首页 > 最新文献

Chinese Physics Letters最新文献

英文 中文
Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States 八位单元诱导的混合皮肤-拓扑效应以及拓扑边缘态定位的任意调整
IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1088/0256-307x/41/3/037103
Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, Jianjun Liu
Hybrid skin-topological effect (HSTE) in non-Hermitian systems exhibits both the skin effect and topological protection, offering a novel mechanism for localization of topological edge states (TESs) in electrons, circuits, and photons. However, it remains unclear whether the HSTE can be realized in quasicrystals, and the unique structure of quasicrystals with multi-site cells may provide novel localization phenomena for TESs induced by the HSTE. We propose an eight-site cell in two-dimensional quasicrystals and realize the HSTE with eight-site nonreciprocal intracell hoppings. Furthermore, we can arbitrarily adjust the eigenfield distributions of the TESs and discover domain walls associated with effective dissipation and their correlation with localization. We present a new scheme to precisely adjust the energy distribution in non-Hermitian quasicrystals with arbitrary polygonal outer boundaries.
非赫米提系统中的混合表皮-拓扑效应(HSTE)同时表现出表皮效应和拓扑保护,为电子、电路和光子中拓扑边缘态(TES)的定位提供了一种新的机制。然而,HSTE 能否在类晶体中实现仍不清楚,而具有多位元胞的类晶体的独特结构可能会为 HSTE 诱导的拓扑边缘态提供新的定位现象。我们提出了二维准晶体中的八位元胞,并实现了具有八位元非互惠胞内跳变的 HSTE。此外,我们还可以任意调整 TES 的特征场分布,并发现与有效耗散相关的畴墙及其与定位的相关性。我们提出了一种新方案,用于精确调整具有任意多边形外边界的非赫米梯准晶体的能量分布。
{"title":"Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States","authors":"Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, Jianjun Liu","doi":"10.1088/0256-307x/41/3/037103","DOIUrl":"https://doi.org/10.1088/0256-307x/41/3/037103","url":null,"abstract":"Hybrid skin-topological effect (HSTE) in non-Hermitian systems exhibits both the skin effect and topological protection, offering a novel mechanism for localization of topological edge states (TESs) in electrons, circuits, and photons. However, it remains unclear whether the HSTE can be realized in quasicrystals, and the unique structure of quasicrystals with multi-site cells may provide novel localization phenomena for TESs induced by the HSTE. We propose an eight-site cell in two-dimensional quasicrystals and realize the HSTE with eight-site nonreciprocal intracell hoppings. Furthermore, we can arbitrarily adjust the eigenfield distributions of the TESs and discover domain walls associated with effective dissipation and their correlation with localization. We present a new scheme to precisely adjust the energy distribution in non-Hermitian quasicrystals with arbitrary polygonal outer boundaries.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"21 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing Hopf Insulator from Geometric Perspective of Hopf Invariant 从霍普夫不变式的几何视角构建霍普夫绝缘体
IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1088/0256-307x/41/3/037302
Zhi-Wen Chang, Wei-Chang Hao, Miguel Bustamante, Xin Liu
We propose a method to construct Hopf insulators based on the study of topological defects from the geometric perspective of Hopf invariant I. Firstly, we prove two types of topological defects naturally inhering in the inner differential structure of the Hopf mapping. One type is the four-dimensional point defects, which lead to a topological phase transition occurring at the Dirac points. The other type is the three-dimensional merons, whose topological charges give the evaluations of I. Then, we show two ways to establish the Hopf insulator models. One approach is to modify the locations of merons, thereby the contributions of charges to I will change. The other is related to the number of defects. It is found that I will decrease if the number reduces, while increase if additional defects are added. The method developed in this study is expected to provide a new perspective for understanding the topological invariants, which opens a new door in exploring and designing novel topological materials in three dimensions.
我们从霍普夫不变量 I 的几何视角出发,提出了一种基于拓扑缺陷研究的霍普夫绝缘体构造方法。首先,我们证明了霍普夫映射的内微分结构中自然继承的两类拓扑缺陷。一种是四维点缺陷,它导致在狄拉克点发生拓扑相变。另一类是三维梅龙子,其拓扑电荷给出了 I 的估值。一种方法是改变梅龙子的位置,从而改变电荷对 I 的贡献。另一种方法与缺陷数量有关。研究发现,如果缺陷数量减少,I 会减小,而如果缺陷数量增加,I 会增大。本研究开发的方法有望为理解拓扑不变量提供一个新的视角,为探索和设计新型三维拓扑材料打开一扇新的大门。
{"title":"Constructing Hopf Insulator from Geometric Perspective of Hopf Invariant","authors":"Zhi-Wen Chang, Wei-Chang Hao, Miguel Bustamante, Xin Liu","doi":"10.1088/0256-307x/41/3/037302","DOIUrl":"https://doi.org/10.1088/0256-307x/41/3/037302","url":null,"abstract":"We propose a method to construct Hopf insulators based on the study of topological defects from the geometric perspective of Hopf invariant <italic toggle=\"yes\">I</italic>. Firstly, we prove two types of topological defects naturally inhering in the inner differential structure of the Hopf mapping. One type is the four-dimensional point defects, which lead to a topological phase transition occurring at the Dirac points. The other type is the three-dimensional merons, whose topological charges give the evaluations of <italic toggle=\"yes\">I</italic>. Then, we show two ways to establish the Hopf insulator models. One approach is to modify the locations of merons, thereby the contributions of charges to <italic toggle=\"yes\">I</italic> will change. The other is related to the number of defects. It is found that <italic toggle=\"yes\">I</italic> will decrease if the number reduces, while increase if additional defects are added. The method developed in this study is expected to provide a new perspective for understanding the topological invariants, which opens a new door in exploring and designing novel topological materials in three dimensions.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"128 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An LED-Side-Pumped Intracavity Frequency-Doubled Nd,Ce:YAG Laser Producing a 2W Q-Switched Red Beam 可产生 2W Q 开关红光的 LED 侧泵浦腔内倍频 Nd、Ce:YAG 激光器
IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1088/0256-307x/41/3/034201
Jianping Shen, Shaocong Xu, Peng LU, Rongrong Jiang, Wei Wang, Siwei Zhang, Fengyang Xing, Yang Chen, Liang Chen
We report a high-average-power acousto-optic (AO) Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode (LED) pumped two-rod Nd,Ce:YAG laser module. Under quasi-continuous wave operation conditions, a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz, corresponding to a maximum optical efficiency of 13.9% and a slope efficiency of 17.9%. In the active Q-switched regime, the pulse energy of the laser was as high as 800 μJ at a repetition rate of 10 kHz with a pulse width of 1.5 μs. Under non-critical phase-matched KTP crystal conditions, an average power of 2.03 W of 658.66 nm through intracavity frequency-doubling was obtained at a repetition frequency of 10 kHz with a duration of 1.3 μs, and the M2 factor was measured to be about 5.8. To the best of our knowledge, this is the highest average power of an LED-pumped AO Q-switched 1319 nm laser and intracavity frequency-doubled red laser reported to date.
我们报告了一种基于高效发光二极管(LED)泵浦双杆 Nd、Ce:YAG 激光模块的高平均功率声光(AO)Q 开关腔内倍频红激光器。在准连续波工作条件下,以 11.26 W 的功率和 100 Hz 的重复频率实现了 1319.08 nm 波长的最大输出功率,相应的最大光学效率为 13.9%,斜率效率为 17.9%。在主动 Q 开关模式下,激光脉冲能量高达 800 μJ,重复频率为 10 kHz,脉冲宽度为 1.5 μs。在非临界相位匹配 KTP 晶体条件下,通过腔内倍频,在重复频率为 10 kHz、持续时间为 1.3 μs 时获得了 2.03 W 的 658.66 nm 平均功率,测得 M2 因子约为 5.8。据我们所知,这是迄今为止报道的平均功率最高的 LED 泵浦 AO Q 开关 1319 nm 激光器和腔内倍频红激光器。
{"title":"An LED-Side-Pumped Intracavity Frequency-Doubled Nd,Ce:YAG Laser Producing a 2W Q-Switched Red Beam","authors":"Jianping Shen, Shaocong Xu, Peng LU, Rongrong Jiang, Wei Wang, Siwei Zhang, Fengyang Xing, Yang Chen, Liang Chen","doi":"10.1088/0256-307x/41/3/034201","DOIUrl":"https://doi.org/10.1088/0256-307x/41/3/034201","url":null,"abstract":"We report a high-average-power acousto-optic (AO) Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode (LED) pumped two-rod Nd,Ce:YAG laser module. Under quasi-continuous wave operation conditions, a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz, corresponding to a maximum optical efficiency of 13.9% and a slope efficiency of 17.9%. In the active Q-switched regime, the pulse energy of the laser was as high as 800 μJ at a repetition rate of 10 kHz with a pulse width of 1.5 μs. Under non-critical phase-matched KTP crystal conditions, an average power of 2.03 W of 658.66 nm through intracavity frequency-doubling was obtained at a repetition frequency of 10 kHz with a duration of 1.3 μs, and the <italic toggle=\"yes\">M</italic>\u0000<sup>2</sup> factor was measured to be about 5.8. To the best of our knowledge, this is the highest average power of an LED-pumped AO Q-switched 1319 nm laser and intracavity frequency-doubled red laser reported to date.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"8 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb2 拓扑半金属 CaMnSb2 的 C 型反铁磁结构
IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1088/0256-307x/41/3/037104
Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, Wentao Jin
Determination of the magnetic structure and confirmation of the presence or absence of inversion (P) and time reversal (T) symmetry is imperative for correctly understanding the topological magnetic materials. Here high-quality single crystals of the layered manganese pnictide CaMnSb2 are synthesized using the self-flux method. De Haas–van Alphen oscillations indicate a nontrivial Berry phase of ∼ π and a notably small cyclotron effective mass, supporting the Dirac semimetal nature of CaMnSb2. Neutron diffraction measurements identify a C-type antiferromagnetic structure below TN = 303(1) K with the Mn moments aligned along the a axis, which is well supported by the density functional theory (DFT) calculations. The corresponding magnetic space group is Pnma′, preserving a P×T symmetry. Adopting the experimentally determined magnetic structure, band crossings near the Y point in momentum space and linear dispersions of the Sb 5py, z bands are revealed by the DFT calculations. Furthermore, our study predicts the possible existence of an intrinsic second-order nonlinear Hall effect in CaMnSb2, offering a promising platform to study the impact of topological properties on nonlinear electrical transports in antiferromagnets.
要正确理解拓扑磁性材料,就必须确定磁性结构并确认是否存在反转(P)和时间反转(T)对称性。在此,我们采用自流式方法合成了层状锰锑化合物 CaMnSb2 的高质量单晶体。德哈斯-范阿尔芬振荡表明,CaMnSb2 的贝里相为 ∼ π,而且回旋有效质量非常小,这支持了 CaMnSb2 的狄拉克半金属性质。中子衍射测量确定了低于 TN = 303(1) K 的 C 型反铁磁结构,锰矩沿 a 轴排列,密度泛函理论(DFT)计算也很好地支持了这一点。相应的磁性空间群为 Pn′m′a′,保持 P×T 对称性。采用实验确定的磁结构,DFT 计算揭示了动量空间 Y 点附近的带交叉和 Sb 5py、z 带的线性色散。此外,我们的研究还预测了 CaMnSb2 中可能存在的内在二阶非线性霍尔效应,为研究拓扑特性对反铁磁体中非线性电传输的影响提供了一个前景广阔的平台。
{"title":"C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb2","authors":"Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, Wentao Jin","doi":"10.1088/0256-307x/41/3/037104","DOIUrl":"https://doi.org/10.1088/0256-307x/41/3/037104","url":null,"abstract":"Determination of the magnetic structure and confirmation of the presence or absence of inversion (<inline-formula>\u0000<tex-math>\u0000<?CDATA $mathcal{P}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"script\">P</mml:mi></mml:math>\u0000<inline-graphic xlink:href=\"cpl_41_3_037104_ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>) and time reversal (<inline-formula>\u0000<tex-math>\u0000<?CDATA $mathcal{T}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"script\">T</mml:mi></mml:math>\u0000<inline-graphic xlink:href=\"cpl_41_3_037104_ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>) symmetry is imperative for correctly understanding the topological magnetic materials. Here high-quality single crystals of the layered manganese pnictide CaMnSb<sub>2</sub> are synthesized using the self-flux method. De Haas–van Alphen oscillations indicate a nontrivial Berry phase of ∼ <italic toggle=\"yes\">π</italic> and a notably small cyclotron effective mass, supporting the Dirac semimetal nature of CaMnSb<sub>2</sub>. Neutron diffraction measurements identify a C-type antiferromagnetic structure below <italic toggle=\"yes\">T</italic>\u0000<sub>N</sub> = 303(1) K with the Mn moments aligned along the <italic toggle=\"yes\">a</italic> axis, which is well supported by the density functional theory (DFT) calculations. The corresponding magnetic space group is <italic toggle=\"yes\">Pn</italic>′<italic toggle=\"yes\">m</italic>′<italic toggle=\"yes\">a</italic>′, preserving a <inline-formula>\u0000<tex-math>\u0000<?CDATA $mathcal{P}timesmathcal{T}$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"script\">P</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant=\"script\">T</mml:mi></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"cpl_41_3_037104_ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> symmetry. Adopting the experimentally determined magnetic structure, band crossings near the <italic toggle=\"yes\">Y</italic> point in momentum space and linear dispersions of the Sb 5p<sub>\u0000<italic toggle=\"yes\">y</italic>, <italic toggle=\"yes\">z</italic>\u0000</sub> bands are revealed by the DFT calculations. Furthermore, our study predicts the possible existence of an intrinsic second-order nonlinear Hall effect in CaMnSb<sub>2</sub>, offering a promising platform to study the impact of topological properties on nonlinear electrical transports in antiferromagnets.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"141 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical t/U Expansion of the Doped Hubbard Model 掺杂哈伯德模型的动态 t/U 扩展
IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1088/0256-307x/41/3/037101
Wenxin Ding, Rong Yu
We construct a new U(1) slave-spin representation for the single-band Hubbard model in the large-U limit. The mean-field theory in this representation is more amenable to describe both the spin-charge-separation physics of the Mott insulator at half-filling and the strange metal behavior at finite doping. By employing a dynamical Green’s function theory for slave spins, we calculate the single-particle spectral function of electrons. The result is comparable to that in dynamical mean field theories. We then formulate a dynamical t/U expansion for the doped Hubbard model that reproduces the mean-field results at the lowest order of expansion. To the next order of expansion, it naturally yields an effective low-energy theory of a tJ model for spinons self-consistently coupled to an XXZ model for the slave spins. We show that the superexchange J is renormalized by doping, in agreement with the Gutzwiller approximation. Surprisingly, we find a new ferromagnetic channel of exchange interactions which survives in the infinite U limit, as a manifestation of the Nagaoka ferromagnetism.
我们为单波段哈伯德模型构建了一个新的大U极限下的U(1)从自旋表示。这种表征下的均场理论更适于描述半填充莫特绝缘体的自旋电荷分离物理和有限掺杂下的奇异金属行为。通过采用从属自旋的动态格林函数理论,我们计算了电子的单粒子谱函数。其结果与动力学均场理论的结果相当。然后,我们提出了掺杂哈伯德模型的动力学 t/U 扩展,该扩展在最低阶重现了均场结果。到了下一阶扩展,它自然会产生一个有效的低能理论,即自洽耦合到从属自旋的 XXZ 模型的自旋子 t-J 模型。我们证明,超交换 J 通过掺杂被重正化,这与古茨维勒近似是一致的。令人惊奇的是,我们发现了一种新的交换相互作用铁磁通道,它作为长冈铁磁的一种表现形式,在无限 U 极限下仍然存在。
{"title":"Dynamical t/U Expansion of the Doped Hubbard Model","authors":"Wenxin Ding, Rong Yu","doi":"10.1088/0256-307x/41/3/037101","DOIUrl":"https://doi.org/10.1088/0256-307x/41/3/037101","url":null,"abstract":"We construct a new <italic toggle=\"yes\">U</italic>(1) slave-spin representation for the single-band Hubbard model in the large-<italic toggle=\"yes\">U</italic> limit. The mean-field theory in this representation is more amenable to describe both the spin-charge-separation physics of the Mott insulator at half-filling and the strange metal behavior at finite doping. By employing a dynamical Green’s function theory for slave spins, we calculate the single-particle spectral function of electrons. The result is comparable to that in dynamical mean field theories. We then formulate a dynamical <italic toggle=\"yes\">t</italic>/<italic toggle=\"yes\">U</italic> expansion for the doped Hubbard model that reproduces the mean-field results at the lowest order of expansion. To the next order of expansion, it naturally yields an effective low-energy theory of a <italic toggle=\"yes\">t</italic>–<italic toggle=\"yes\">J</italic> model for spinons self-consistently coupled to an <italic toggle=\"yes\">XXZ</italic> model for the slave spins. We show that the superexchange <italic toggle=\"yes\">J</italic> is renormalized by doping, in agreement with the Gutzwiller approximation. Surprisingly, we find a new <italic toggle=\"yes\">ferromagnetic</italic> channel of exchange interactions which survives in the infinite <italic toggle=\"yes\">U</italic> limit, as a manifestation of the Nagaoka ferromagnetism.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"45 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning Excitation Transport in a Dissipative Rydberg Ring 调谐耗散型雷德贝格环的激发传输
IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1088/0256-307x/41/3/033201
Yiwen Han, Wei Yi
We demonstrate the flexible tunability of excitation transport in Rydberg atoms, under the interplay of controlled dissipation and interaction-induced synthetic flux. Considering a minimum four-site setup, i.e., a triangular configuration with an additional output site, we study the transport of a single excitation, injected into a vertex of the triangle, through the structure. While the long-range dipole-dipole interactions between the Rydberg atoms lead to geometry-dependent Peierls phases in the hopping amplitudes of excitations, we further introduce on-site dissipation to a vertex of the triangle. As a result, both the chirality and destination of the transport can be manipulated through the flux and dissipation. In particular, we illustrate a parameter regime where our Rydberg-ring structure may serve as a switch for transporting the injected excitation through to the output site. The underlying mechanism is then analyzed by studying the chiral trajectory of the excitation and the time-dependent dissipation. The switchable excitation transport reported here offers a flexible tool for quantum control in Rydberg atoms, and holds interesting potentials for applications in quantum simulation and quantum information.
我们展示了在受控耗散和相互作用诱导的合成通量相互作用下,雷德贝格原子中激发传输的灵活可调性。我们研究了注入三角形顶点的单一激发在该结构中的传输。虽然雷德贝格原子之间的长程偶极-偶极相互作用会导致激发的跳跃振幅出现与几何相关的佩尔相,但我们进一步向三角形的一个顶点引入了现场耗散。因此,传输的手性和目的地都可以通过通量和耗散来操纵。我们特别说明了一种参数机制,在这种机制下,我们的雷德贝格环结构可以作为开关,将注入的激发传输到输出点。然后,我们通过研究激发的手性轨迹和随时间变化的耗散来分析其基本机制。本文报告的可切换激发传输为雷德贝格原子的量子控制提供了一个灵活的工具,并为量子模拟和量子信息的应用提供了有趣的潜力。
{"title":"Tuning Excitation Transport in a Dissipative Rydberg Ring","authors":"Yiwen Han, Wei Yi","doi":"10.1088/0256-307x/41/3/033201","DOIUrl":"https://doi.org/10.1088/0256-307x/41/3/033201","url":null,"abstract":"We demonstrate the flexible tunability of excitation transport in Rydberg atoms, under the interplay of controlled dissipation and interaction-induced synthetic flux. Considering a minimum four-site setup, i.e., a triangular configuration with an additional output site, we study the transport of a single excitation, injected into a vertex of the triangle, through the structure. While the long-range dipole-dipole interactions between the Rydberg atoms lead to geometry-dependent Peierls phases in the hopping amplitudes of excitations, we further introduce on-site dissipation to a vertex of the triangle. As a result, both the chirality and destination of the transport can be manipulated through the flux and dissipation. In particular, we illustrate a parameter regime where our Rydberg-ring structure may serve as a switch for transporting the injected excitation through to the output site. The underlying mechanism is then analyzed by studying the chiral trajectory of the excitation and the time-dependent dissipation. The switchable excitation transport reported here offers a flexible tool for quantum control in Rydberg atoms, and holds interesting potentials for applications in quantum simulation and quantum information.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"13 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hard Superconducting Gap in PbTe Nanowires 碲化镉纳米线中的硬超导间隙
IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1088/0256-307x/41/3/038502
Yichun Gao, Wenyu Song, Shuai Yang, Zehao Yu, Ruidong Li, Wentao Miao, Yuhao Wang, Fangting Chen, Zuhan Geng, Lining Yang, Zezhou Xia, Xiao Feng, Yunyi Zang, Lin Li, Runan Shang, Qi-Kun Xue, Ke He, Hao Zhang
Semiconductor nanowires coupled to a superconductor provide a powerful testbed for quantum device physics such as Majorana zero modes and gate-tunable hybrid qubits. The performance of these quantum devices heavily relies on the quality of the induced superconducting gap. A hard gap, evident as vanishing subgap conductance in tunneling spectroscopy, is both necessary and desired. A hard gap has been achieved and extensively studied before in III–V semiconductor nanowires (InAs and InSb). In this study, we present the observation of a hard superconducting gap in PbTe nanowires coupled to a superconductor Pb. The gap size Δ is ∼ 1 meV (maximally 1.3 meV in one device). Additionally, subgap Andreev bound states can also be created and controlled through gate tuning. Tuning a device into the open regime can reveal Andreev enhancement of the subgap conductance. These results pave the way for diverse superconducting quantum devices based on PbTe nanowires.
与超导体耦合的半导体纳米线为马约拉纳零模和门调谐混合量子比特等量子器件物理提供了强大的试验平台。这些量子器件的性能在很大程度上取决于诱导超导间隙的质量。硬间隙(在隧道光谱学中表现为亚间隙电导消失)既是必要的,也是人们所期望的。在 III-V 族半导体纳米线(InAs 和 InSb)中已经实现并广泛研究了硬间隙。在本研究中,我们观测到了与超导体 Pb 相耦合的 PbTe 纳米线中的硬超导间隙。间隙大小 Δ ∼ 1 meV(在一个器件中最大为 1.3 meV)。此外,还可以通过栅极调谐来创建和控制亚间隙安德烈耶夫束缚态。将器件调谐到开态可以发现亚隙电导的安德烈耶夫增强。这些成果为基于碲镉铅纳米线的多样化超导量子器件铺平了道路。
{"title":"Hard Superconducting Gap in PbTe Nanowires","authors":"Yichun Gao, Wenyu Song, Shuai Yang, Zehao Yu, Ruidong Li, Wentao Miao, Yuhao Wang, Fangting Chen, Zuhan Geng, Lining Yang, Zezhou Xia, Xiao Feng, Yunyi Zang, Lin Li, Runan Shang, Qi-Kun Xue, Ke He, Hao Zhang","doi":"10.1088/0256-307x/41/3/038502","DOIUrl":"https://doi.org/10.1088/0256-307x/41/3/038502","url":null,"abstract":"Semiconductor nanowires coupled to a superconductor provide a powerful testbed for quantum device physics such as Majorana zero modes and gate-tunable hybrid qubits. The performance of these quantum devices heavily relies on the quality of the induced superconducting gap. A hard gap, evident as vanishing subgap conductance in tunneling spectroscopy, is both necessary and desired. A hard gap has been achieved and extensively studied before in III–V semiconductor nanowires (InAs and InSb). In this study, we present the observation of a hard superconducting gap in PbTe nanowires coupled to a superconductor Pb. The gap size <italic toggle=\"yes\">Δ</italic> is ∼ 1 meV (maximally 1.3 meV in one device). Additionally, subgap Andreev bound states can also be created and controlled through gate tuning. Tuning a device into the open regime can reveal Andreev enhancement of the subgap conductance. These results pave the way for diverse superconducting quantum devices based on PbTe nanowires.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"142 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of the X(4014) as the Spin-2 Partner of X(3872) in e + e − Collisions 在 e + e - 碰撞中产生作为 X(3872) 自旋-2 伙伴的 X(4014)
IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1088/0256-307x/41/3/031301
Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, Alexey Nefediev
In 2021, the Belle collaboration reported the first observation of a new structure in the ψ(2S)γ final state produced in the two-photon fusion process. In the hadronic molecule picture, this new structure can be associated with the shallow isoscalar D*D¯* bound state and as such is an excellent candidate for the spin-2 partner of the X(3872) with the quantum numbers JPC = 2++ conventionally named X2. In this work we evaluate the electronic width of this new state and argue that its nature is sensitive to its total width, the experimental measurement currently available being unable to distinguish between different options. Our estimates demonstrate that the planned Super τ-Charm Facility offers a promising opportunity to search for and study this new state in the invariant mass distributions for the final states J/ψγ and ψ(2S)γ.
2021年,"贝勒 "合作小组首次观测到双光子聚变过程中产生的ψ(2S)γ终态的新结构。在强子分子图中,这种新结构可以与浅等标D*D¯*束缚态相关联,因此是量子数为JPC = 2++的X(3872)自旋-2伙伴的极佳候选者,X(3872)自旋-2伙伴通常被命名为X2。在这项工作中,我们评估了这种新状态的电子宽度,并认为它的性质对其总宽度很敏感,而目前可用的实验测量无法区分不同的选择。我们的估计结果表明,计划中的超τ-粲设施为在最终态J/ψγ和ψ(2S)γ的不变质量分布中寻找和研究这一新态提供了一个大有可为的机会。
{"title":"Production of the X(4014) as the Spin-2 Partner of X(3872) in e + e − Collisions","authors":"Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, Alexey Nefediev","doi":"10.1088/0256-307x/41/3/031301","DOIUrl":"https://doi.org/10.1088/0256-307x/41/3/031301","url":null,"abstract":"In 2021, the Belle collaboration reported the first observation of a new structure in the <italic toggle=\"yes\">ψ</italic>(2<italic toggle=\"yes\">S</italic>)<italic toggle=\"yes\">γ</italic> final state produced in the two-photon fusion process. In the hadronic molecule picture, this new structure can be associated with the shallow isoscalar <inline-formula>\u0000<tex-math>\u0000<?CDATA ${D}^{* }{overline{D}}^{* }$?>\u0000</tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>D</mml:mi><mml:mo>*</mml:mo></mml:msup><mml:msup><mml:mover accent=\"true\"><mml:mi>D</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mo>*</mml:mo></mml:msup></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"cpl_41_3_031301_ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> bound state and as such is an excellent candidate for the spin-2 partner of the <italic toggle=\"yes\">X</italic>(3872) with the quantum numbers <italic toggle=\"yes\">J</italic>\u0000<sup>PC</sup> = 2<sup>++</sup> conventionally named <italic toggle=\"yes\">X</italic>\u0000<sub>2</sub>. In this work we evaluate the electronic width of this new state and argue that its nature is sensitive to its total width, the experimental measurement currently available being unable to distinguish between different options. Our estimates demonstrate that the planned Super <italic toggle=\"yes\">τ</italic>-Charm Facility offers a promising opportunity to search for and study this new state in the invariant mass distributions for the final states <italic toggle=\"yes\">J</italic>/<italic toggle=\"yes\">ψγ</italic> and <italic toggle=\"yes\">ψ</italic>(2<italic toggle=\"yes\">S</italic>)<italic toggle=\"yes\">γ</italic>.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"4 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities of Advanced Physical Studies at the Hefei Advanced Light Facility 合肥先进光设施的高级物理研究机会
IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1088/0256-307x/41/3/037303
Zhe Sun, Donglai Feng
Synchrotron radiation has transformed the role of x-rays as a mainstream tool for probing the atomic and electronic structure of materials. Synchrotron-based x-ray sciences have been widely used to study the microscopic structure, electronic states, chemical composition, and other properties of materials in fields such as quantum materials, soft matter, energy storage, catalysis, biology, and electronics.
同步辐射改变了 X 射线的角色,使其成为探测材料原子和电子结构的主流工具。基于同步加速器的 X 射线科学已被广泛用于研究材料的微观结构、电子状态、化学成分和其他特性,涉及领域包括量子材料、软物质、能量存储、催化、生物和电子学。
{"title":"Opportunities of Advanced Physical Studies at the Hefei Advanced Light Facility","authors":"Zhe Sun, Donglai Feng","doi":"10.1088/0256-307x/41/3/037303","DOIUrl":"https://doi.org/10.1088/0256-307x/41/3/037303","url":null,"abstract":"Synchrotron radiation has transformed the role of x-rays as a mainstream tool for probing the atomic and electronic structure of materials. Synchrotron-based x-ray sciences have been widely used to study the microscopic structure, electronic states, chemical composition, and other properties of materials in fields such as quantum materials, soft matter, energy storage, catalysis, biology, and electronics.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"9 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
e+e−→Λc+Λ¯c− Cross Sections and the Λc+ Electromagnetic Form Factors within the Extended Vector Meson Dominance Model 扩展矢量介子主导模型中的 e+e-→Λc+Λ¯c- 截面和Λc+ 电磁形式因子
IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1088/0256-307x/41/2/021302
Cheng Chen, Bing Yan, Ju-Jun Xie
Within the extended vector meson dominance model, we investigate the <inline-formula><tex-math><?CDATA ${e}^{+}{e}^{-}to {varLambda }_{c}^{+}{bar{varLambda }}_{c}^{-}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>e</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mo>→</mml:mo><mml:msubsup><mml:mi>Λ</mml:mi><mml:mi>c</mml:mi><mml:mo>+</mml:mo></mml:msubsup><mml:msubsup><mml:mover accent="true"><mml:mi>Λ</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mi>c</mml:mi><mml:mo>−</mml:mo></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href="cpl_41_2_021302_ieqn5.gif" xlink:type="simple"></inline-graphic></inline-formula> reaction and the electromagnetic form factors of the charmed baryon <inline-formula><tex-math><?CDATA ${varLambda }_{c}^{+}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msubsup><mml:mi>Λ</mml:mi><mml:mi>c</mml:mi><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href="cpl_41_2_021302_ieqn6.gif" xlink:type="simple"></inline-graphic></inline-formula>. The model parameters are determined by fitting them to the cross sections of the process <inline-formula><tex-math><?CDATA ${e}^{+}{e}^{-}to {varLambda }_{c}^{+}{bar{varLambda }}_{c}^{-}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>e</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mo>→</mml:mo><mml:msubsup><mml:mi>Λ</mml:mi><mml:mi>c</mml:mi><mml:mo>+</mml:mo></mml:msubsup><mml:msubsup><mml:mover accent="true"><mml:mi>Λ</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mi>c</mml:mi><mml:mo>−</mml:mo></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href="cpl_41_2_021302_ieqn7.gif" xlink:type="simple"></inline-graphic></inline-formula> and the magnetic form factor |<italic toggle="yes">G</italic><sub>M</sub>| of <inline-formula><tex-math><?CDATA ${varLambda }_{c}^{+}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msubsup><mml:mi>Λ</mml:mi><mml:mi>c</mml:mi><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href="cpl_41_2_021302_ieqn8.gif" xlink:type="simple"></inline-graphic></inline-formula>. By considering four charmonium-like states, called <italic toggle="yes">ψ</italic>(4500), <italic toggle="yes">ψ</italic>(4660), <italic toggle="yes">ψ</italic>(4790), and <italic toggle="yes">ψ</italic>(4900), we can well describe the current data on the <inline-formula><tex-math><?CDATA ${e}^{+}{e}^{-}to {varLambda }_{c}^{+}{bar{varLambda }}_{c}^{-}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>e</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mo>→</mml:mo><mml:msubsup><mml:mi>Λ</mml:mi><mml:mi>c</mml:mi><mml:mo>+</mml:mo></mml:msubsup><mml:msubsup><mml:mover accent="true"><mml:mi>Λ</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mi>c</mml:mi><mml:mo>−</mml:mo></mml:msubsup></mml:mrow>
在扩展的矢量介子主导模型中,我们研究了e+e-→Λc+Λ¯c-反应和粲重子Λc+的电磁形式因子。模型参数是通过拟合过程 e+e-→Λc+Λ¯c- 的截面和Λc+的磁形式因子|GM|来确定的。通过考虑四种类粲态,即ψ(4500)、ψ(4660)、ψ(4790)和ψ(4900),我们可以很好地描述目前从反应阈值到4.96 GeV的e+e-→Λc+Λ¯c-反应的数据。除了总截面和|GM|之外,我们还计算了Λc+的比值|GE/GM|和有效形式因子|Geff|,发现这些计算与实验数据是一致的。在拟合的模型参数范围内,我们还估算了粲Λc+重子的电荷半径。
{"title":"e+e−→Λc+Λ¯c− Cross Sections and the Λc+ Electromagnetic Form Factors within the Extended Vector Meson Dominance Model","authors":"Cheng Chen, Bing Yan, Ju-Jun Xie","doi":"10.1088/0256-307x/41/2/021302","DOIUrl":"https://doi.org/10.1088/0256-307x/41/2/021302","url":null,"abstract":"Within the extended vector meson dominance model, we investigate the &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA ${e}^{+}{e}^{-}to {varLambda }_{c}^{+}{bar{varLambda }}_{c}^{-}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;e&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;e&lt;/mml:mi&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mo&gt;→&lt;/mml:mo&gt;&lt;mml:msubsup&gt;&lt;mml:mi&gt;Λ&lt;/mml:mi&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;/mml:msubsup&gt;&lt;mml:msubsup&gt;&lt;mml:mover accent=\"true\"&gt;&lt;mml:mi&gt;Λ&lt;/mml:mi&gt;&lt;mml:mo&gt;¯&lt;/mml:mo&gt;&lt;/mml:mover&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;/mml:msubsup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"cpl_41_2_021302_ieqn5.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; reaction and the electromagnetic form factors of the charmed baryon &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA ${varLambda }_{c}^{+}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msubsup&gt;&lt;mml:mi&gt;Λ&lt;/mml:mi&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;/mml:msubsup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"cpl_41_2_021302_ieqn6.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;. The model parameters are determined by fitting them to the cross sections of the process &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA ${e}^{+}{e}^{-}to {varLambda }_{c}^{+}{bar{varLambda }}_{c}^{-}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;e&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;e&lt;/mml:mi&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mo&gt;→&lt;/mml:mo&gt;&lt;mml:msubsup&gt;&lt;mml:mi&gt;Λ&lt;/mml:mi&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;/mml:msubsup&gt;&lt;mml:msubsup&gt;&lt;mml:mover accent=\"true\"&gt;&lt;mml:mi&gt;Λ&lt;/mml:mi&gt;&lt;mml:mo&gt;¯&lt;/mml:mo&gt;&lt;/mml:mover&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;/mml:msubsup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"cpl_41_2_021302_ieqn7.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; and the magnetic form factor |&lt;italic toggle=\"yes\"&gt;G&lt;/italic&gt;\u0000&lt;sub&gt;M&lt;/sub&gt;| of &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA ${varLambda }_{c}^{+}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msubsup&gt;&lt;mml:mi&gt;Λ&lt;/mml:mi&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;/mml:msubsup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"cpl_41_2_021302_ieqn8.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;. By considering four charmonium-like states, called &lt;italic toggle=\"yes\"&gt;ψ&lt;/italic&gt;(4500), &lt;italic toggle=\"yes\"&gt;ψ&lt;/italic&gt;(4660), &lt;italic toggle=\"yes\"&gt;ψ&lt;/italic&gt;(4790), and &lt;italic toggle=\"yes\"&gt;ψ&lt;/italic&gt;(4900), we can well describe the current data on the &lt;inline-formula&gt;\u0000&lt;tex-math&gt;\u0000&lt;?CDATA ${e}^{+}{e}^{-}to {varLambda }_{c}^{+}{bar{varLambda }}_{c}^{-}$?&gt;\u0000&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;e&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;e&lt;/mml:mi&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mo&gt;→&lt;/mml:mo&gt;&lt;mml:msubsup&gt;&lt;mml:mi&gt;Λ&lt;/mml:mi&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;/mml:msubsup&gt;&lt;mml:msubsup&gt;&lt;mml:mover accent=\"true\"&gt;&lt;mml:mi&gt;Λ&lt;/mml:mi&gt;&lt;mml:mo&gt;¯&lt;/mml:mo&gt;&lt;/mml:mover&gt;&lt;mml:mi&gt;c&lt;/mml:mi&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;/mml:msubsup&gt;&lt;/mml:mrow&gt;","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"176 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Physics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1