Pub Date : 2024-04-30DOI: 10.1088/0256-307x/41/5/057403
Jie-Ran Xue, 洁然 薛, Fa Wang and 垡 王
The recent discovery of possible high temperature superconductivity in single crystals of La3Ni2O7 under pressure renews the interest in research on nickelates. The density functional theory calculations reveal that both dz2 and dx2–y2 orbitals are active, which suggests a minimal two-orbital model to capture the low-energy physics of this system. In this work, we study a bilayer two-orbital t–J model within multiband Gutzwiller approximation, and discuss the magnetism as well as the superconductivity over a wide range of the hole doping. Owing to the inter-orbital super-exchange process between dz2 and dx2–y2 orbitals, the induced ferromagnetic coupling within layers competes with the conventional antiferromagnetic coupling, and leads to complicated hole doping dependence for the magnetic properties in the system. With increasing hole doping, the system transfers to A-type antiferromagnetic state from the starting G-type antiferromagnetic (G-AFM) state. We also find the inter-layer superconducting pairing of dx2–y2 orbitals dominates due to the large hopping parameter of dz2 along the vertical inter-layer bonds and significant Hund’s coupling between dz2 and dx2–y2 orbitals. Meanwhile, the G-AFM state and superconductivity state can coexist in the low hole doping regime. To take account of the pressure, we also analyze the impacts of inter-layer hopping amplitude on the system properties.
{"title":"Magnetism and Superconductivity in the t–J Model of La3Ni2O7 Under Multiband Gutzwiller Approximation","authors":"Jie-Ran Xue, 洁然 薛, Fa Wang and 垡 王","doi":"10.1088/0256-307x/41/5/057403","DOIUrl":"https://doi.org/10.1088/0256-307x/41/5/057403","url":null,"abstract":"The recent discovery of possible high temperature superconductivity in single crystals of La3Ni2O7 under pressure renews the interest in research on nickelates. The density functional theory calculations reveal that both dz2 and dx2–y2 orbitals are active, which suggests a minimal two-orbital model to capture the low-energy physics of this system. In this work, we study a bilayer two-orbital t–J model within multiband Gutzwiller approximation, and discuss the magnetism as well as the superconductivity over a wide range of the hole doping. Owing to the inter-orbital super-exchange process between dz2 and dx2–y2 orbitals, the induced ferromagnetic coupling within layers competes with the conventional antiferromagnetic coupling, and leads to complicated hole doping dependence for the magnetic properties in the system. With increasing hole doping, the system transfers to A-type antiferromagnetic state from the starting G-type antiferromagnetic (G-AFM) state. We also find the inter-layer superconducting pairing of dx2–y2 orbitals dominates due to the large hopping parameter of dz2 along the vertical inter-layer bonds and significant Hund’s coupling between dz2 and dx2–y2 orbitals. Meanwhile, the G-AFM state and superconductivity state can coexist in the low hole doping regime. To take account of the pressure, we also analyze the impacts of inter-layer hopping amplitude on the system properties.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"22 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum anomalous Hall (QAH) insulators have highly potential applications in spintronic device. However, available candidates with tunable Chern numbers and high working temperature are quite rare. Here, we predict a 1T-PrN2 monolayer as a stable QAH insulator with high magnetic transition temperature of above 600 K and tunable high Chern numbers of C = ±3 from first-principles calculations. Without spin-orbit coupling (SOC), the 1T-PrN2 monolayer is predicted to be a p-state Dirac half metal with high Fermi velocity. Rich topological phases depending on magnetization directions can be found when the SOC is considered. The QAH effect with periodical changes of Chern number (±1) can be produced when the magnetic moment breaks all twofold rotational symmetries in the xy plane. The critical state can be identified as Weyl half semimetals. When the magnetization direction is parallel to the z-axis, the system exhibits high Chern number QAH effect with C = ±3. Our work provides a new material for exploring novel QAH effect and developing high-performance topological devices.
量子反常霍尔(QAH)绝缘体在自旋电子器件中具有极大的应用潜力。然而,具有可调切尔诺数和高工作温度的候选材料却非常罕见。在这里,我们通过第一性原理计算预测了 1T-PrN2 单层是一种稳定的 QAH 绝缘体,具有高于 600 K 的高磁场转变温度和 C = ±3 的可调高切尔数。在没有自旋轨道耦合(SOC)的情况下,1T-PrN2 单层被预测为具有高费米速度的 p 态狄拉克半金属。考虑到自旋轨道耦合(SOC)时,可以发现取决于磁化方向的丰富拓扑相。当磁矩打破 xy 平面上的所有二重旋转对称性时,就会产生切尔诺数周期性变化(±1)的 QAH 效应。临界状态可确定为韦尔半半金属。我们的工作为探索新型 QAH 效应和开发高性能拓扑器件提供了一种新材料。
{"title":"Quantum Anomalous Hall Effect with Tunable Chern Numbers in High-Temperature 1T-PrN2 Monolayer","authors":"Xu-Cai Wu, 绪才 吴, Shu-Zong Li, 树宗 李, Jun-Shan Si, 君山 司, Bo Huang, 博 黄, Wei-Bing Zhang and 卫兵 张","doi":"10.1088/0256-307x/41/5/057303","DOIUrl":"https://doi.org/10.1088/0256-307x/41/5/057303","url":null,"abstract":"Quantum anomalous Hall (QAH) insulators have highly potential applications in spintronic device. However, available candidates with tunable Chern numbers and high working temperature are quite rare. Here, we predict a 1T-PrN2 monolayer as a stable QAH insulator with high magnetic transition temperature of above 600 K and tunable high Chern numbers of C = ±3 from first-principles calculations. Without spin-orbit coupling (SOC), the 1T-PrN2 monolayer is predicted to be a p-state Dirac half metal with high Fermi velocity. Rich topological phases depending on magnetization directions can be found when the SOC is considered. The QAH effect with periodical changes of Chern number (±1) can be produced when the magnetic moment breaks all twofold rotational symmetries in the xy plane. The critical state can be identified as Weyl half semimetals. When the magnetization direction is parallel to the z-axis, the system exhibits high Chern number QAH effect with C = ±3. Our work provides a new material for exploring novel QAH effect and developing high-performance topological devices.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"12 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research of Maxwell demon and quantum entanglement is important because of its foundational significance in physics and its potential applications in quantum information. Previous studies on the Maxwell demon have primarily focused on thermodynamics, taking into account quantum correlations. Here we consider from another perspective and ask whether quantum non-locality correlations can be simulated by performing work. The Maxwell demon-assisted Einstein–Podolsky–Rosen (EPR) steering is thus proposed, which implies a new type of loophole. The application of Landauer’s erasure principle suggests that the only way to close this loophole during a steering task is by continuously monitoring the heat fluctuation of the local environment by the participant. We construct a quantum circuit model of Maxwell demon-assisted EPR steering, which can be demonstrated by current programmable quantum processors, such as superconducting quantum computers. Based on this quantum circuit model, we obtain a quantitative formula describing the relationship between energy dissipation due to the work of the demon and quantum non-locality correlation. The result is of great physical interest because it provides a new way to explore and understand the relationship between quantum non-locality, information, and thermodynamics.
{"title":"Maxwell Demon and Einstein–Podolsky–Rosen Steering","authors":"Meng-Jun Hu, 孟军 胡, Xiao-Min Hu, 晓敏 胡, Yong-Sheng Zhang and 永生 张","doi":"10.1088/0256-307x/41/5/050302","DOIUrl":"https://doi.org/10.1088/0256-307x/41/5/050302","url":null,"abstract":"Research of Maxwell demon and quantum entanglement is important because of its foundational significance in physics and its potential applications in quantum information. Previous studies on the Maxwell demon have primarily focused on thermodynamics, taking into account quantum correlations. Here we consider from another perspective and ask whether quantum non-locality correlations can be simulated by performing work. The Maxwell demon-assisted Einstein–Podolsky–Rosen (EPR) steering is thus proposed, which implies a new type of loophole. The application of Landauer’s erasure principle suggests that the only way to close this loophole during a steering task is by continuously monitoring the heat fluctuation of the local environment by the participant. We construct a quantum circuit model of Maxwell demon-assisted EPR steering, which can be demonstrated by current programmable quantum processors, such as superconducting quantum computers. Based on this quantum circuit model, we obtain a quantitative formula describing the relationship between energy dissipation due to the work of the demon and quantum non-locality correlation. The result is of great physical interest because it provides a new way to explore and understand the relationship between quantum non-locality, information, and thermodynamics.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"34 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Based on first-principles calculations, we systematically study the stacking energy and interlayer magnetic interaction of the heterobilayer composed of CrI3 and CrSe2 monolayers. It is found that the stacking order plays a crucial role in the interlayer magnetic coupling. Among all possible stacking structures, the AA-stacking is the most stable heterostructure, exhibiting interlayer antiferromagnetic interactions. Interestingly, the interlayer magnetic interaction can be effectively tuned by biaxial strain. A 4.3% compressive strain would result in a ferromagnetic interlayer interaction in all stacking orders. These results reveal the magnetic properties of CrI3/CrSe2 heterostructure, which is expected to be applied to spintronic devices.
{"title":"Interlayer Magnetic Interaction in the CrI3/CrSe2 Heterostructure","authors":"Qiu-Hao Wang, 秋皓 王, Mei-Yan Ni, 美燕 倪, Shu-Jing Li, 淑静 李, Fa-Wei Zheng, 法伟 郑, Hong-Yan Lu, 洪艳 路, Ping Zhang and 平 张","doi":"10.1088/0256-307x/41/5/057401","DOIUrl":"https://doi.org/10.1088/0256-307x/41/5/057401","url":null,"abstract":"Based on first-principles calculations, we systematically study the stacking energy and interlayer magnetic interaction of the heterobilayer composed of CrI3 and CrSe2 monolayers. It is found that the stacking order plays a crucial role in the interlayer magnetic coupling. Among all possible stacking structures, the AA-stacking is the most stable heterostructure, exhibiting interlayer antiferromagnetic interactions. Interestingly, the interlayer magnetic interaction can be effectively tuned by biaxial strain. A 4.3% compressive strain would result in a ferromagnetic interlayer interaction in all stacking orders. These results reveal the magnetic properties of CrI3/CrSe2 heterostructure, which is expected to be applied to spintronic devices.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"57 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140888498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}