compared to those from the CT18NLO gluon distribution function, demonstrate that the anti-shadowing effect has a notably stronger impact on the characteristics of unintegrated gluon distributions, particularly in regions of high rapidity and momentum. This work significantly contributes to the understanding of gluon recombination mechanisms and their implications in high energy physics.
本文对 MD-BFKL 方程进行了全面分析,同时考虑了胶子重组过程中的阴影效应和反阴影效应。通过对 MD-BFKL 方程的求解,我们得出了未整合胶子分布的分析表达式,其中包含和不包含反阴影效应,从而为这些效应对未整合胶子分布行为的影响提供了新的见解。与 CT18NLO 胶子分布函数的结果相比,我们的结果表明反阴影效应对未积分胶子分布特性的影响明显更强,尤其是在高快速和高动量区域。这项工作极大地促进了对胶子重组机制及其在高能物理中影响的理解。
{"title":"Exploring the impact of anti-shadowing effect on unintegrated gluon distributions in the MD-BFKL equation*","authors":"Xiaopeng Wang, 晓鹏 王, Yanbing Cai, 燕兵 蔡, Xurong Chen and 旭荣 陈","doi":"10.1088/1674-1137/ad5bd5","DOIUrl":"https://doi.org/10.1088/1674-1137/ad5bd5","url":null,"abstract":"This paper presents a comprehensive analysis of the MD-BFKL equation, considering both shadowing and anti-shadowing effects in gluon recombination processes. By deriving analytical expressions for unintegrated gluon distributions through the solution of the MD-BFKL equation, with and without the incorporation of the anti-shadowing effect, we offer new insights into the influence of these effects on the behavior of unintegrated gluon distributions. Our results, when compared to those from the CT18NLO gluon distribution function, demonstrate that the anti-shadowing effect has a notably stronger impact on the characteristics of unintegrated gluon distributions, particularly in regions of high rapidity and momentum. This work significantly contributes to the understanding of gluon recombination mechanisms and their implications in high energy physics.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"40 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
中国物理C
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1