首页 > 最新文献

Chinese Physics最新文献

英文 中文
Superconductor and cold atoms hybrid quantum system 超导体和冷原子混合量子系统
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230985
None Lv Qing-Xian, None Li Sai, None Tu Hai-Tao, None Liao Kai-Yu, None Liang Zhen-Tao, None Yan Hui, None Zhu Shi-Liang
The superconductor and cold atoms hybrid quantum system is poised to realize fast quantum gates, long-life quantum storage and long-distance transmission through optical fibers, making it one of the most promising hybrid quantum systems for achieving optical interconnection between two superconducting quantum computers. This paper provides a comprehensive review of recent research advancements in the optical interconnection of two superconducting quantum computers, based on the superconductor and cold atoms hybrid quantum system. This encompasses the coherent coupling between superconducting chips and cold atoms, the coherent microwave-to-optics conversion, and the long-range microwave interconnection between superconducting qubits and quantum converters. The system is expected to provide a physical and technical foundation for practical optical-fiber interconnection of two superconducting quantum computers, and have broad applications in distributed superconducting quantum computation and hybrid quantum networks.
超导体与冷原子混合量子系统有望实现快速量子门、长寿命量子存储和光纤长距离传输,是实现两台超导量子计算机光互连最有前途的混合量子系统之一。本文综述了基于超导体和冷原子混合量子系统的两台超导量子计算机光互连的最新研究进展。这包括超导芯片和冷原子之间的相干耦合,相干微波到光学的转换,以及超导量子比特和量子转换器之间的远程微波互连。该系统有望为两台超导量子计算机的实际光纤互连提供物理和技术基础,并在分布式超导量子计算和混合量子网络中具有广泛的应用前景。
{"title":"Superconductor and cold atoms hybrid quantum system","authors":"None Lv Qing-Xian, None Li Sai, None Tu Hai-Tao, None Liao Kai-Yu, None Liang Zhen-Tao, None Yan Hui, None Zhu Shi-Liang","doi":"10.7498/aps.72.20230985","DOIUrl":"https://doi.org/10.7498/aps.72.20230985","url":null,"abstract":"The superconductor and cold atoms hybrid quantum system is poised to realize fast quantum gates, long-life quantum storage and long-distance transmission through optical fibers, making it one of the most promising hybrid quantum systems for achieving optical interconnection between two superconducting quantum computers. This paper provides a comprehensive review of recent research advancements in the optical interconnection of two superconducting quantum computers, based on the superconductor and cold atoms hybrid quantum system. This encompasses the coherent coupling between superconducting chips and cold atoms, the coherent microwave-to-optics conversion, and the long-range microwave interconnection between superconducting qubits and quantum converters. The system is expected to provide a physical and technical foundation for practical optical-fiber interconnection of two superconducting quantum computers, and have broad applications in distributed superconducting quantum computation and hybrid quantum networks.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135060104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Josephson current induced by spin-mixing Cooper pairs 自旋混合库珀对诱导的约瑟夫森电流
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231008
None Meng Hao, None Wu Xiu-Qiang
Based on the Bogoliubov-de Gennes equations, we investigate the transport of the Josephson current in a one-dimensional S/FL-F-FR/S junction, where S and F are superconductor and ferromagnet, and FL,R are the left and right interfaces with noncollinear magnetizations. It is found that the FL and FRinterfaces can induce spin-mixing and spin-flip effects, which can transform a part of spin-singlet pairs in the S into equal-spin triplet pairs in the F. For the short S/FL-F-FR/S junction, the spin-singlet pairs and the equal-spin triplet pairs can survive in the F layer. Therefore, with the increase of the ferromagnetic exchange field and the angle difference of interface magnetization rotation, the critical current oscillates on a base level. If the F is transformed into half-metal, only the equal-spin triple pairs exist in the F layer, and the oscillation characteristic of critical current disappears. In addition, the FL and FR interfaces can work as conventional potential barriers. As a result, the critical current exhibits double oscillation behaviors with the increase of ferromagnetic thickness, in which the long-wave oscillation arises from the phase change of the spin-singlet pairs in the ferromagnetic layer, and the short-wave oscillation is caused by the resonant tunneling effect when the spin-singlet pairs and the equal-spin triplet pairs pass through two interfacial barriers.
基于Bogoliubov-de Gennes方程,我们研究了一维S/ f>L< sub>L</sub>-F-F<sub>R</sub>/S结中Josephson电流的输运,其中S和F是超导体和铁磁体,F<sub>L,R</sub>是非共线磁化的左右界面。发现F<sub>L</sub>和F<sub>R</sub>界面可以诱导自旋混合和自旋翻转效应,将S层中的部分自旋单重态对转化为F层中的等自旋三重态对。对于短S/F<sub>L</sub>-F-F<sub>R</sub>/S结,自旋单重态对和等自旋三重态对可以在F层中存在。因此,随着铁磁交换场的增大和界面磁化旋转角度差的增大,临界电流在基面上振荡。如果F转化为半金属,则F层中只存在等自旋三对,临界电流的振荡特性消失。此外,F<sub>L</sub>和F< sub> R< / sub>界面可以作为传统的势垒。结果表明,随着铁磁厚度的增加,临界电流表现出双重振荡行为,其中长波振荡是由铁磁层中自旋-单线态对的相变引起的,短波振荡是由自旋-单线态对和等自旋三重态对穿过两个界面势垒时的共振隧穿效应引起的。
{"title":"Josephson current induced by spin-mixing Cooper pairs","authors":"None Meng Hao, None Wu Xiu-Qiang","doi":"10.7498/aps.72.20231008","DOIUrl":"https://doi.org/10.7498/aps.72.20231008","url":null,"abstract":"Based on the Bogoliubov-de Gennes equations, we investigate the transport of the Josephson current in a one-dimensional S/F<sub>L</sub>-F-F<sub>R</sub>/S junction, where S and F are superconductor and ferromagnet, and F<sub>L,R</sub> are the left and right interfaces with noncollinear magnetizations. It is found that the F<sub>L</sub> and F<sub>R</sub>interfaces can induce spin-mixing and spin-flip effects, which can transform a part of spin-singlet pairs in the S into equal-spin triplet pairs in the F. For the short S/F<sub>L</sub>-F-F<sub>R</sub>/S junction, the spin-singlet pairs and the equal-spin triplet pairs can survive in the F layer. Therefore, with the increase of the ferromagnetic exchange field and the angle difference of interface magnetization rotation, the critical current oscillates on a base level. If the F is transformed into half-metal, only the equal-spin triple pairs exist in the F layer, and the oscillation characteristic of critical current disappears. In addition, the F<sub>L</sub> and F<sub>R</sub> interfaces can work as conventional potential barriers. As a result, the critical current exhibits double oscillation behaviors with the increase of ferromagnetic thickness, in which the long-wave oscillation arises from the phase change of the spin-singlet pairs in the ferromagnetic layer, and the short-wave oscillation is caused by the resonant tunneling effect when the spin-singlet pairs and the equal-spin triplet pairs pass through two interfacial barriers.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135400407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Evolution Speed Induced by Hamiltonian 哈密顿量诱导的量子演化速度
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231009
None Dong Shan-Shan, None Qin Li-Guo, None Liu Fu-Yao, None Gong Li-Hua, None Huang Jie-Hui
In the issue of quantum evolution, quantum evolution speed is usually quantified by the time rate of change of state distance between the initial sate and its time evolution. In this paper, the path distance of quantum evolution is introduced to study the evolution of a quantum system, through the approach combined with basic theory of quantum evolution and the linear algebra. In a quantum unitary system, the quantum evolution operator contains the path information of the quantum evolution, where the path distance is determined by the principal argument of the eigenvalues of the unitary operator. Accordingly, the instantaneous quantum evolution speed is proportional to the distance between the maximum and minimum eigenvalues of the Hamiltonian. As one of the applications, the path distance and the instantaneous quantum evolution speed could be used to form a new lower bound of the real evolution time, which depends on the evolution operator and Hamiltonian, and is independent of the initial state. It is found that the lower bound presented here is exactly equal to the real evolution time in the range $[0,frac{pi}{2omega_H}]$. The tool of path distance and instantaneous quantum evolution speed introduced here provides new method for the related researches
在量子演化问题中,量子演化速度通常用初始状态与其时间演化之间的状态距离的时间变化率来量化。本文将量子演化的基本理论与线性代数相结合,引入量子演化的路径距离来研究量子系统的演化。在量子酉系统中,量子演化算子包含了量子演化的路径信息,其中路径距离由酉算子的特征值的主参数决定。因此,瞬时量子演化速度与哈密顿量的最大和最小特征值之间的距离成正比。作为一种应用,路径距离和瞬时量子演化速度可以用来形成一个新的实际演化时间下界,该下界依赖于演化算子和哈密顿算子,与初始状态无关。我们发现,这里给出的下界与实际进化时间在$[0,frac{pi}{2omega_H}]$范围内完全相等。本文引入的路径距离和瞬时量子演化速度工具为相关研究提供了新的方法
{"title":"Quantum Evolution Speed Induced by Hamiltonian","authors":"None Dong Shan-Shan, None Qin Li-Guo, None Liu Fu-Yao, None Gong Li-Hua, None Huang Jie-Hui","doi":"10.7498/aps.72.20231009","DOIUrl":"https://doi.org/10.7498/aps.72.20231009","url":null,"abstract":"In the issue of quantum evolution, quantum evolution speed is usually quantified by the time rate of change of state distance between the initial sate and its time evolution. In this paper, the path distance of quantum evolution is introduced to study the evolution of a quantum system, through the approach combined with basic theory of quantum evolution and the linear algebra. In a quantum unitary system, the quantum evolution operator contains the path information of the quantum evolution, where the path distance is determined by the principal argument of the eigenvalues of the unitary operator. Accordingly, the instantaneous quantum evolution speed is proportional to the distance between the maximum and minimum eigenvalues of the Hamiltonian. As one of the applications, the path distance and the instantaneous quantum evolution speed could be used to form a new lower bound of the real evolution time, which depends on the evolution operator and Hamiltonian, and is independent of the initial state. It is found that the lower bound presented here is exactly equal to the real evolution time in the range $[0,frac{pi}{2omega_H}]$. The tool of path distance and instantaneous quantum evolution speed introduced here provides new method for the related researches","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"267 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135400415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvable collective dynamics of globally coupled Stuart-Landau limit-cycle systems under mean-field feedback 平均场反馈下全局耦合Stuart-Landau极限环系统的可解集体动力学
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230842
None He Su-Juan, None Zou Wei
Coupled Stuart-Landau limit-cycle system serves as an important paradigmatic model for studying synchronization transitions and collective dynamics in self-sustained nonlinear systems with amplitude degree of freedom. In this paper, we extensively investigate three typical solvable collective behaviors in globally coupled Stuart-Landau limit-cycle systems under mean-field feedback: incoherence, amplitude death, and locked states. In the thermodynamic limit of begin{document}$Nrightarrowinfty$end{document}, the critical condition characterizing the transition from incoherence to synchronization is explicitly obtained via performing the linear stability of the incoherent states, it is found that the synchronization transition occurs at a smaller coupling strength when the strength of mean-field feedback is gradually enhanced; the stable regions of amplitude death are theoretically obtained via an analysis of the linear stability of coupled systems around the origin, it is unveiled that the presence of mean-field feedback is able to effectively eliminate the phenomenon of amplitude death in the coupled systems; furthermore, the existence of locked states is theoretically analyzed, and in particular the boundary of stable amplitude death region is re-derived from the self-consistent relation of the order parameter for the locked states. The study of this work reveals the key role of mean-field feedback in controlling the collective dynamics of coupled nonlinear systems, deepens the understanding of the impact of mean-field feedback technique on the coupling-induced collective behaviors, and is beneficial for us to further understand the emergence rules and the underlying mechanisms of self-organized behaviors in complex coupled systems.
Coupled Stuart-Landau limit-cycle system serves as an important paradigmatic model for studying synchronization transitions and collective dynamics in self-sustained nonlinear systems with amplitude degree of freedom. In this paper, we extensively investigate three typical solvable collective behaviors in globally coupled Stuart-Landau limit-cycle systems under mean-field feedback: incoherence, amplitude death, and locked states. In the thermodynamic limit of <inline-formula><tex-math id="M2">begin{document}$Nrightarrowinfty$end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230842_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230842_M2.png"/></alternatives></inline-formula>, the critical condition characterizing the transition from incoherence to synchronization is explicitly obtained via performing the linear stability of the incoherent states, it is found that the synchronization transition occurs at a smaller coupling strength when the strength of mean-field feedback is gradually enhanced; the stable regions of amplitude death are theoretically obtained via an analysis of the linear stability of coupled systems around the origin, it is unveiled that the presence of mean-field feedback is able to effectively eliminate the phenomenon of amplitude death in the coupled systems; furthermore, the existence of locked states is theoretically analyzed, and in particular the boundary of stable amplitude death region is re-derived from the self-consistent relation of the order parameter for the locked states. The study of this work reveals the key role of mean-field feedback in controlling the collective dynamics of coupled nonlinear systems, deepens the understanding of the impact of mean-field feedback technique on the coupling-induced collective behaviors, and is beneficial for us to further understand the emergence rules and the underlying mechanisms of self-organized behaviors in complex coupled systems.
{"title":"Solvable collective dynamics of globally coupled Stuart-Landau limit-cycle systems under mean-field feedback","authors":"None He Su-Juan, None Zou Wei","doi":"10.7498/aps.72.20230842","DOIUrl":"https://doi.org/10.7498/aps.72.20230842","url":null,"abstract":"Coupled Stuart-Landau limit-cycle system serves as an important paradigmatic model for studying synchronization transitions and collective dynamics in self-sustained nonlinear systems with amplitude degree of freedom. In this paper, we extensively investigate three typical solvable collective behaviors in globally coupled Stuart-Landau limit-cycle systems under mean-field feedback: incoherence, amplitude death, and locked states. In the thermodynamic limit of <inline-formula><tex-math id=\"M2\">begin{document}$Nrightarrowinfty$end{document}</tex-math><alternatives><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"20-20230842_M2.jpg\"/><graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"20-20230842_M2.png\"/></alternatives></inline-formula>, the critical condition characterizing the transition from incoherence to synchronization is explicitly obtained via performing the linear stability of the incoherent states, it is found that the synchronization transition occurs at a smaller coupling strength when the strength of mean-field feedback is gradually enhanced; the stable regions of amplitude death are theoretically obtained via an analysis of the linear stability of coupled systems around the origin, it is unveiled that the presence of mean-field feedback is able to effectively eliminate the phenomenon of amplitude death in the coupled systems; furthermore, the existence of locked states is theoretically analyzed, and in particular the boundary of stable amplitude death region is re-derived from the self-consistent relation of the order parameter for the locked states. The study of this work reveals the key role of mean-field feedback in controlling the collective dynamics of coupled nonlinear systems, deepens the understanding of the impact of mean-field feedback technique on the coupling-induced collective behaviors, and is beneficial for us to further understand the emergence rules and the underlying mechanisms of self-organized behaviors in complex coupled systems.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136202323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological phase transitions and topological quantum states modulated by the counter-rotating wave terms in a one-dimensional superconducting microwave cavity lattice 一维超导微波腔晶格中逆旋转波项调制的拓扑相变和拓扑量子态
Pub Date : 2023-01-01 DOI: 10.7498/aps.73.20231321
None Zheng Zhi-Yong, None Chen Li-Jie, None Xiang Lü, None Wang He, None Wang Yi-Ping
We propose a one-dimensional lattice theory scheme based on superconducting microwave cavities, which includes two different types of microwave cavity unit cells. The coupling between unit cells is controlled by flux qubits to simulate and study their topological insulator characteristics. Specifically, a one-dimensional superconducting microwave cavity lattice scheme with a p-wave superconducting pairing term is achieved by mapping the counter-rotating wave terms to the p-wave superconducting pairing term. We found that the p-wave superconducting pairing term can modulate the topological quantum state of the system, allowing for the creation of topological quantum information transmission channels with four edge states. In addition, when the p-wave superconducting pairing term and the nearest-neighbor interaction exist, we find that the energy band undergoes fluctuations, inducing the generation of new energy bands, but the degeneracy of the edge states remains stable, which can achieve multiple topological quantum state transmission paths. However, when its regulatory value exceeds the threshold, the energy gap of the system will close, causing the edge states to annihilate in new energy bands. Furthermore, when considering the existence of defects in the system, we found that when the strength of the defects are small, the edge state produces small fluctuations, but it can be clearly distinguished, indicating its robustness. When the strength of the defect exceeds the threshold, the edge state and energy band cause irregular fluctuations, allowing the edge state to integrate into the energy band. Our research results have important theoretical value and practical significance, and can be applied in quantum optics and quantum information processing in the future.
提出了一种基于超导微波腔的一维晶格理论方案,其中包括两种不同类型的微波腔单元胞。利用通量量子比特控制单元胞间的耦合,模拟和研究其拓扑绝缘体特性。具体而言,通过将反旋转波项映射到p波超导配对项,获得了具有p波超导配对项的一维超导微波腔晶格格式。我们发现p波超导配对项可以调制系统的拓扑量子态,允许创建具有四个边缘态的拓扑量子信息传输通道。此外,当p波超导配对项和最近邻相互作用存在时,我们发现能带发生波动,诱导新能带的产生,但边缘态的简并保持稳定,可以实现多个拓扑量子态传输路径。然而,当其调节值超过阈值时,系统的能隙将闭合,导致边缘态在新的能带中湮灭。进一步,在考虑系统中存在缺陷的情况下,我们发现当缺陷的强度较小时,边缘状态产生较小的波动,但可以明显区分,表明其鲁棒性。当缺陷强度超过阈值时,边缘状态和能带产生不规则波动,使边缘状态融入能带。我们的研究成果具有重要的理论价值和实际意义,可以应用于未来的量子光学和量子信息处理。
{"title":"Topological phase transitions and topological quantum states modulated by the counter-rotating wave terms in a one-dimensional superconducting microwave cavity lattice","authors":"None Zheng Zhi-Yong, None Chen Li-Jie, None Xiang Lü, None Wang He, None Wang Yi-Ping","doi":"10.7498/aps.73.20231321","DOIUrl":"https://doi.org/10.7498/aps.73.20231321","url":null,"abstract":"We propose a one-dimensional lattice theory scheme based on superconducting microwave cavities, which includes two different types of microwave cavity unit cells. The coupling between unit cells is controlled by flux qubits to simulate and study their topological insulator characteristics. Specifically, a one-dimensional superconducting microwave cavity lattice scheme with a p-wave superconducting pairing term is achieved by mapping the counter-rotating wave terms to the p-wave superconducting pairing term. We found that the p-wave superconducting pairing term can modulate the topological quantum state of the system, allowing for the creation of topological quantum information transmission channels with four edge states. In addition, when the p-wave superconducting pairing term and the nearest-neighbor interaction exist, we find that the energy band undergoes fluctuations, inducing the generation of new energy bands, but the degeneracy of the edge states remains stable, which can achieve multiple topological quantum state transmission paths. However, when its regulatory value exceeds the threshold, the energy gap of the system will close, causing the edge states to annihilate in new energy bands. Furthermore, when considering the existence of defects in the system, we found that when the strength of the defects are small, the edge state produces small fluctuations, but it can be clearly distinguished, indicating its robustness. When the strength of the defect exceeds the threshold, the edge state and energy band cause irregular fluctuations, allowing the edge state to integrate into the energy band. Our research results have important theoretical value and practical significance, and can be applied in quantum optics and quantum information processing in the future.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136203476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of thermal noise characteristics in 10nm metal oxide semiconductor field effect transistor 10nm金属氧化物半导体场效应晶体管热噪声特性分析
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230661
None Jia Xiao-Fei, None Wei Qun, None He Liang, None Zhang Wen-Peng, None Wu Zhen-Hua
Small size metal-oxide-semiconductor field effect transistor (MOSFET), owing to their high theoretical efficiency and low production cost, have received much attention and are at the frontier of transistors. At present, their development is bottlenecked by physical limits due to equal scaling down of devices, which requires further improvement in terms of materials choice and device fabrication. As the MOSFET devices scale down to nanometer scale, on the one hand, the resulting short channel effect affects severely the thermal noise property; on the other hand, it makes the ratio of thermal noise in the gate, source, drain and substrate regions become higher and higher. However, the traditional thermal noise model mainly considers thermal noise of large-size devices, and its model does not consider the channel saturation region. In view of this, it is necessary to establish a small size MOSFET thermal noise model and analyze its characteristics.At present, there are some researches on MOSFET thermal noise, but they mainly focus on the thermal noise in channel region of large size nanoscale MOSFET. In the present work, according to the device structure and inherent thermal noise characteristics, we establish a thermal noise model for MOSFETs of 10 nm feature size. The model includes contributions of substrate region, gate-source-drain region, and channel region. In the channel region is also included the thermal noise related to the device saturation regime. Using such a model, the dependence of channel thermal noise and total thermal noise on the device bias condition and device parameters are investigated, evidencing the existence of thermal noise in the device saturation regime, which are consistent with the experimental results in the literature. The thermal noise increases with the gate voltage and source-drain voltage rising as the device structure shrinks. In a temperature range of 100-400 K, the thermal noise is basically on the order of 1021, indicating that the temperature has a great influence on the thermal noise. The thermal noise model established in this work can be applied to analyzing the noise performances of small size MOSFET devices, and the conclusions drawn from the present study are beneficial to improving the efficiency, lifetime, and response speed of MOSFETs on a nanometer scale.
小尺寸金属氧化物半导体场效应晶体管(MOSFET)因其理论效率高、生产成本低而受到广泛关注,处于晶体管的前沿。目前,它们的发展受到物理限制的瓶颈,这是由于设备的同等缩小,这需要在材料选择和设备制造方面进一步改进。随着MOSFET器件尺寸的减小,一方面产生的短沟道效应严重影响器件的热噪声特性;另一方面,它使得栅极、源极、漏极和衬底区域的热噪声比越来越高。然而,传统的热噪声模型主要考虑大尺寸器件的热噪声,其模型没有考虑通道饱和区域。鉴于此,有必要建立小尺寸MOSFET热噪声模型并分析其特性。目前,对MOSFET热噪声的研究也有所进展,但主要集中在大尺寸纳米级MOSFET通道区域的热噪声。本文根据器件结构和固有的热噪声特性,建立了10 nm特征尺寸mosfet的热噪声模型。该模型包括基底区、栅极源漏区和沟道区的贡献。在通道区域还包括与器件饱和状态相关的热噪声。利用该模型,研究了通道热噪声和总热噪声对器件偏置条件和器件参数的依赖关系,证明了器件饱和状态下存在热噪声,与文献实验结果一致。热噪声随栅极电压的增大而增大,源漏电压随器件结构的缩小而增大。在100-400 K温度范围内,热噪声基本在10<sup>21</sup>数量级,说明温度对热噪声的影响很大。本文建立的热噪声模型可用于分析小尺寸MOSFET器件的噪声性能,所得结论有利于提高MOSFET器件在纳米尺度上的效率、寿命和响应速度。
{"title":"Analysis of thermal noise characteristics in 10nm metal oxide semiconductor field effect transistor","authors":"None Jia Xiao-Fei, None Wei Qun, None He Liang, None Zhang Wen-Peng, None Wu Zhen-Hua","doi":"10.7498/aps.72.20230661","DOIUrl":"https://doi.org/10.7498/aps.72.20230661","url":null,"abstract":"<sec>Small size metal-oxide-semiconductor field effect transistor (MOSFET), owing to their high theoretical efficiency and low production cost, have received much attention and are at the frontier of transistors. At present, their development is bottlenecked by physical limits due to equal scaling down of devices, which requires further improvement in terms of materials choice and device fabrication. As the MOSFET devices scale down to nanometer scale, on the one hand, the resulting short channel effect affects severely the thermal noise property; on the other hand, it makes the ratio of thermal noise in the gate, source, drain and substrate regions become higher and higher. However, the traditional thermal noise model mainly considers thermal noise of large-size devices, and its model does not consider the channel saturation region. In view of this, it is necessary to establish a small size MOSFET thermal noise model and analyze its characteristics.</sec><sec>At present, there are some researches on MOSFET thermal noise, but they mainly focus on the thermal noise in channel region of large size nanoscale MOSFET. In the present work, according to the device structure and inherent thermal noise characteristics, we establish a thermal noise model for MOSFETs of 10 nm feature size. The model includes contributions of substrate region, gate-source-drain region, and channel region. In the channel region is also included the thermal noise related to the device saturation regime. Using such a model, the dependence of channel thermal noise and total thermal noise on the device bias condition and device parameters are investigated, evidencing the existence of thermal noise in the device saturation regime, which are consistent with the experimental results in the literature. The thermal noise increases with the gate voltage and source-drain voltage rising as the device structure shrinks. In a temperature range of 100-400 K, the thermal noise is basically on the order of 10<sup>21</sup>, indicating that the temperature has a great influence on the thermal noise. The thermal noise model established in this work can be applied to analyzing the noise performances of small size MOSFET devices, and the conclusions drawn from the present study are beneficial to improving the efficiency, lifetime, and response speed of MOSFETs on a nanometer scale.</sec>","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136259097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synaptic strength changes and neural dynamical transitions induced by a synaptic plasticity for wakefulness-sleep cycle 觉醒-睡眠周期突触可塑性诱导的突触强度变化和神经动力学转变
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231037
None Li Rui, None Xu Bang-Lin, None Zhou Jian-Fang, None Jiang En-Hua, None Wang Bing-Hong, None Yuan Wu-Jie
Experiments found that learning during wakefulness led to a net enhancement of synaptic strength, accompanied by the neural dynamical transition from tonic to bursting firing, while the net synaptic strength decreases to a baseline level during sleep, accompanied by the transition from bursting to tonic firing. In this paper, we provided a model of synaptic plasticity, which can realize synaptic strength changes and neural dynamical transitions for wakefulness-sleep cycle by using a coupled Hindmarsh-Rose neurons. Through numerical simulation and theoretical analysis, it was further found that, the average synaptic weight of the neural network can arrive to a stable value during either prolonged wakefulness or prolonged sleep, which depends on the ratio of some specific parameters in the model. Particularly, the synaptic weights exhibit a stable log-normal distribution observed in real neural systems, when the average synaptic weight arrives to the stable value. Moreover, the fluctuation of this weight distribution is positively correlated with the fluctuation of noise in the synaptic plasticity model. The provided model of the synaptic plasticity and the results of its dynamics can provide a theoretical reference for the physiological mechanism of synaptic plasticity and neuronal firings during the wakefulness-sleep cycle, and are expected to have potential applications in the development of therapeutic interventions for sleep disorders.
实验发现,在清醒状态下学习导致突触强度净增强,并伴有神经动力学从强直放电到强直放电的转变,而在睡眠状态下突触强度净降低到基线水平,并伴有从强直放电到强直放电的转变。本文提出了一种突触可塑性模型,该模型利用耦合的Hindmarsh-Rose神经元来实现突触强度的变化和清醒-睡眠周期的神经动力学转换。通过数值模拟和理论分析进一步发现,无论是长时间清醒还是长时间睡眠,神经网络的平均突触权值都能达到一个稳定的值,这取决于模型中某些特定参数的比值。特别是,在真实神经系统中,当突触的平均权重达到稳定值时,突触的权重呈现稳定的对数正态分布。此外,在突触可塑性模型中,这种权重分布的波动与噪声的波动呈正相关。所提供的突触可塑性模型及其动力学结果可以为突触可塑性和觉醒-睡眠周期神经元放电的生理机制提供理论参考,并有望在睡眠障碍治疗干预措施的开发中具有潜在的应用价值。
{"title":"Synaptic strength changes and neural dynamical transitions induced by a synaptic plasticity for wakefulness-sleep cycle","authors":"None Li Rui, None Xu Bang-Lin, None Zhou Jian-Fang, None Jiang En-Hua, None Wang Bing-Hong, None Yuan Wu-Jie","doi":"10.7498/aps.72.20231037","DOIUrl":"https://doi.org/10.7498/aps.72.20231037","url":null,"abstract":"Experiments found that learning during wakefulness led to a net enhancement of synaptic strength, accompanied by the neural dynamical transition from tonic to bursting firing, while the net synaptic strength decreases to a baseline level during sleep, accompanied by the transition from bursting to tonic firing. In this paper, we provided a model of synaptic plasticity, which can realize synaptic strength changes and neural dynamical transitions for wakefulness-sleep cycle by using a coupled Hindmarsh-Rose neurons. Through numerical simulation and theoretical analysis, it was further found that, the average synaptic weight of the neural network can arrive to a stable value during either prolonged wakefulness or prolonged sleep, which depends on the ratio of some specific parameters in the model. Particularly, the synaptic weights exhibit a stable log-normal distribution observed in real neural systems, when the average synaptic weight arrives to the stable value. Moreover, the fluctuation of this weight distribution is positively correlated with the fluctuation of noise in the synaptic plasticity model. The provided model of the synaptic plasticity and the results of its dynamics can provide a theoretical reference for the physiological mechanism of synaptic plasticity and neuronal firings during the wakefulness-sleep cycle, and are expected to have potential applications in the development of therapeutic interventions for sleep disorders.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135495557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Air High-Efficiency and Stable Perovskite Solar Cells Module Assisted by Polymer Internal Encapsulation 聚合物内封装辅助的空气中高效稳定钙钛矿太阳能电池组件
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20231055
None Xu Jie, None Feng Ze-Hua, None Liu Bing-Ye, None Zhu Xin-Yi, None Dai Jin-Fei, None Dong Hua, None Wu Zhao-Xin
The preparation of traditional organic-inorganic lead-halogen hybrid perovskite solar cells often requires strict nitrogen glove box conditions, hindering their industrial scalability. This study aimed to explore the development of a large-area perovskite film formation process and design a novel device structure to achieve a dual enhancement of module device efficiency and stability in a high humidity air environment (55%). High-quality perovskite thin films were successfully prepared by vacuum extraction in ambient air, followed by a double-end low-temperature photopolymerization process utilizing acrylate monomer molecules for inner encapsulation modification of the freshly formed perovskite thin films. The impact of these techniques on the photoelectric characteristics of perovskite thin films and devices was investigated. The results indicated that uniform and dense perovskite films could be achieved in ambient air with a pumping time of 60 seconds. By adjusting the concentration of ethylene glycol dimethacrylate monomer molecules used in the low-temperature photopolymerization process, surface defects on the perovskite film could be effectively controlled. The optimal concentration of 1 mg/ml resulted in perovskite films with optimal morphology and fluorescence intensity. Furthermore, rigid and flexible module devices (effective area: 18 cm²), based on the polymer inner encapsulation, demonstrated outstanding outdoor photoelectric conversion efficiencies of 19.51% and 18.17%, respectively (with the highest indoor low-light conversion efficiencies of 25.13% and 30.2%, respectively). Notably, the untreated flexible devices exhibited a significant decline in photoelectric conversion efficiency, falling below 50% of the initial value after one month of exposure to air. In contrast, devices incorporating the polymer inner encapsulation layer maintained over 90% of their original efficiency, highlighting their excellent humidity resistance stability. Moreover, the polymer encapsulation layer also greatly improved the bending stability of the flexible devices. This research paved avenue for the industrial-scale production of perovskite solar cells, addressing the challenges associated with humidity and large-area fabrication. The findings contribute to the advancement of perovskite solar cell technology, offering a pathway for high-efficiency and stable devices suitable for real-world applications.
传统的有机-无机铅-卤素杂化钙钛矿太阳能电池的制备往往需要严格的氮气手套箱条件,阻碍了其工业可扩展性。本研究旨在探索开发大面积钙钛矿成膜工艺,并设计一种新颖的器件结构,以实现高湿空气环境下模块器件效率和稳定性的双重增强(55%)。采用真空抽提法制备了高质量的钙钛矿薄膜,然后利用丙烯酸酯单体分子对新形成的钙钛矿薄膜进行了双端低温光聚合,并进行了内包封改性。研究了这些技术对钙钛矿薄膜和器件光电特性的影响。结果表明,在环境空气中,泵送时间为60秒,可以获得均匀致密的钙钛矿膜。通过调节低温光聚合过程中使用的二甲基丙烯酸乙二醇单体分子的浓度,可以有效地控制钙钛矿膜表面缺陷。钙钛矿膜的最佳浓度为1 mg/ml,具有最佳的形貌和荧光强度。此外,基于聚合物内部封装的刚性和柔性组件器件(有效面积为18 cm²)的室外光电转换效率分别为19.51%和18.17%(室内低光转换效率最高分别为25.13%和30.2%)。值得注意的是,未经处理的柔性器件的光电转换效率显著下降,暴露在空气中一个月后降至初始值的50%以下。相比之下,采用聚合物内封装层的器件保持了90%以上的原始效率,突出了其优异的耐湿稳定性。此外,聚合物封装层也大大提高了柔性器件的弯曲稳定性。这项研究为钙钛矿太阳能电池的工业规模生产铺平了道路,解决了与湿度和大面积制造相关的挑战。这一发现有助于钙钛矿太阳能电池技术的进步,为适合实际应用的高效稳定设备提供了一条途径。
{"title":"In Air High-Efficiency and Stable Perovskite Solar Cells Module Assisted by Polymer Internal Encapsulation","authors":"None Xu Jie, None Feng Ze-Hua, None Liu Bing-Ye, None Zhu Xin-Yi, None Dai Jin-Fei, None Dong Hua, None Wu Zhao-Xin","doi":"10.7498/aps.72.20231055","DOIUrl":"https://doi.org/10.7498/aps.72.20231055","url":null,"abstract":"The preparation of traditional organic-inorganic lead-halogen hybrid perovskite solar cells often requires strict nitrogen glove box conditions, hindering their industrial scalability. This study aimed to explore the development of a large-area perovskite film formation process and design a novel device structure to achieve a dual enhancement of module device efficiency and stability in a high humidity air environment (55%). High-quality perovskite thin films were successfully prepared by vacuum extraction in ambient air, followed by a double-end low-temperature photopolymerization process utilizing acrylate monomer molecules for inner encapsulation modification of the freshly formed perovskite thin films. The impact of these techniques on the photoelectric characteristics of perovskite thin films and devices was investigated. The results indicated that uniform and dense perovskite films could be achieved in ambient air with a pumping time of 60 seconds. By adjusting the concentration of ethylene glycol dimethacrylate monomer molecules used in the low-temperature photopolymerization process, surface defects on the perovskite film could be effectively controlled. The optimal concentration of 1 mg/ml resulted in perovskite films with optimal morphology and fluorescence intensity. Furthermore, rigid and flexible module devices (effective area: 18 cm²), based on the polymer inner encapsulation, demonstrated outstanding outdoor photoelectric conversion efficiencies of 19.51% and 18.17%, respectively (with the highest indoor low-light conversion efficiencies of 25.13% and 30.2%, respectively). Notably, the untreated flexible devices exhibited a significant decline in photoelectric conversion efficiency, falling below 50% of the initial value after one month of exposure to air. In contrast, devices incorporating the polymer inner encapsulation layer maintained over 90% of their original efficiency, highlighting their excellent humidity resistance stability. Moreover, the polymer encapsulation layer also greatly improved the bending stability of the flexible devices. This research paved avenue for the industrial-scale production of perovskite solar cells, addressing the challenges associated with humidity and large-area fabrication. The findings contribute to the advancement of perovskite solar cell technology, offering a pathway for high-efficiency and stable devices suitable for real-world applications.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135495749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First-principles study of the role of Kitaev interaction in monolayer 1T-CoI<sub>2</sub> Kitaev相互作用在单层1T-CoI&lt;sub&gt;2&lt;/sub&gt;
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230909
None Zhu Kai, None Huang Can, None Cao Bang-Jie, None Pan Yan-Fei, None Fan Ji-Yu, None Ma Chun-Lan, None Zhu Yan
Kitaev interactions, which are bond-related anisotropic interactions induced by spin-orbit coupling(SOC), may produce quantum spin liquid states in 2D magnetic hexagonal lattices such as RuCl3. Generally the strong SOC in these materials come from heavy metal elements such as Ru in RuCl3. In recent years, some related studies have shown the presence of Kitaev effects in some 2D monolayers of ortho-octahedral structures containing heavy ligand elements, such as CrGeTe3, CrSiTe3, and so on. However, there are relatively few reports on the Kitaev interactions in 2D monolayer 1T structures. In this paper, we have calculated and analysed the atomic and electronic structures of 1T-CoI2 and the Kitaev interactions contained therein by means of the first-principles calculation program VASP. The structure of 1T-CoI2 is a triangular lattice with an emphasis on the coordinating element I. The energy dispersion relation ES( q )=EN+S( q )-EN( q ) for the contained Kitaev action was isolated by calculating the energy dispersion relation EN( q ) for the spin-spiral of a monolayer CoI2 without SOC and the energy dispersion relation EN+S( q ) considering SOC using the generalised Bloch condition combined with the spin-spiral method. The parameters of the Heisenberg exchange interaction induced by the SOC were obtained by fitting the dispersion law of the ES( q ) to the Kitaev exchange interaction with the parameters of the Kitaev exchange interaction. The fitted curves obtained with the fitted parameters are in good agreement with the calculated values, indicating the accuracy of our calculations. Calculated fits show that the monolayer CoI2 is dominated by Heisenberg action, with the third nearest neighbour having the largest absolute value of J at -1.81 meV. In addition to this, there are strong Kitaev interactions in monolayer CoI2, where Γ1 reaches 1.09 meV. We predict that Kitaev interactions are universally applicable in transition metal triangular lattices with 1T structure. It is shown that CoI2 can be used as an alternative material for Kitaev and lays a theoretical foundation for exploring Kitaev interactions in other 2D magnetic materials.
Kitaev相互作用是由自旋轨道耦合(SOC)引起的键相关各向异性相互作用,可以在二维磁性六方晶格(如RuCl<sub>3</sub>)中产生量子自旋液态。一般来说,这些材料中的强荷电性来自重金属元素,如rul <sub>3</sub>中的Ru。近年来,一些相关研究表明,在一些含重配元的正交八面体结构的二维单层中存在Kitaev效应,如CrGeTe<sub>3</sub>, CrSiTe<sub>3</sub>等。然而,关于二维单层1T结构中Kitaev相互作用的报道相对较少。本文计算并分析了1T-CoI<sub>2</sub>和其中包含的基塔耶夫相互作用,通过第一原理计算程序VASP。1T-CoI<sub>2</sub>是一个强调协调元素i的三角形晶格。能量色散关系<i>E<sub>S</sub>(<b>q</b>)= E< sub> N + S< / sub> (& lt; b> q< / b>)-E< sub> N< / sub> (& lt; b> q< / b>)& lt; / i>,通过计算能量色散关系<i>E<sub>N</sub>(<b>q</b>)& lt; / i>对于单层的自旋螺旋CoI<sub>2</sub>和能量色散关系<i>E<sub>N+S</sub>(<b>q</b>)& lt; / i>采用广义Bloch条件结合自旋螺旋法考虑SOC。通过拟合<i>E<sub>S</sub>(<b>q</b>)的色散规律得到了SOC诱导的海森堡交换相互作用的参数。& lt; / i>与基塔耶夫交换交互作用的参数。用拟合参数得到的拟合曲线与计算值吻合较好,表明了计算的准确性。计算拟合表明,单层CoI<sub>2</sub>是由海森堡作用主导的,第三近邻的J绝对值最大,为-1.81 meV。除此之外,在单层CoI<sub>2</sub>中存在很强的Kitaev相互作用,其中Γ<sub>1</sub>达到1.09 meV。我们预测Kitaev相互作用普遍适用于具有1T结构的过渡金属三角形晶格。结果表明:CoI<sub>2</sub>可以作为基塔耶夫的替代材料,为探索其他二维磁性材料中的基塔耶夫相互作用奠定了理论基础。
{"title":"First-principles study of the role of Kitaev interaction in monolayer 1T-CoI&lt;sub&gt;2&lt;/sub&gt;","authors":"None Zhu Kai, None Huang Can, None Cao Bang-Jie, None Pan Yan-Fei, None Fan Ji-Yu, None Ma Chun-Lan, None Zhu Yan","doi":"10.7498/aps.72.20230909","DOIUrl":"https://doi.org/10.7498/aps.72.20230909","url":null,"abstract":"Kitaev interactions, which are bond-related anisotropic interactions induced by spin-orbit coupling(SOC), may produce quantum spin liquid states in 2D magnetic hexagonal lattices such as RuCl<sub>3</sub>. Generally the strong SOC in these materials come from heavy metal elements such as Ru in RuCl<sub>3</sub>. In recent years, some related studies have shown the presence of Kitaev effects in some 2D monolayers of ortho-octahedral structures containing heavy ligand elements, such as CrGeTe<sub>3</sub>, CrSiTe<sub>3</sub>, and so on. However, there are relatively few reports on the Kitaev interactions in 2D monolayer 1T structures. In this paper, we have calculated and analysed the atomic and electronic structures of 1T-CoI<sub>2</sub> and the Kitaev interactions contained therein by means of the first-principles calculation program VASP. The structure of 1T-CoI<sub>2</sub> is a triangular lattice with an emphasis on the coordinating element I. The energy dispersion relation <i>E<sub>S</sub>( <b>q</b> )=E<sub>N+S</sub>( <b>q</b> )-E<sub>N</sub>( <b>q</b> )</i> for the contained Kitaev action was isolated by calculating the energy dispersion relation <i>E<sub>N</sub>( <b>q</b> )</i> for the spin-spiral of a monolayer CoI<sub>2</sub> without SOC and the energy dispersion relation <i>E<sub>N+S</sub>( <b>q</b> )</i> considering SOC using the generalised Bloch condition combined with the spin-spiral method. The parameters of the Heisenberg exchange interaction induced by the SOC were obtained by fitting the dispersion law of the <i>E<sub>S</sub>( <b>q</b> )</i> to the Kitaev exchange interaction with the parameters of the Kitaev exchange interaction. The fitted curves obtained with the fitted parameters are in good agreement with the calculated values, indicating the accuracy of our calculations. Calculated fits show that the monolayer CoI<sub>2</sub> is dominated by Heisenberg action, with the third nearest neighbour having the largest absolute value of J at -1.81 meV. In addition to this, there are strong Kitaev interactions in monolayer CoI<sub>2</sub>, where Γ<sub>1</sub> reaches 1.09 meV. We predict that Kitaev interactions are universally applicable in transition metal triangular lattices with 1T structure. It is shown that CoI<sub>2</sub> can be used as an alternative material for Kitaev and lays a theoretical foundation for exploring Kitaev interactions in other 2D magnetic materials.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135496009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic Properties of Two-Dimensional Kagome Lattice Based on Transition Metal Phthalocyanine Heterojunctions 基于过渡金属酞菁异质结的二维Kagome晶格的电子性质
Pub Date : 2023-01-01 DOI: 10.7498/aps.72.20230921
None Jiang Zhou, None Jiang Xue, None Zhao Ji-Jun
Transition metal phthalocyanine molecules serve as building blocks for two-dimensional (2D) metal-organic frameworks with potential applications in optics, electronics, and spintronics. Previous theoretical studies predicted that a two-dimensional transition metal phthalocyanine framework with kagome lattice (kag-TMPc) has stable magnetically ordered properties, which are promising for spintronics and optoelectronics. However, there is a lack of studies on their heterojunctions, which can effectively tune the properties through interlayer coupling despite its weak nature. Here we use density functional theory (DFT) to calculate the electronic properties of eight representative 2D kag-TMPc vertical heterojunctions with two different stackings (AA and AB) and interlayer distances. We found that most of the kag-MnPc-based heterojunctions can maintain the electronic properties of monolayer materials with low bandgap. kag-MnPc/ZnPc are ferromagnetic semiconductors with magnetic exchange energy above 40 meV, regardless of stacking sequences; the electronic properties of kag-MnPc/MnPc heterojunctions change from magnetic half-metal to magnetic semiconductor during the transition from AA stacking to AB stacking. Interestingly, the AB stacked kag-CuPc/CoPc heterojunction is a ferromagnetic semiconductor, and the spin-polarized energy band arrangement changes with the layer spacing: when the layer spacing is at the equilibrium distance, the spin-up and spin-down energy bands are aligned as type II; when the layer spacing increases by 0.2 Å, the spin-up energy bands are aligned as type I, while the spin-down energy bands are aligned as type II energy bands. This distance-dependent spin properties can realize magnetic optoelectronic "switching" and has potential applications in new magnetic field modulated lectromagnetic and optoelectronic devices.
过渡金属酞菁分子作为二维(2D)金属有机框架的构建块,在光学,电子和自旋电子学中具有潜在的应用。先前的理论研究预测,具有kagome晶格的二维过渡金属酞菁框架(kag-TMPc)具有稳定的磁有序性质,在自旋电子学和光电子学领域具有广阔的应用前景。然而,对于它们的异质结,尽管其性质较弱,但可以通过层间耦合有效地调节性能的研究却很少。本文利用密度泛函理论(DFT)计算了8个具有代表性的具有不同堆叠层(AA和AB)和层间距离的二维kag-TMPc垂直异质结的电子性质。我们发现,大多数kag- mnpc基异质结在低带隙下仍能保持单层材料的电子性能。无论堆叠顺序如何,kag-MnPc/ZnPc都是磁交换能在40 meV以上的铁磁性半导体;kag-MnPc/MnPc异质结的电子性质在AA堆叠到AB堆叠的转变过程中由磁性半金属转变为磁性半导体。有趣的是,AB堆叠的kag-CuPc/CoPc异质结是一种铁磁性半导体,其自旋极化能带排列随层间距的变化而变化:当层间距处于平衡距离时,自旋向上和自旋向下的能带排列为II型;当层间距增加0.2 Å时,自旋向上的能带排列为I型,自旋向下的能带排列为II型。这种与距离相关的自旋特性可以实现磁性光电“开关”,在新型磁场调制电磁和光电子器件中具有潜在的应用前景。
{"title":"Electronic Properties of Two-Dimensional Kagome Lattice Based on Transition Metal Phthalocyanine Heterojunctions","authors":"None Jiang Zhou, None Jiang Xue, None Zhao Ji-Jun","doi":"10.7498/aps.72.20230921","DOIUrl":"https://doi.org/10.7498/aps.72.20230921","url":null,"abstract":"Transition metal phthalocyanine molecules serve as building blocks for two-dimensional (2D) metal-organic frameworks with potential applications in optics, electronics, and spintronics. Previous theoretical studies predicted that a two-dimensional transition metal phthalocyanine framework with kagome lattice (kag-TMPc) has stable magnetically ordered properties, which are promising for spintronics and optoelectronics. However, there is a lack of studies on their heterojunctions, which can effectively tune the properties through interlayer coupling despite its weak nature. Here we use density functional theory (DFT) to calculate the electronic properties of eight representative 2D kag-TMPc vertical heterojunctions with two different stackings (AA and AB) and interlayer distances. We found that most of the kag-MnPc-based heterojunctions can maintain the electronic properties of monolayer materials with low bandgap. kag-MnPc/ZnPc are ferromagnetic semiconductors with magnetic exchange energy above 40 meV, regardless of stacking sequences; the electronic properties of kag-MnPc/MnPc heterojunctions change from magnetic half-metal to magnetic semiconductor during the transition from AA stacking to AB stacking. Interestingly, the AB stacked kag-CuPc/CoPc heterojunction is a ferromagnetic semiconductor, and the spin-polarized energy band arrangement changes with the layer spacing: when the layer spacing is at the equilibrium distance, the spin-up and spin-down energy bands are aligned as type II; when the layer spacing increases by 0.2 Å, the spin-up energy bands are aligned as type I, while the spin-down energy bands are aligned as type II energy bands. This distance-dependent spin properties can realize magnetic optoelectronic \"switching\" and has potential applications in new magnetic field modulated lectromagnetic and optoelectronic devices.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135595469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1